Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
- (i)
- the use of a single, low-complexity network with no “duplicate” network components, thereby avoiding a multiple CNN approach where location and segmentation networks are required to learn object appearance separately;
- (ii)
- the ability to process arbitrary-sized CT volumes by processing small, overlapping volume patches;
- (iii)
- center location awareness of vertebrae within the processed volume patch, enabling advanced post-processing strategies needed to achieve high accuracy and, thus, clinical utility;
- (iv)
- the demonstration of the separate segmentation of vertebrae boundary and body (i.e., to facilitate the accurate calculation of bone marrow dose in radiopharmaceutical therapy);
- (v)
- achieving excellent performance (a Dice coefficient larger than 0.9) with even small training data sets, which is important for research applications with specialized imaging protocols and a limited number of scans available.
2. Methods
2.1. Combined Localization and Segmentation Network for Multiple Objects
2.2. Network Training
- (i)
- One vertebra in patch: The center of the single vertebra is regarded as the mid-center.
- (ii)
- Two vertebrae in patch: The center of the lower vertebra is regarded as the mid-center.
- (iii)
- Three vertebrae in patch: The center of the middle vertebra is regarded as the mid-center.
- (iv)
- More than three vertebrae in patch: First, the confidence score of all vertebrae partially inside the volume patch is sorted, and the one with the lowest score is excluded. This process is repeated until only three with the largest confidence scores are left. Then, the center of the middle vertebra of the three remaining is regarded as the mid-center.
2.3. Network Application
2.3.1. VOI Generation
2.3.2. Vertebrae Segmentation
2.3.3. Vertebra Center Prediction
2.4. Model-Based Determination of Vertebrae Centers
2.5. Identifying Individual Vertebrae and Segmentation Post-Processing
- To identify only unlabeled vertebrae, the current labeled segmentation (with k labeled vertebrae) is applied as a mask to the three-label segmentation CNN output.
- A connected component labeling algorithm is applied to the unlabeled parts, and the components are sorted.
- Each connected component from step (2) is processed from largest to smallest as follows. First, the center coordinate of the component (C) is found. Second, the coordinate C together with the centers of all currently segmented vertebrae are assessed by utilizing Equation (1). If , the component is added to the current segmentation, and k is updated as .
- Step (3) is repeated until either of the two following conditions are met: (a) the total number of labeled vertebrae (k) is larger than 18, which is the maximum number of vertebrae that are considered, or (b) all connected components from step (2) are processed.
- All vertebrae in the current segmentation are relabeled from bottom to top to form the final labeled segmentation.
3. Experimental Setup
3.1. Image Data
3.1.1. Iowa Data
3.1.2. Verse2020 Data
3.2. Reference Segmentation
3.3. Performance Metrics
4. Results
4.1. Iowa Data
4.2. VerSe2020 Data
5. Discussion
5.1. Segmentation Performance
5.2. Current Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGuire, S.M.; Bhatia, S.K.; Sun, W.; Jacobson, G.M.; Menda, Y.; Ponto, L.L.; Smith, B.J.; Gross, B.A.; Bayouth, J.E.; Sunderland, J.J.; et al. Using [(18)F]Fluorothymidine Imaged With Positron Emission Tomography to Quantify and Reduce Hematologic Toxicity Due to Chemoradiation Therapy for Pelvic Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Mastmeyer, A.; Engelke, K.; Fuchs, C.; Kalender, W.A. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med. Image Anal. 2006, 10, 560–577. [Google Scholar] [CrossRef] [PubMed]
- Burnett, S.S.; Starkschalla, G.; Stevens, C.W.; Liao, Z. A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal. Med. Phys. 2004, 31, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Litvin, A.; Alvino, C. Localized priors for the precise segmentation of individual vertebras from CT volume data. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, New York, NY, USA, 6–10 September 2008; Volume 11, pp. 367–375. [Google Scholar]
