Study on Shoulder Joint Parameters and Available Supraspinatus Outlet Area Using Three-Dimensional Computed Tomography Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Inclusion and Exclusion Criteria
2.3. Scapular Coordinate System
2.4. Supraspinatus Outlet Area (SOA) and Available Supraspinatus Outlet Area (ASOA)
2.5. The Minimum Acromiohumeral Distance and Coracohumeral Distance
2.6. Data Process and Statistical Analysis
3. Results
3.1. Supraspinatus Outlet Area and Available Outlet Area
3.2. Correlations between Shoulder Anatomical Parameters and SOA and ASOA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Shi, L.L.; Ravella, K.C.; Koh, J.L.; Wang, S.; Liu, C.; Li, G.; Wang, J. Distinct proximal humeral geometry in chinese population and clinical relevance. J. Bone Jt. Surg. 2016, 98, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Oki, S.; Ogawa, K.; Iwamoto, T.; Ochi, K.; Sato, K.; Nagura, T. Three-dimensional anthropometric analysis of the glenohumeral joint in a normal japanese population. J. Shoulder Elbow Surg. 2016, 25, 493–501. [Google Scholar] [CrossRef]
- Cabezas, A.F.; Krebes, K.; Hussey, M.M.; Santoni, B.G.; Kim, H.S.; Frankle, M.A.; Oh, J.H. Morphologic variability of the shoulder between the populations of north american and east asian. Clin. Orthop. Surg. 2016, 8, 280. [Google Scholar] [CrossRef]
- Khoschnau, S.; Milosavjevic, J.; Sahlstedt, B.; Rylance, R.; Rahme, H.; Kadum, B. High prevalence of rotator cuff tears in a population who never sought for shoulder problems: A clinical, ultrasonographic and radiographic screening study. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 457–463. [Google Scholar] [CrossRef]
- Hinsley, H.; Ganderton, C.; Arden, N.K.; Carr, A.J. Prevalence of rotator cuff tendon tears and symptoms in a chingford general population cohort, and the resultant impact on uk health services: A cross-sectional observational study. BMJ Open. 2022, 12, e59175. [Google Scholar] [CrossRef] [PubMed]
- Neer, C.N. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: A preliminary report. J. Bone Jt. Surg. Am. 1972, 54, 41–50. [Google Scholar] [CrossRef]
- Burns, E.A.; Collins, A.D.; Jack, R.N.; Mcculloch, P.C.; Lintner, D.M.; Harris, J.D. Trends in the body mass index of pediatric and adult patients undergoing anterior cruciate ligament reconstruction. Orthop. J. Sports Med. 2018, 6, 1809814822. [Google Scholar] [CrossRef] [PubMed]
- Cay, N.; Tosun, O.; Isik, C.; Unal, O.; Kartal, M.G.; Bozkurt, M. Is coracoacromial arch angle a predisposing factor for rotator cuff tears? Diagn. Interv. Radiol. 2014, 20, 498–502. [Google Scholar] [CrossRef]
- Michener, L.A.; Subasi Yesilyaprak, S.S.; Seitz, A.L.; Timmons, M.K.; Walsworth, M.K. Supraspinatus tendon and subacromial space parameters measured on ultrasonographic imaging in subacromial impingement syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 363–369. [Google Scholar] [CrossRef]
- Zuckerman, J.D.; Kummer, F.J.; Cuomo, F.; Simon, J.; Rosenblum, S.; Katz, N. The influence of coracoacromial arch anatomy on rotator cuff tears. J. Shoulder Elbow Surg. 1992, 1, 4–14. [Google Scholar] [CrossRef]
