Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review
Abstract
:1. Introduction
2. Research Methods and Study Selection
2.1. Research Methods
2.2. Study Selection
2.3. Data Extraction and Analysis
3. Results Analysis
3.1. Articles That Addressed Barriers
3.2. Articles That Addressed Enablers
3.3. Articles That Addressed Barriers and Enablers
4. Discussion
Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, M.K.; Júnior, J.R.F.; Wada, D.T.; Tenório, A.P.M.; Nogueira-Barbosa, M.H.; Marques, P.M.D.A. Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine. Radiol. Bras. 2019, 52, 387–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiol. Phys. Technol. 2020, 13, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-J.; Fu, L.-R.; Huang, Z.-M.; Zhu, J.-Q.; Ma, B.-Y. Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: A systematic review and meta-analysis. Medicine 2019, 98, e16379. [Google Scholar] [CrossRef] [PubMed]
- Rubinger, L.; Gazendam, A.; Ekhtiari, S.; Bhandari, M. Machine learning and artificial intelligence in research and healthcare. Injury 2022, 54, S69–S73. [Google Scholar] [CrossRef]
- Mugabe, K.V. Barriers and facilitators to the adoption of artificial intelligence in radiation oncology: A New Zealand study. Tech. Innov. Patient Support Radiat. Oncol. 2021, 18, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification With Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Raju, B.; Jumah, F.; Ashraf, O.; Narayan, V.; Gupta, G.; Sun, H.; Hilden, P.; Nanda, A. Big data, machine learning, and artificial intelligence: A field guide for neurosurgeons. J. Neurosurg. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 2018, 49, 939–954. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, K.G.; de Rooij, M.; Schalekamp, S.; van Ginneken, B.; Rutten, M.J.C.M. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr. Radiol. 2021, 52, 2087–2093. [Google Scholar] [CrossRef]
- Sohn, J.H.; Chillakuru, Y.R.; Lee, S.; Lee, A.Y.; Kelil, T.; Hess, C.P.; Seo, Y.; Vu, T.; Joe, B.N. An Open-Source, Vender Agnostic Hardware and Software Pipeline for Integration of Artificial Intelligence in Radiology Workflow. J. Digit. Imaging 2020, 33, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Erickson, B.J.; Kallmes, D.F. The Effects of Changes in Utilization and Technological Advancements of Cross-Sectional Imaging on Radiologist Workload. Acad. Radiol. 2015, 22, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Tam, R.; Cadrin-Chênevert, A.; Guest, W.; Chong, J.; Barfett, J.; Chepelev, L.; Cairns, R.; Mitchell, J.R.; Cicero, M.D.; et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can. Assoc. Radiol. J. 2018, 69, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Chokshi, F.H.; Flanders, A.E.; Prevedello, L.M.; Langlotz, C.P. Fostering a Healthy AI Ecosystem for Radiology: Conclusions of the 2018 RSNA Summit on AI in Radiology. Radiol. Artif. Intell. 2019, 1, 190021. [Google Scholar] [CrossRef]
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Nugent, J.P.; Guest, W.; Parker, W.; Chang, P.J.; Khosa, F.; Nicolaou, S. Influence of Artificial Intelligence on Canadian Medical Students’ Preference for Radiology Specialty: A National Survey Study. Acad. Radiol. 2018, 26, 566–577. [Google Scholar] [CrossRef]
- dos Santos, D.P.; Giese, D.; Brodehl, S.; Chon, S.H.; Staab, W.; Kleinert, R.; Maintz, D.; Baeßler, B. Medical students’ attitude towards artificial intelligence: A multicentre survey. Eur. Radiol. 2018, 29, 1640–1646. [Google Scholar] [CrossRef]
- Strohm, L.; Hehakaya, C.; Ranschaert, E.R.; Boon, W.P.C.; Moors, E.H.M. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur. Radiol. 2020, 30, 5525–5532. [Google Scholar] [CrossRef]