- Kelm, B.M.; Zhou, S.K.; Suehling, M.; Zheng, Y.; Wels, M.; Comaniciu, D. Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning. In Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging; Menze, B., Langs, G., Tu, Z., Criminisi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 96–105. [Google Scholar]
- Howe, B.; Gururajan, A.; Sari-Sarraf, H.; Long, L. Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation, Lake Tahoe, NV, USA, 28–30 March 2004; pp. 182–186. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S. Vertebrae localization in CT using both local and global symmetry features. In Computerized Medical Imaging and Graphics; Elsevier: Amsterdam, The Netherlands, 2017; Volume 58, pp. 45–55. [Google Scholar]
- Chu, C.; Belavý, D.L.; Armbrecht, G.; Bansmann, M.; Felsenberg, D.; Zheng, G. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method. PLoS ONE 2015, 10, e0143327. [Google Scholar] [CrossRef] [PubMed]
- Bromiley, P.A.; Kariki, E.P.; Adams, J.E.; Cootes, T.F. Fully Automatic Localisation of Vertebrae in CT Images Using Random Forest Regression Voting. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging, Munich, Germany, 5 October 2015; Springer International Publishing: Cham, Switzerland, 2016; pp. 51–63. [Google Scholar]
- Sekuboyina, A.; Rempfler, M.; Kukačka, J.; Tetteh, G.; Valentinitsch, A.; Kirschke, J.S.; Menze, B.H. Btrfly Net: Vertebrae Labelling with Energy-Based Adversarial Learning of Local Spine Prior. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 649–657. [Google Scholar]
- Mader, A.O.; Lorenz, C.; von Berg, J.; Meyer, C. Automatically Localizing a Large Set of Spatially Correlated Key Points: A Case Study in Spine Imaging. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Shenzhen, China, 13–17 October 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 384–392. [Google Scholar]
- McCouat, J.; Glocker, B. Vertebrae Detection and Localization in CT with Two-Stage CNNs and Dense Annotations. arXiv 2019, arXiv:1910.05911. [Google Scholar]
- Kang, Y.; Engelke, K.; Kalender, W.A. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 2003, 22, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.S.; Ali, A.; Rara, H.; Farag, A.A. An automated vertebra identification and segmentation in CT images. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 233–236. [Google Scholar] [CrossRef]
- Hammernik, K.; Ebner, T.; Štern, D.; Urschler, M.; Pock, T. Vertebrae segmentation in 3D CT images based on a variational framework. In Recent Advances in Computational Methods and Clinical Applications for Spine Imaging; Lecture Notes in Computational Vision and Biomechanics; Springer: Cham, Switzerland, 2015; Volume 20, pp. 227–233. [Google Scholar] [CrossRef]
- Korez, R.; Ibragimov, B.; Likar, B.; Pernuš, F.; Vrtovec, T. Interpolation-Based Shape-Constrained Deformable Model Approach for Segmentation of Vertebrae from CT Spine Images. In Recent Advances in Computational Methods and Clinical Applications for Spine Imaging; Springer International Publishing: Cham, Switzerland, 2015; pp. 235–240. [Google Scholar] [CrossRef]
- Ibragimov, B.; Likar, B.; Pernuš, F.; Vrtovec, T. Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 2014, 33, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Sekuboyina, A.; Husseini, M.E.; Bayat, A.; Löffler, M.; Liebl, H.; Li, H.; Tetteh, G.; Kukačka, J.; Payer, G.; Štern, D.; et al. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 2021, 73, 102166. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Burns, J.E.; Forsberg, D.; Seitel, A.; Rasoulian, A.; Abolmaesumi, P.; Hammernik, K.; Urschler, M.; Ibragimov, B.; Korez, R.; et al. A multi-center milestone study of clinical vertebral CT segmentation. Comput. Med. Imaging Graph. 2016, 49, 16–28. [Google Scholar] [CrossRef]