- Neer, C.N. Impingement lesions. Clin. Orthop. Relat. Res. 1983, 70–77. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Breitenseher, M.J.; Wurnig, C.; Roposch, A. Shoulder impingement: Relationship of clinical symptoms and imaging criteria. Clin. J. Sport. Med. 2009, 19, 83–89. [Google Scholar] [CrossRef]
- Porter, N.A.; Singh, J.; Tins, B.J.; Lalam, R.K.; Tyrrell, P.N.M.; Cassar-Pullicino, V.N. A new method for measurement of subcoracoid outlet and its relationship to rotator cuff pathology at mr arthrography. Skeletal Radiol. 2015, 44, 1309–1316. [Google Scholar] [CrossRef]
- Gohlke, F.; Barthel, T.; Gandorfer, A. The influence of variations of the coracoacromial arch on the development of rotator cuff tears. Arch. Orthop. Trauma. Surg. 1993, 113, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Koca, R.; Fazliogullari, Z.; Aydin, B.K.; Durmaz, M.S.; Karabulut, A.K.; Unver, D.N. Acromion types and morphometric evaluation of painful shoulders. Folia Morphol. 2022, 81, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, I.; Mifune, Y.; Inui, A.; Nishimoto, H.; Yoshikawa, T.; Kato, T.; Furukawa, T.; Tanaka, S.; Kusunose, M.; Hoshino, Y.; et al. Re-tear after arthroscopic rotator cuff tear surgery: Risk analysis using machine learning. J. Shoulder Elbow Surg. 2024, 33, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Şahin, K.; Albayrak, M.O.; Şentürk, F.; Ersin, M.; Erşen, A. Gender and degree of tendon healing are independent predictive factors for clinical outcome in successfully healed rotator cuff tears. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 4585–4593. [Google Scholar] [CrossRef] [PubMed]
- Pearl, M.L.; Volk, A.G. Coronal plane geometry of the proximal humerus relevant to prosthetic arthroplasty. J. Shoulder Elbow Surg. 1996, 5, 320–326. [Google Scholar] [CrossRef]
- Robertson, D.D.; Yuan, J.; Bigliani, L.U.; Flatow, E.L.; Yamaguchi, K. Three-dimensional analysis of the proximal part of the humerus: Relevance to arthroplasty. J. Bone Jt. Surg. Am. 2000, 82, 1594–1602. [Google Scholar] [CrossRef]
- Delude, J.A.; Bicknell, R.T.; Mackenzie, G.A.; Ferreira, L.M.; Dunning, C.E.; King, G.J.; Johnson, J.A.; Drosdowech, D.S. An anthropometric study of the bilateral anatomy of the humerus. J. Shoulder Elbow Surg. 2007, 16, 477–483. [Google Scholar] [CrossRef]
- Poltaretskyi, S.; Chaoui, J.; Mayya, M.; Hamitouche, C.; Bercik, M.J.; Boileau, P.; Walch, G. Prediction of the pre-morbid 3d anatomy of the proximal humerus based on statistical shape modelling. Bone Jt. J. 2017, 99–B, 927–933. [Google Scholar] [CrossRef]
- Weber, A.E.; Bolia, I.K.; Horn, A.; Villacis, D.; Omid, R.; E Tibone, J.; White, E.; Hatch, G.F. Glenoid bone loss in shoulder instability: Superiority of three-dimensional computed tomography over two-dimensional magnetic resonance imaging using established methodology. Clin. Orthop. Surg. 2021, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, J.; Kubicka, A.M.; Wawrzyniak, A.; Romanowski, L.; Lubiatowski, P. Reliability of humeral head measurements performed using two- and three-dimensional computed tomography in patients with shoulder instability. Int. Orthop. 2020, 44, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Ekizoglu, O.; Inci, E.; Ors, S.; Kacmaz, I.E.; Basa, C.D.; Can, I.O.; Kranioti, E.F. Applicability of t1-weighted mri in the assessment of forensic age based on the epiphyseal closure of the humeral head. Int. J. Legal Med. 2019, 133, 241–248. [Google Scholar] [CrossRef]
