A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction
Abstract
:1. Introduction
2. Methods
2.1. Research Objective
- RQ1
- What are the current state-of-the-art methods in 3D deep learning in computed tomography reconstruction?
- RQ2
- What datasets are available for training and validating 3D deep learning in computed tomography reconstruction?
2.2. Data Sources and Searches
2.2.1. Search String
2.2.2. Resources to Be Searched
2.2.3. Overview of the Search Process
2.3. Eligibility Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Quality of Evidence
- Is the concept of 3D deep learning clearly defined?
- Is the method for 3D deep learning clearly defined?
- Are the state-of-the-art metrics explicitly reported?
2.5. Data Extraction
3. Background
3.1. Tomography Reconstruction
3.2. Filtered Back Projection (FBP)
3.3. Iterative Reconstruction (IR)
3.4. Deep Learning Iterative Reconstruction (DLIR)
3.5. Deep Learning Reconstruction (DLR)
4. Results
4.1. Search and Study Selection
4.2. RQ1 What Are the Current State-of-the-Art Methods in 3D Deep Learning in Computed Tomography Reconstruction?
4.2.1. Low-Dose CT Reconstruction
4.2.2. Sparse-View CT Reconstruction
4.2.3. Country-Based Analysis
4.2.4. Database-Driven
4.2.5. Methodology Review
4.2.6. Convolutional Neural Networks (CNN)
4.2.7. 3D Convolutional Neural Networks (3DCNN)
4.3. RQ2 What Datasets Are Available for Training and Validating 3D Deep Learning in Computed Tomography Reconstruction?
4.3.1. Country-Based Analysis
4.3.2. Database-Driven Evaluation
4.3.3. Dataset Review
4.3.4. Lung Nodule Analysis 2016 (LUNA16)
4.3.5. Lung Image Database Consortium–Image Database Resource Initiative (LIDC-IDRI)
4.3.6. 2016 NIH-AAPM-Mayo
4.3.7. MSCT
5. Discussion
6. Limitaion of the Literature
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Awan, D.; Rehman, H.U. Grid Load Balancing Using Parallel Genetic Algorithm. Int. J. Electron. Electr. Eng. 2015, 3, 451–456. [Google Scholar]
- Greenwood, J.P.; Maredia, N.; Younger, J.F.; Brown, J.M.; Nixon, J.; Everett, C.C.; Bijsterveld, P.; Ridgway, J.P.; Radjenovic, A.; Dickinson, C.J.; et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet 2012, 379, 453–460. [Google Scholar] [CrossRef] [PubMed]
- McKeon, A.; Apiwattanakul, M.; Lachance, D.H.; Lennon, V.A.; Mandrekar, J.N.; Boeve, B.F.; Mullan, B.; Mokri, B.; Britton, J.W.; Drubach, D.A.; et al. Positron emission tomography–computed tomography in paraneoplastic neurologic disorders: Systematic analysis and review. Arch. Neurol. 2010, 67, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, Y.; Brown, L.; Sonnesen, L. Effects of rapid maxillary expansion on upper airway volume: A three-dimensional cone-beam computed tomography study. Angle Orthod. 2019, 89, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Arshad, H.; Mahmud, R.; Mahayuddin, Z.R.; Obeidy, W.K. A framework to visualize 3d breast tumor using x-ray vision technique in mobile augmented reality. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 145–149. [Google Scholar]
- Zheng, W.; Zhang, H.; Huang, C.; McQuillan, K.; Li, H.; Xu, W.; Xia, J. Deep-E Enhanced Photoacoustic Tomography Using Three-Dimensional Reconstruction for High-Quality Vascular Imaging. Sensors 2022, 22, 7725. [Google Scholar] [CrossRef]
- Lagerwerf, M.J.; Pelt, D.M.; Palenstijn, W.J.; Batenburg, K.J. A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks. J. Imaging 2020, 6, 135. [Google Scholar] [CrossRef]
- Obeidy, W.K.; Arshad, H.; Yee Tan, S.; Rahman, H. Developmental analysis of a markerless hybrid tracking technique for mobile augmented reality systems. In Proceedings of the Advances in Visual Informatics: 4th International Visual Informatics Conference, IVIC 2015, Bangi, Malaysia, 17–19 November 2015; Proceedings 4. Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 99–110. [Google Scholar]
- Naresh, K.; Khan, K.; Umer, R.; Cantwell, W.J. The use of X-ray computed tomography for design and process modeling of aerospace composites: A review. Mater. Des. 2020, 190, 108553. [Google Scholar] [CrossRef]