- Yao, J.; Burns, J.E.; Munoz, H.; Summers, R.M. Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, Nice, France, 1–5 October 2012; Ayache, N., Delingette, H., Golland, P., Mori, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 509–516. [Google Scholar]
- Payer, C.; Stern, D.; Bischof, H.; Urschler, M. Coarse to Fine Vertebrae Localization and Segmentation with Spatial Configuration-Net and U-Net. In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications: VISIGRAPP 2021, Virtual, 8–10 February 2021; Farinella, G., Radeva, P., Braz, J., Eds.; Scitepress: Setúbal, Portugal, 2020; pp. 124–133. [Google Scholar] [CrossRef]
- Lessmann, N.; van Ginneken, B.; de Jong, P.A.; Išgum, I. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med. Image Anal. 2019, 53, 142–155. [Google Scholar] [CrossRef]
- Chen, D.; Bai, Y.; Zhao, W.; Ament, S.; Gregoire, J.; Gomes, C. Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020. [Google Scholar]
- Cheng, P.; Yang, Y.; Yu, H.; He, Y. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net. Sci. Rep. 2021, 11, 22156. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, M.; Yu, K.; Zhang, Y.; Yu, L. Lumbar spine segmentation method based on deep learning. J. Appl. Clin. Med. Phys. 2023, 24, e13996. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xia, G.; Zhang, X.; Zhou, F.; Ling, J.; Ni, X.; Li, Y. A novel 3D lumbar vertebrae location and segmentation method based on the fusion envelope of 2D hybrid visual projection images. Comput. Biol. Med. 2022, 151, 106190. [Google Scholar] [CrossRef] [PubMed]
- Qadri, S.F.; Lin, H.; Shen, L.; Ahmad, M.; Qadri, S.; Khan, S.; Khan, M.; Zareen, S.S.; Akbar, M.A.; Bin Heyat, M.B.; et al. CT-Based Automatic Spine Segmentation Using Patch-Based Deep Learning. Int. J. Intell. Syst. 2023, 2023. [Google Scholar] [CrossRef]
- Meng, D.; Boyer, E.; Pujades, S. Vertebrae localization, segmentation and identification using a graph optimization and an anatomic consistency cycle. Comput. Med. Imaging Graph. 2023, 107, 102235. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- You, X.; Gu, Y.; Liu, Y.; Lu, S.; Tang, X.; Yang, J. VerteFormer: A single-staged Transformer network for vertebrae segmentation from CT images with arbitrary field of views. Med. Phys. 2023, 50, 6296–6318. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Smith, B.J.; Graves, S.A.; Sunderland, J.J.; Graham, M.M.; Gross, B.A.; Buatti, J.M.; Beichel, R.R. Quantification of uptake in pelvis F-18 FLT PET-CT images using a 3D localization and segmentation CNN. Med. Phys. 2022, 49, 1585–1598. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Athens, Greece, 17–21 October 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Kirschke, J.S.; Löffler, M.; Sekuboyina, A.; Liebl, H. VerSe2020 (Subject Based Data Structure). Available online: https://osf.io/4skx2/ (accessed on 3 September 2022).
- Löffler, M.T.; Sekuboyina, A.; Jacob, A.; Grau, A.L.; Scharr, A.; El Husseini, M.; Kallweit, M.; Zimmer, C.; Baum, T.; Kirschke, J.S. A Vertebral Segmentation Dataset with Fracture Grading. Radiol. Artif. Intell. 2020, 2, e190138. [Google Scholar] [CrossRef]
- Liebl, H.; Schinz, D.; Sekuboyina, A.; Malagutti, L.; Löffler, M.T.; Bayat, A.; El Husseini, M.; Tetteh, G.; Grau, K.; Niederreiter, E.; et al. A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci. Data 2021, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing: Analysis and Machine Vision; CL Engineering: New York, NY, USA, 2007. [Google Scholar]
Validation | Test | |
---|---|---|
Full pelvis, segmentation succeeded | 57 | 45 |
Full pelvis, segmentation failed | 3 | 2 |
Partial or no pelvis | 10 | 12 |
Total | 70 | 59 |
Error Metric | Mean ± Std | Median | |
---|---|---|---|
Dice | (-) | 0.921 ± 0.047 | 0.936 |
(mm) | 0.271 ± 0.748 | 0.067 | |
(mm) | 0.564 ± 0.757 | 0.337 | |
(mm) | 8.731 ± 7.410 | 6.035 |
Category (A) | |||||
---|---|---|---|---|---|
Validation Set | Test Set | ||||
Error Metric | Mean ± Std | Median | Mean ± Std | Median | |
Dice | (-) | 0.936 ± 0.082 | 0.953 | 0.946 ± 0.039 | 0.955 |
(mm) | 0.118 ± 0.375 | 0.047 | 0.070 ± 0.168 | 0.045 | |
