Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phantom
2.2. MRI Acquisitions
2.3. Phase-Based Helmholtz-EPT
2.3.1. Formulation
2.3.2. Implementation
2.4. Covariance Matrix
2.4.1. Repeatability Conditions
2.4.2. Reproducibility Conditions
2.5. Spatial Averaging
3. Results
3.1. Repeatability Conditions
3.2. Reproducibility Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulani, V.; Seiberlich, N. Quantitative MRI: Rationale and challenges. In Advances in Magnetic Resonance Technology and Applications; Academic Press: Oxford, UK, 2020; Volume 1, pp. xxxvii–li. ISBN 978-0-12-817057-1. [Google Scholar]
- European Society of Radiology (ESR). ESR statement on the stepwise development of imaging biomarkers. Insights Imaging 2013, 4, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, Y.; Katscher, U.; He, B. Electrical properties tomography based on B1 maps in MRI: Principles, applications, and challenges. IEEE Trans. Biomed. Eng. 2017, 64, 2515–2530. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Shin, J.; Kim, D.-H.; Kim, M.J.; Kim, E.-K.; Moon, H.J.; Yoon, J.H. Correlation between conductivity and prognostic factors in invasive breast cancer using magnetic resonance electric properties tomography (MREPT). Eur. Radiol. 2016, 26, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Tha, K.K.; Katscher, U.; Yamaguchi, S.; Stehning, C.; Terasaka, S.; Fujima, N.; Kudo, K.; Kazumata, K.; Yamamoto, T.; Van Cauteren, M.; et al. Noninvasive electrical conductivity measurement by MRI: A test of its validity and the electrical conductivity characteristics of glioma. Eur. Radiol. 2018, 28, 348–355. [Google Scholar] [CrossRef]
- Tha, K.K.; Kikuchi, Y.; Ishizaka, K.; Kamiyama, T.; Yoneyama, M.; Katscher, U. Higher electrical conductivity of liver parenchyma in fibrotic patients: Noninvasive assessment by electric properties tomography. Magn. Reson. Imaging 2021, 54, 1689–1691. [Google Scholar] [CrossRef]
- Shu, L.; Böhm, R.; Katscher, U.; Jensen-Kondering, U. Brain tissue conductivity in focal cerebral ischemia. In Oxygen Transport to Tissue XLIII.; Scholkmann, F., LaManna, J., Wolf, U., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2022; Volume 1395, pp. 23–27. ISBN 978-3-031-14189-8. [Google Scholar]
- Gavazzi, S.; van Lier, A.L.H.M.W.; Zachiu, C.; Jansen, E.; Lagendijk, J.J.W.; Stalpers, L.J.A.; Crezee, H.; Kok, H.P. Advanced patient-specific hyperthermia treatment planning. Int. J. Hyperth. 2020, 37, 992–1007. [Google Scholar] [CrossRef]
- Katscher, U.; Kim, D.-H.; Seo, J.K. Recent progress and future challenges in MR electric properties tomography. Comput. Math. Methods Med. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Leijsen, R.; Brink, W.; van den Berg, C.; Webb, A.; Remis, R. Electrical properties tomography: A methodological review. Diagnostics 2021, 11, 176. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Hoult, D.I. The principle of reciprocity in signal strength calculations—A mathematical guide. Concepts Magn. Reson. 2000, 12, 173–187. [Google Scholar] [CrossRef]
- Stollberger, R.; Wach, P. Imaging of the active B1 field in vivo. Magn. Reson. Med. 1996, 35, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Yarnykh, V.L. Actual flip-angle imaging in the pulsed steady state: A Method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 2007, 57, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Sacolick, L.I.; Wiesinger, F.; Hancu, I.; Vogel, M.W. B1 mapping by bloch-siegert shift. Magn. Reson. Med. 2010, 63, 1315–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehrke, K.; Börnert, P. DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn. Reason. Med. 2012, 68, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Cloos, M.A.; Wiggins, C.; Wiggins, G.; Sodickson, D. Plug and play parallel transmission at 7 and 9.4 Tesla based on principles from MR fingerprinting. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting, London, UK, 7–12 May 2022. [Google Scholar]
- Lee, S.-K.; Bulumulla, S.; Wiesinger, F.; Sacolick, L.; Sun, W.; Hancu, I. Tissue Electrical property mapping from zero echo-time magnetic resonance imaging. IEEE Trans. Med. Imaging 2015, 34, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Bucci, O.M.; Isernia, T. Electromagnetic inverse scattering: Retrievable information and measurement strategies. Radio Sci. 1997, 32, 2123–2137. [Google Scholar] [CrossRef]