- Ogawa, K.; Yoshida, A.; Inokuchi, W.; Naniwa, T. Acromial spur: Relationship to aging and morphologic changes in the rotator cuff. J. Shoulder Elbow Surg. 2005, 14, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Ditsios, K.; Middleton, W.D.; Hildebolt, C.F.; Galatz, L.M.; Teefey, S.A. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Jt. Surg. Am. 2006, 88, 1699–1704. [Google Scholar] [CrossRef]
- De Wilde, L.F.; Berghs, B.M.; Vandevyver, F.; Schepens, A.; Verdonk, R.C. Glenohumeral relationship in the transverse plane of the body. J. Shoulder Elbow Surg. 2003, 12, 260–267. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Liang, T.; Ren, J.; Su, S.; Li, P.; Zhu, S.; Chen, Y.; Peng, Y.; He, W.; et al. In vivo anatomical research by 3d ct reconstruction determines minimum acromiohumeral, coracohumeral, and glenohumeral distances in the human shoulder: Evaluation of age and sex association in a sample of the chinese population. J. Pers. Med. 2022, 12, 1804. [Google Scholar] [CrossRef]
- Terrier, A.; Becce, F.; Vauclair, F.; Farron, A.; Goetti, P. Association of the posterior acromion extension with glenoid retroversion: A ct study in normal and osteoarthritic shoulders. J. Clin. Med. 2022, 11, 351. [Google Scholar] [CrossRef]
- Terrier, A.; Ston, J.; Larrea, X.; Farron, A. Measurements of three-dimensional glenoid erosion when planning the prosthetic replacement of osteoarthritic shoulders. Bone Jt. J. 2014, 96–B, 513–518. [Google Scholar] [CrossRef]
- Yoshida, Y.; Matsumura, N.; Yamada, Y.; Yamada, M.; Yokoyama, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T.; Jinzaki, M. Evaluation of three-dimensional acromiohumeral distance in the standing position and comparison with its conventional measuring methods. J. Orthop. Surg. Res. 2020, 15, 436. [Google Scholar] [CrossRef]
- Fremerey, R.; Bastian, L.; Siebert, W.E. The coracoacromial ligament: Anatomical and biomechanical properties with respect to age and rotator cuff disease. Knee Surg. Sports Traumatol. Arthrosc. 2000, 8, 309–313. [Google Scholar] [CrossRef]
- Shibata, T.; Izaki, T.; Nishio, J.; Miyake, S.; Arashiro, Y.; Minamikawa, T.; Minokawa, S.; Shibata, Y.; Yamamoto, T. Are there differences in arthroscopic and histological features between traumatic and degenerative rotator cuff tears in elderly patients? A prospective dual-center analysis. J. Orthop. Surg. Res. 2022, 17, 206. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Shapiro, M.S. Changes in acromial morphology with age. J. Shoulder Elbow Surg. 1997, 6, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.; Skalski, M.R.; Patel, D.B.; Tomasian, A.; Schein, A.J.; White, E.A.; Hatch, G.F.R.; Matcuk, G.R. Coracoid process: The lighthouse of the shoulder. Radiographics 2016, 36, 2084–2101. [Google Scholar] [CrossRef] [PubMed]
- Needell, S.D.; Zlatkin, M.B.; Sher, J.S.; Murphy, B.J.; Uribe, J.W. MR imaging of the rotator cuff: Peritendinous and bone abnormalities in an asymptomatic population. Am. J. Roentgenol. 1996, 166, 863. [Google Scholar] [CrossRef]