(mm) | 0.134 ± 0.377 | 0.055 | 0.086 ± 0.143 | 0.055 | |
HD | (mm) | 6.171 ± 7.067 | 3.906 | 4.851 ± 4.876 | 3.410 |
Category (B) | |||||
Validation Set | Test Set | ||||
Error Metric | Mean ± Std | Median | Mean ± Std | Median | |
Dice | (-) | 0.928 ± 0.070 | 0.946 | 0.945 ± 0.046 | 0.954 |
(mm) | 0.203 ± 0.411 | 0.109 | 0.110 ± 0.095 | 0.089 | |
(mm) | 0.398 ± 0.745 | 0.188 | 0.263 ± 0.489 | 0.163 | |
HD | (mm) | 6.108 ± 6.200 | 4.000 | 4.212 ± 3.782 | 3.088 |
Category (A) | ||
---|---|---|
Validation Set (n = 696) | Test Set (n = 588) | |
Number of TP | 684 | 577 |
Number of FP | 7 | 10 |
Number of FN | 5 | 1 |
F1-score | 0.991 | 0.991 |
Category (B) | ||
Validation Set (n = 177) | Test Set (n = 173) | |
Number of TP | 167 | 165 |
Number of FP | 7 | 4 |
Number of FN | 3 | 4 |
F1-score | 0.971 | 0.976 |
Validation Set (“Public”) | Test Set (“Hidden”) | ||||
---|---|---|---|---|---|
Approach | Dice (-) | HD (mm) | Dice (-) | HD (mm) | Notes/Comments |
(a) Participants VerSe’19 challenge (see Sekuboyina et al. [18] for details) | |||||
Payer C. | 0.9090 | 6.35 | 0.8980 | 7.08 | |
Lessmann N. | 0.8508 | 8.58 | 0.8576 | 8.20 | |
Chen M. | 0.9301 | 6.39 | 0.8256 | 9.98 | |
Amiranashvili T. | 0.6702 | 17.35 | 0.6896 | 17.81 | |
Dong Y. | 0.7674 | 14.09 | 0.6751 | 26.46 | |
Angermann C. | 0.4314 | 44.27 | 0.4640 | 41.64 | |
Kirszenberg A. | 0.1371 | 77.48 | 0.3564 | 65.51 | |
Jiang T. | 0.8270 | 11.22 | - | - | |
Wang X. | 0.7188 | 24.59 | - | - | |
Brown K. | 0.6269 | 35.90 | - | - | |
Hu Y. | 0.8407 | 12.79 | 0.8182 | 29.94 | |
Sekuboyina A. | 0.8306 | 12.11 | 0.8318 | 9.94 | |
(b) Participants VerSe’20 challenge (see Sekuboyina et al. [18] for details) | |||||
Chen D. | 0.9172 | 6.14 | 0.9123 | 7.15 | |
Payer C. | 0.9165 | 5.80 | 0.8971 | 6.06 | |
Zhang A. | 0.8882 | 7.62 | 0.8936 | 7.92 | |
Yeah T. | 0.8888 | 9.57 | 0.8791 | 8.41 | |
Xiangshang Z. | 0.8358 | 15.19 | 0.8507 | 12.99 | |
Hou F. | 0.8399 | 8.10 | 0.8492 | 8.08 | |
Zeng C. | 0.8399 | 9.58 | 0.8439 | 8.73 | |
Huang Z. | 0.8075 | 34.06 | 0.8169 | 15.75 | |
Netherton T. | 0.7516 | 13.56 | 0.7826 | 14.06 | |
Huynh L. | 0.6248 | 20.29 | 0.6523 | 20.35 | |
Jakubicek R. | 0.7317 | 17.26 | 0.5297 | 20.30 | |
Mulay S. | 0.5818 | 99.75 | - | - | |
Paetzold J. | 0.1060 | 166.55 | 0.2549 | 240.61 | |
Sekuboyina A. | 0.7805 | 10.99 | 0.7952 | 11.61 | |
(c) Recently published papers that use VerSe data sets for performance evaluation | |||||
Lu et al. [25] | Dice: 0.904 | HD: - | Based on 156 CT scans of VerSe 2020 data set, | ||
did not specify public/hidden, | |||||
used lumbar vertebrae only, | |||||
mean of results reported for L1 to L5 is shown | |||||
Meng et al. [28] | 0.9253 | 7.03 | 0.9111 | 6.69 | Based on 200 VerSe’20 CT scans |
Qadri et al. [27] | Dice: 90.2 | HD: - | VerSe data subset mixed with other data sets | ||
You et al. [30] | 0.8639 | 3.41 † | 0.8654 | 3.66 † | Based on VerSe’19 data set |
You et al. [30] | 0.8453 | 6.34 † | 0.8686 | 4.60 † | Based on VerSe’20 data set |
(d) Our approach | |||||
Category (A) | 0.936 | 6.171 | 0.946 | 4.851 | See Section 3.1.2 for details |
Category (B) | 0.928 | 6.108 | 0.945 | 4.212 | See Section 3.1.2 for details |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Graves, S.A.; Gross, B.A.; Buatti, J.M.; Beichel, R.R. Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN. Tomography 2024, 10, 738-760. https://doi.org/10.3390/tomography10050057
Xiong X, Graves SA, Gross BA, Buatti JM, Beichel RR. Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN. Tomography. 2024; 10(5):738-760. https://doi.org/10.3390/tomography10050057
Chicago/Turabian StyleXiong, Xiaofan, Stephen A. Graves, Brandie A. Gross, John M. Buatti, and Reinhard R. Beichel. 2024. "Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN" Tomography 10, no. 5: 738-760. https://doi.org/10.3390/tomography10050057
APA StyleXiong, X., Graves, S. A., Gross, B. A., Buatti, J. M., & Beichel, R. R. (2024). Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN. Tomography, 10(5), 738-760. https://doi.org/10.3390/tomography10050057