- Lim, S.S.; Phan, T.D.; Law, M.; Goh, G.S.; Moriarty, H.K.; Lukies, M.W.; Joseph, T.; Clements, W. Non-radiologist perception of the use of artificial intelligence (AI) in diagnostic medical imaging reports. J. Med. Imaging Radiat. Oncol. 2022, 66, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Povyakalo, A.A.; Alberdi, E.; Strigini, L.; Ayton, P. How to Discriminate between Computer-Aided and Computer-Hindered Decisions: A Case Study in Mammography. Med. Decis. Mak. 2013, 33, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Stavropoulou, C.; Narasinkan, R.; Baker, A.; Scarbrough, H. Professionals’ responses to the introduction of AI innovations in radiology and their implications for future adoption: A qualitative study. BMC Health Serv. Res. 2021, 21, 813. [Google Scholar] [CrossRef] [PubMed]
- Alelyani, M.; Alamri, S.; Alqahtani, M.S.; Musa, A.; Almater, H.; Alqahtani, N.; Alshahrani, F.; Alelyani, S. Radiology Community Attitude in Saudi Arabia about the Applications of Artificial Intelligence in Radiology. Healthcare 2021, 9, 834. [Google Scholar] [CrossRef]
- Huisman, M.; Ranschaert, E.; Parker, W.; Mastrodicasa, D.; Koci, M.; de Santos, D.P.; Coppola, F.; Morozov, S.; Zins, M.; Bohyn, C.; et al. An international survey on AI in radiology in 1041 radiologists and radiology residents part 1: Fear of replacement, knowledge, and attitude. Eur. Radiol. 2021, 31, 7058–7066. [Google Scholar] [CrossRef]
- Lee, C.I.; Khodyakov, D.; Weidmer, B.A.; Wenger, N.S.; Timbie, J.W.; Brantley, B.; Burgette, L.F.; Leuschner, K.J.; Hussey, P.S.; Kahn, K.L. Radiologists’ Perceptions of Computerized Decision Support: A Focus Group Study From the Medicare Imaging Demonstration Project. Am. J. Roentgenol. 2015, 205, 947–955. [Google Scholar] [CrossRef]
- Van Hoek, J.; Huber, A.; Leichtle, A.; Härmä, K.; Hilt, D.; von Tengg-Kobligk, H.; Heverhagen, J.; Poellinger, A. A survey on the future of radiology among radiologists, medical students and surgeons: Students and surgeons tend to be more skeptical about artificial intelligence and radiologists may fear that other disciplines take over. Eur. J. Radiol. 2019, 121, 108742. [Google Scholar] [CrossRef]
- Reeder, K.; Lee, H. Impact of artificial intelligence on US medical students’ choice of radiology. Clin. Imaging 2021, 81, 67–71. [Google Scholar] [CrossRef]
- Grimm, L.J.; Fish, L.J.; Carrico, C.W.; Martin, J.G.; Nwankwo, V.C.; Farley, S.; Meltzer, C.C.; Maxfield, C.M. Radiology Stereotypes, Application Barriers, and Hospital Integration: A Mixed-methods Study of Medical Student Perceptions of Radiology. Acad. Radiol. 2021, 29, 1108–1115. [Google Scholar] [CrossRef]
- Codari, M.; Melazzini, L.; Morozov, S.P.; van Kuijk, C.C.; Sconfienza, L.M.; Sardanelli, F.; European Society of Radiology (ESR). Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights Imaging 2019, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Waymel, Q.; Badr, S.; Demondion, X.; Cotten, A.; Jacques, T. Impact of the rise of artificial intelligence in radiology: What do radiologists think? Diagn. Interv. Imaging 2019, 100, 327–336. [Google Scholar] [CrossRef]
- Alexander, A.; Jiang, A.; Ferreira, C.; Zurkiya, D. An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging. J. Am. Coll. Radiol. 2020, 17, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salastekar, N.V.; Maxfield, C.; Hanna, T.N.; Krupinski, E.A.; Heitkamp, D.; Grimm, L.J. Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States. Acad. Radiol. 2023, 30, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Abuzaid, M.M.; Elshami, W.; Tekin, H.; Issa, B. Assessment of the Willingness of Radiologists and Radiographers to Accept the Integration of Artificial Intelligence Into Radiology Practice. Acad. Radiol. 2020, 29, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mudgal, K.; Das, N. The ethical adoption of artificial intelligence in radiology. BJR Open 2020, 2, 20190020. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sharma, R.; Jindal, N. Machine Learning and Deep Learning Applications-A Vision. Glob. Transit. Proc. 2021, 2, 24–28. [Google Scholar] [CrossRef]
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. 2020, 40, 154–166. [Google Scholar] [CrossRef] [Green Version]