- Coli, V.L.; Tournier, P.-H.; Dolean, V.; Kanfoud, I.E.; Pichot, C.; Migliaccio, C.; Blanc-Feraud, L. Detection of simulated brain strokes using microwave tomography. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Dachena, C.; Fedeli, A.; Fanti, A.; Lodi, M.B.; Pastorino, M.; Randazzo, A. Microwave imaging for the diagnosis of cervical diseases: A feasibility analysis. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 277–285. [Google Scholar] [CrossRef]
- Balidemaj, E.; van den Berg, C.A.T.; Trinks, J.; van Lier, A.L.H.M.W.; Nederveen, A.J.; Stalpers, L.J.A.; Crezee, H.; Remis, R.F. CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography. IEEE Trans. Med. Imaging 2015, 34, 1788–1796. [Google Scholar] [CrossRef]
- Ammari, H.; Kwon, H.; Lee, Y.; Kang, K.; Seo, J.K. Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the larmor frequency. Inverse Probl. 2015, 31, 105001. [Google Scholar] [CrossRef] [Green Version]
- Arduino, A.; Zilberti, L.; Chiampi, M.; Bottauscio, O. CSI-EPT in presence of RF-shield for MR-coils. IEEE Trans. Med. Imaging 2017, 36, 1396–1404. [Google Scholar] [CrossRef] [PubMed]
- Rahimov, A.; Litman, A.; Ferrand, G. MRI-based electric properties tomography with a quasi-newton approach. Inverse Probl. 2017, 33, 105004. [Google Scholar] [CrossRef]
- Hong, R.; Li, S.; Zhang, J.; Zhang, Y.; Liu, N.; Yu, Z.; Liu, Q.H. 3-D MRI-based electrical properties tomography using the volume integral equation method. IEEE Trans. Microw. Theory Techn. 2017, 65, 4802–4811. [Google Scholar] [CrossRef]
- Arduino, A.; Bottauscio, O.; Chiampi, M.; Zilberti, L. Magnetic resonance-based imaging of human electric properties with phaseless contrast source inversion. Inverse Probl. 2018, 34, 084002. [Google Scholar] [CrossRef]
- Leijsen, R.L.; Brink, W.M.; van den Berg, C.A.T.; Webb, A.G.; Remis, R.F. 3-D contrast source inversion-electrical properties tomography. IEEE Trans. Med. Imaging 2018, 37, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Jin, J.; Liu, C.; Liu, F.; Crozier, S. An efficient integral-based method for three-dimensional MR-EPT and the calculation of the RF-coil-induced Bz field. IEEE Trans. Biomed. Eng. 2018, 65, 282–293. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Bellizzi, G.G.; Crocco, L.; Isernia, T. A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data. Inverse Probl. 2019, 35, 025006. [Google Scholar] [CrossRef]
- Serralles, J.E.C.; Lattanzi, R.; Giannakopoulos, I.I.; Zhang, B.; Ianniello, C.; Cloos, M.A.; Polimeridis, A.G.; White, J.K.; Sodickson, D.K.; Daniel, L. Noninvasive estimation of electrical properties from magnetic resonance measurements via global maxwell tomography and match regularization. IEEE Trans. Biomed. Eng. 2020, 67, 3–15. [Google Scholar] [CrossRef]
- Giannakopoulos, I.I.; Serralles, J.E.C.; Daniel, L.; Sodickson, D.K.; Polimeridis, A.G.; White, J.K.; Lattanzi, R. Magnetic-resonance-based electrical property mapping using global maxwell tomography with an 8-channel head coil at 7 Tesla: A simulation study. IEEE Trans. Biomed. Eng. 2021, 68, 236–246. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.J.; Lee, J.; Nam, Y.; Kim, M.; Choi, N.; Kim, S.; Kim, D.-H. Initial Study on in vivo conductivity mapping of breast cancer using MRI: In vivo conductivity mapping of breast cancer. J. Magn. Reson. Imaging 2015, 42, 371–378. [Google Scholar] [CrossRef]
- Voigt, T.; Katscher, U.; Doessel, O. Quantitative Conductivity and permittivity imaging of the human brain using electric properties tomography: In vivo electric properties tomography. Magn. Reson. Med. 2011, 66, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Van Lier, A.L.H.M.W.; Brunner, D.O.; Pruessmann, K.P.; Klomp, D.W.J.; Luijten, P.R.; Lagendijk, J.J.W.; van den Berg, C.A.T. B1+ phase mapping at 7 T and its application for in vivo electrical conductivity mapping: Electrical conductivity mapping. Magn. Reson. Med. 2012, 67, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Arduino, A. EPTlib: An open-source extensible collection of electric properties tomography techniques. Appl. Sci. 2021, 11, 3237. [Google Scholar] [CrossRef]
- Stehning, C.; Voigt, T.R.; Katscher, U. Real-time conductivity mapping using balanced SSFP and phase-based reconstruction. In Proceedings of the 19th Scientific Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM’11), Montreal, QC, Canada, 7–13 May 2011; p. 128. [Google Scholar]