- Nishimoto, S.; Saito, T.; Ishise, H.; Fujiwara, T.; Kawai, K.; Kakibuchi, M. Three-Dimensional Craniofacial Landmark Detection in Series of CT Slices Using Multi-Phased Regression Networks. Diagnostics 2023, 13, 1930. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, W.; Xing, L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 2019, 3, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.M.; Lim, W.H.; Tiang, S.S.; Rahman, H.; Ang, C.K.; Natarajan, E.; Khan, M.K.A.A.; Pan, L. Training Feedforward Neural Networks Using Arithmetic Optimization Algorithm for Medical Classification. In Proceedings of the Advances in Intelligent Manufacturing and Mechatronics: Selected Articles from the Innovative Manufacturing, Mechatronics & Materials Forum (iM3F 2022), Pahang, Malaysia; Springer Nature: Singapore, 2023; pp. 313–323. [Google Scholar]
- Xie, H.; Shan, H.; Wang, G. Deep encoder-decoder adversarial reconstruction (DEAR) network for 3D CT from few-view data. Bioengineering 2019, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, B.; Arshad, H.; Hameedur, R. Suspicious Activity Detection Using CCTV Surveillance Video. J. Inf. Syst. Technol. Manag. (JISTM) 2021, 6, 60–70. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar]
- Junaid, T.; Ayman, A.; Ijaz1, A.; Ali, H.; Imran, A.; Hameedur, R.; Ammar, A.; Inzamam, M.; Saad, R. Fast Intra Mode Selection in HEVC Using Statistical Model. Comput. Mater. Contin. 2022, 70, 3903–3918. [Google Scholar]
- Bano, R.; Toqir, S.M.; Hameedur, R. Detection of Anthracnose Disease in Chili Using IOT and Field Data. LC Int. J. STEM 2020, 1, 75–82. [Google Scholar]
- Kamaruddin, N.S.; Kamsin, A.; Por, L.Y.; Rahman, H. A review of text watermarking: Theory, methods, and applications. IEEE Access 2018, 6, 8011–8028. [Google Scholar] [CrossRef]
- Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3D deep learning on medical images: A review. Sensors 2020, 20, 5097. [Google Scholar] [CrossRef]
- Apivanichkul, K.; Phasukkit, P.; Dankulchai, P.; Sittiwong, W.; Jitwatcharakomol, T. Enhanced Deep-Learning-Based Automatic Left-Femur Segmentation Scheme with Attribute Augmentation. Sensors 2023, 23, 5720. [Google Scholar] [CrossRef]
- Salleh, S.; Mahmud, R.; Rahman, H.; Yasiran, S. Speed up Robust Features (SURF) with Principal Component Analysis-Support Vector Machine (PCA-SVM) for benign and malignant classifications. J. Fundam. Appl. Sci. 2017, 9, 624–643. [Google Scholar] [CrossRef]
- Rahman, H.; Lashkari, A.H.; Weng, E.N.G.; Parhizkar, B. Appliance Mobile Positioning System (AMPS) (An Advanced mobile Application). Int. J. Comput. Sci. Inf. Secur. 2010, 8, 207–215. [Google Scholar]
- Ang, K.M.; Natarajan, E.; Isa, N.A.M.; Sharma, A.; Rahman, H.; Then, R.Y.S.; Alrifaey, M.; Tiang, S.S.; Lim, W.H. Modified teaching-learning-based optimization and applications in multi-response machining processes. Comput. Ind. Eng. 2022, 174, 108719. [Google Scholar] [CrossRef]
- MacCormick, I.J.; Williams, B.M.; Zheng, Y.; Li, K.; Al-Bander, B.; Czanner, S.; Cheeseman, R.; Willoughby, C.E.; Brown, E.N.; Spaeth, G.L.; et al. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLoS ONE 2019, 14, e0209409. [Google Scholar]
- Sameen, D.; Faryal, I.; Hameedur, R. Skin Cancer Disease Detection Using Image Processing Techniques. LC Int. J. STEM 2020, 1, 50–58. [Google Scholar]
- Ahmad, R.; Khalid, A.; Hameedur, R. Brain Tumor Detection Using Image Segmentation and Classification. LC Int. J. STEM 2020, 1, 59–65. [Google Scholar]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; 2007. Technical Report, Ver. 2.3 Ebse Technical Report. Ebse. Available online: https://www.researchgate.net/profile/Barbara-Kitchenham/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering/links/61712932766c4a211c03a6f7/Guidelines-for-performing-Systematic-Literature-Reviews-in-Software-Engineering.pdf (accessed on 26 November 2023).
- Bukht, T.F.N.; Rahman, H.; Jalal, A. A Novel Framework for Human Action Recognition Based on Features Fusion and Decision Tree. In Proceedings of the 2023 4th International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan, 20–22 February 2023; pp. 1–6. [Google Scholar]
- Aromataris, E.; Pearson, A. The systematic review: An overview. AJN Am. J. Nurs. 2014, 114, 53–58. [Google Scholar] [CrossRef]
- Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks. LC Int. J. STEM 2018, 4, 128.