Study | Geographic Location, Year of Publication | Design of Study | Journal | Barriers Identified | Enablers Identified |
---|---|---|---|---|---|
Gong et al. [18] | Canada, 2019 | Survey | Academic Radiology | Anxiety related to displacement” (not “replacement”) of radiologists by AI. | ------------------------ |
Pinto Dos Santos et al. [19] | Europe, 2019 | Survey | European Radiology | Medical students’ skepticism about AI providing a definite diagnosis in radiology. | ------------------------ |
Strohm et al. [20] | The Netherlands, 2020 | Qualitative | European Radiology | Lack of acceptance and trust of radiologists towards AI, unstructured implementation process. | ------------------------ |
Lim et al. [21] | Australia, 2022 | Survey | Journal of Medical Imaging and Radiation Oncology | Non-radiologists showed discomfort when acting on AI-generated medical reports. | ------------------------ |
Povyakalo et al. [22] | United Kingdom, 2013. | Randomized Control Trial | Medical Decision Making | ------------------------ | Improves performance of less-discriminating readers. --> “perception that implementation of a dynamic version of CAD (AI) will decrease errors in diagnosis”. |
Chen et al. [23] | UK, 2021 | Qualitative | BMC Health Services Research | ------------------------ | Radiologists believe AI has the potential to take on more repetitive tasks and allow them to focus on more interesting and challenging work. |
Alelyani et al. [24] | The Kingdom of Saudi Arabia, 2021 | Survey | Healthcare | ------------------------ | Eighty-two percent of the participants thought that AI must be included in the curriculum of medical and allied health colleges. |
Huisman et al. [25] | Africa/Europe/North America countries, 2021 | Survey | European Radiology | ------------------------ | Advanced knowledge of AI was inversely associated with the fear of implementation, |
Lee et al. [26] | United States, 2015 | Focus Group | American Journal of Radiology | Poor acceptance, negative perception of CDS. “Lack of agreement”. | Radiologists express a strong desire to be more involved in the implementation of CDS at their respective institutions. “Social influence positive user attitude”. |
van Hoek et al. [27] | Switzerland, 2019 | Survey | European Journal of Radiology | The majority of respondents agreed that AI should be implemented into radiology practice | Students decide against choosing radiology as a residency due to the future of AI in radiology |
Reeder et al. [28] | United States, 2022 | Survey | Clinical Imaging | AI makes medical diagnosis and Radiologists more efficient | Medical students fear the lack of job opportunities in Radiology due to AI |
Grimm et al. [29] | United States, 2022 | Mixed-Methods Study | Academic Radiology | Junior medial students held concerns about the limited job opportunities with AI integration | Medical students who have a positive view of AI and senior medical students do not express concerns regarding the scarcity of job opportunities resulting from the integration of AI in radiology. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltawil, F.A.; Atalla, M.; Boulos, E.; Amirabadi, A.; Tyrrell, P.N. Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review. Tomography 2023, 9, 1443-1455. https://doi.org/10.3390/tomography9040115
Eltawil FA, Atalla M, Boulos E, Amirabadi A, Tyrrell PN. Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review. Tomography. 2023; 9(4):1443-1455. https://doi.org/10.3390/tomography9040115
Chicago/Turabian StyleEltawil, Fatma A., Michael Atalla, Emily Boulos, Afsaneh Amirabadi, and Pascal N. Tyrrell. 2023. "Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review" Tomography 9, no. 4: 1443-1455. https://doi.org/10.3390/tomography9040115
APA StyleEltawil, F. A., Atalla, M., Boulos, E., Amirabadi, A., & Tyrrell, P. N. (2023). Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review. Tomography, 9(4), 1443-1455. https://doi.org/10.3390/tomography9040115