- Budoff, J.E.; Nirschl, R.P.; Guidi, E.J. Debridement of partial-thickness tears of the rotator cuff without acromioplasty. Long-term follow-up and review of the literature. J. Bone Joint Surg. Am. 1998, 80, 733–748. [Google Scholar] [CrossRef]
Characteristic | All | Male | Female | p Value |
---|---|---|---|---|
Age, years | Age, years | 31.95 ± 7.88 (n = 59) | 37.70 ± 8.57 (n = 37) | 0.001 * |
Left shoulder, cases | 44 | 26 | 18 | |
Right shoulder, cases | 52 | 33 | 19 | |
Abduction angles, ° | 4.04 ± 3.20 (n = 96) | 3.90 ± 3.16 (n = 59) | 4.26 ± 3.29 (n = 37) | 0.595 |
Internal rotation angles, ° | 6.07 ± 2.80 (n = 50) | 5.98 ± 2.92 (n = 32) | 6.23 ± 2.65 (n = 18) | 0.760 |
External rotation angles, ° | 5.77 ± 3.13 (n = 46) | 6.07 ± 3.01 (n = 27) | 5.34 ± 3.32 (n = 19) | 0.441 |
Variable | Male | Female | p Value | 95% CI | Cohen d | 95% ICC |
---|---|---|---|---|---|---|
AHD, mm | 7.80 ± 1.02 | 7.40 ± 0.89 | 0.054 | −0.01, 0.80 | ||
CHD, mm | 11.22 ± 2.24 | 9.23 ± 1.35 | <0.001 * | 1.26, 2.72 | 1.02 | |
CAR, mm | 37.18 ± 2.70 | 33.04 ± 3.15 | <0.001 * | 2.93, 5.33 | 1.43 | 0.949 |
HHR, mm | 22.65 ± 1.44 | 20.53 ± 0.95 | <0.001 * | 1.63, 2.60 | 1.67 | 0.944 |
HHR/CAR | 0.61 ± 0.06 | 0.63 ± 0.05 | 0.292 | −0.04, 0.01 | ||
L1, mm | 81.53 ± 5.43 | 71.70 ± 4.21 | <0.001 * | 7.87, 11.80 | 1.97 | 0.977 |
L2, mm | 46.17 ± 4.11 | 40.46 ± 2.69 | <0.001 * | 4.33, 7.09 | 1.57 | 0.970 |
α, (°) | 126.31 ± 12.18 | 125.08 ± 10.23 | 0.612 | −3.55, 6.00 | 0.942 | |
β, (°) | 116.49 ± 10.56 | 114.65 ± 8.25 | 0.341 | −1.99, 5.68 | 0.977 | |
SOA, mm2 | 957.62 ± 158.66 | 735.87 ± 95.86 | <0.001 * | 170.17, 273.34 | 1.61 | 0.971 |
S, mm2 | 296.27 ± 65.51 | 224.38 ± 37.50 | <0.001 * | 51.00, 92.79 | 1.27 | 0.978 |
ASOA, mm2 | 661.35 ± 104.88 | 511.49 ± 69.26 | <0.001 * | 114.56, 185.16 | 1.61 | 0.965 |
ASOA/SOA | 0.69 ± 0.03 | 0.70 ± 0.03 | 0.652 | −0.02, 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liang, T.; Yin, X.; Liu, C.; Ren, J.; Su, S.; Jiang, S.; Wang, K. Study on Shoulder Joint Parameters and Available Supraspinatus Outlet Area Using Three-Dimensional Computed Tomography Reconstruction. Tomography 2024, 10, 1331-1341. https://doi.org/10.3390/tomography10090100
Chen X, Liang T, Yin X, Liu C, Ren J, Su S, Jiang S, Wang K. Study on Shoulder Joint Parameters and Available Supraspinatus Outlet Area Using Three-Dimensional Computed Tomography Reconstruction. Tomography. 2024; 10(9):1331-1341. https://doi.org/10.3390/tomography10090100
Chicago/Turabian StyleChen, Xi, Tangzhao Liang, Xiaopeng Yin, Chang Liu, Jianhua Ren, Shouwen Su, Shihai Jiang, and Kun Wang. 2024. "Study on Shoulder Joint Parameters and Available Supraspinatus Outlet Area Using Three-Dimensional Computed Tomography Reconstruction" Tomography 10, no. 9: 1331-1341. https://doi.org/10.3390/tomography10090100
APA StyleChen, X., Liang, T., Yin, X., Liu, C., Ren, J., Su, S., Jiang, S., & Wang, K. (2024). Study on Shoulder Joint Parameters and Available Supraspinatus Outlet Area Using Three-Dimensional Computed Tomography Reconstruction. Tomography, 10(9), 1331-1341. https://doi.org/10.3390/tomography10090100