- Katscher, U.; Weiss, S. Mapping electric bulk conductivity in the human heart. Magn. Reson. Med 2022, 87, 1500–1506. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, M.O.; Lee, J.; Choi, N.; Woo, E.J.; Kim, H.J.; Kwon, O.I.; Kim, D.H. Error analysis of nonconstant admittivity for MR-based electric property imaging. IEEE Trans. Med. Imaging 2012, 31, 430–437. [Google Scholar] [CrossRef]
- Mandija, S.; Sbrizzi, A.; Katscher, U.; Luijten, P.R.; van den Berg, C.A.T. Error analysis of helmholtz-based MR-electrical properties tomography: MR-electrical properties tomography reconstruction errors. Magn. Reson. Med. 2018, 80, 90–100. [Google Scholar] [CrossRef]
- Cashmore, M.T.; McCann, A.J.; Wastling, S.J.; McGrath, C.; Thornton, J.; Hall, M.G. Clinical quantitative MRI and the need for metrology. BJR 2021, 94, 20201215. [Google Scholar] [CrossRef]
- Lee, S.-K.; Bulumulla, S.; Hancu, I. Theoretical investigation of random noise-limited signal-to-noise ratio in MR-based electrical properties tomography. IEEE Trans. Med. Imaging 2015, 34, 2220–2232. [Google Scholar] [CrossRef] [Green Version]
- Arduino, A.; Chiampi, M.; Pennecchi, F.; Zilberti, L.; Bottauscio, O. Monte Carlo method for uncertainty propagation in magnetic resonance-based electric properties tomography. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Schäfer, J.; Strimmer, K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef] [Green Version]
- Opgen-Rhein, R.; Strimmer, K. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat. Appl. Genet. Mol. Biol. 2007, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.G.; Eiø, C.; Mana, G.; Pennecchi, F. The generalized weighted mean of correlated quantities. Metrologia 2006, 43, S268–S275. [Google Scholar] [CrossRef]
- Stogryn, A. Equations for calculating the dielectric constant of saline water (correspondence). IEEE Trans. Microw. Theory Techn. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Voigt, T.; Homann, H.; Katscher, U.; Doessel, O. Patient-individual local SAR determination: In vivo measurements and numerical validation: In vivo local sar measurement. Magn. Reson. Med. 2012, 68, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; BIPM: Paris, France, 2008. [Google Scholar]
- Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data—Supplement 2 to the “Guide to the Expression of Uncertainty in Measurement”—Models with Any Number of Output Quantities; BIPM: Paris, France, 2011. [Google Scholar]
- Arduino, A.; Pennecchi, F.; Zilberti, L.; Katscher, U.; Cox, M.G. EMUE-D5-3-EPTTissueCharacterization. 2020. Available online: https://zenodo.org/record/4248879#.Y-7nanYzaMo (accessed on 13 February 2023).
- Iyyakkunnel, S.; Bieri, O. Conductivity mapping at 0.55 T with balanced steady state free precession. In Proceedings of the Joint Workshop on MR Phase, Magnetic Susceptibility and Electrical Properties Mapping, Lucca, Italy, 16–19 October 2022. [Google Scholar]
Cross | /mS m−1 | 605.102 | 600.247 | 595.509 | 592.737 | 590.278 |
/% | 0.162 | 0.114 | 0.122 | 0.131 | 0.135 | |
/mS m−1 | 586.238 | 586.609 | 586.788 | 586.666 | 586.765 | |
/% | 0.009 | 0.009 | 0.010 | 0.011 | 0.012 | |
Sphere | /mS m−1 | 605.102 | 599.126 | 592.654 | 590.074 | 586.656 |
/% | 0.162 | 0.112 | 0.120 | 0.136 | 0.147 | |
/mS m−1 | 586.238 | 586.811 | 585.451 | 586.550 | 584.741 | |
/% | 0.009 | 0.009 | 0.010 | 0.011 | 0.011 | |
Cube | /mS m−1 | 600.452 | 592.570 | 586.605 | 582.032 | 578.445 |
/% | 0.107 | 0.120 | 0.140 | 0.163 | 0.190 | |
/mS m−1 | 586.239 | 585.582 | 585.287 | 582.176 | 580.104 | |
/% | 0.009 | 0.010 | 0.011 | 0.013 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arduino, A.; Pennecchi, F.; Katscher, U.; Cox, M.; Zilberti, L. Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom. Tomography 2023, 9, 420-435. https://doi.org/10.3390/tomography9010034
Arduino A, Pennecchi F, Katscher U, Cox M, Zilberti L. Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom. Tomography. 2023; 9(1):420-435. https://doi.org/10.3390/tomography9010034
Chicago/Turabian StyleArduino, Alessandro, Francesca Pennecchi, Ulrich Katscher, Maurice Cox, and Luca Zilberti. 2023. "Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom" Tomography 9, no. 1: 420-435. https://doi.org/10.3390/tomography9010034
APA StyleArduino, A., Pennecchi, F., Katscher, U., Cox, M., & Zilberti, L. (2023). Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom. Tomography, 9(1), 420-435. https://doi.org/10.3390/tomography9010034