- Devaney, A.J. A filtered backpropagation algorithm for diffraction tomography. Ultrason. Imaging 1982, 4, 336–350. [Google Scholar] [CrossRef]
- Tang, X.; Hsieh, J.; Nilsen, R.A.; Dutta, S.; Samsonov, D.; Hagiwara, A. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—Helical scanning. Phys. Med. Biol. 2006, 51, 855. [Google Scholar] [CrossRef]
- Tang, X.; Hsieh, J.; Hagiwara, A.; Nilsen, R.A.; Thibault, J.B.; Drapkin, E. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory. Phys. Med. Biol. 2005, 50, 3889. [Google Scholar] [CrossRef]
- Beister, M.; Kolditz, D.; Kalender, W.A. Iterative reconstruction methods in X-ray CT. Phys. Medica 2012, 28, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Willemink, M.J.; de Jong, P.A.; Leiner, T.; de Heer, L.M.; Nievelstein, R.A.; Budde, R.P.; Schilham, A.M. Iterative reconstruction techniques for computed tomography Part 1: Technical principles. Eur. Radiol. 2013, 23, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Geyer, L.L.; Schoepf, U.J.; Meinel, F.G.; Nance, J.W., Jr.; Bastarrika, G.; Leipsic, J.A.; Paul, N.S.; Rengo, M.; Laghi, A.; De Cecco, C.N. State of the art: Iterative CT reconstruction techniques. Radiology 2015, 276, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Higaki, T.; Nakamura, Y.; Zhou, J.; Yu, Z.; Nemoto, T.; Tatsugami, F.; Awai, K. Deep learning reconstruction at CT: Phantom study of the image characteristics. Acad. Radiol. 2020, 27, 82–87. [Google Scholar] [CrossRef] [PubMed]
- McLeavy, C.; Chunara, M.; Gravell, R.; Rauf, A.; Cushnie, A.; Talbot, C.S.; Hawkins, R. The future of CT: Deep learning reconstruction. Clin. Radiol. 2021, 76, 407–415. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Setio, A.A.A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; Van Riel, S.J.; Wille, M.M.W.; Naqibullah, M.; Sánchez, C.I.; Van Ginneken, B. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [Google Scholar] [CrossRef]
- Li, M.; Shen, S.; Gao, W.; Hsu, W.; Cong, J. Computed tomography image enhancement using 3D convolutional neural network. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 291–299. [Google Scholar]
- Wang, S.; Wang, R.; Zhang, S.; Li, R.; Fu, Y.; Sun, X.; Li, Y.; Sun, X.; Jiang, X.; Guo, X.; et al. 3D convolutional neural network for differentiating pre-invasive lesions from invasive adenocarcinomas appearing as ground-glass nodules with diameters ≤ 3 cm using HRCT. Quant. Imaging Med. Surg. 2018, 8, 491. [Google Scholar] [CrossRef]
- Gruetzemacher, R.; Gupta, A.; Paradice, D. 3D deep learning for detecting pulmonary nodules in CT scans. J. Am. Med. Informatics Assoc. 2018, 25, 1301–1310. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, X.; Yang, L.; Zhang, B.; Yu, D.; Zhao, Y.; Gao, L.; Wu, L.; Zhou, T. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Comput. Biol. Med. 2018, 103, 220–231. [Google Scholar] [CrossRef]
- Ren, X.; Xiang, L.; Nie, D.; Shao, Y.; Zhang, H.; Shen, D.; Wang, Q. Interleaved 3D-CNN s for joint segmentation of small-volume structures in head and neck CT images. Med. Phys. 2018, 45, 2063–2075. [Google Scholar] [CrossRef]
- Gupta, H.; Jin, K.H.; Nguyen, H.Q.; McCann, M.T.; Unser, M. CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Thrall, J.H.; Digumarthy, S.R.; Kalra, M.K.; Pandharipande, P.V.; Zhang, B.; Nitiwarangkul, C.; Singh, R.; Khera, R.D.; Li, Q. Deep learning-enabled system for rapid pneumothorax screening on chest CT. Eur. J. Radiol. 2019, 120, 108692. [Google Scholar] [CrossRef] [PubMed]
- Uthoff, J.; Stephens, M.J.; Newell, J.D., Jr.; Hoffman, E.A.; Larson, J.; Koehn, N.; De Stefano, F.A.; Lusk, C.M.; Wenzlaff, A.S.; Watza, D.; et al. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med. Phys. 2019, 46, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Annarumma, M.; Withey, S.J.; Bakewell, R.J.; Pesce, E.; Goh, V.; Montana, G. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology 2019, 291, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.; Kim, H.; Cho, B.; Cho, S. Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 3, 109–119. [Google Scholar] [CrossRef]
- Jung, W.; Kim, J.; Ko, J.; Jeong, G.; Kim, H.G. Highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults. Eur. Radiol. 2022, 32, 5468–5479. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Jin, D.; Liu, Z.; Zhang, Y.; Ni, M.; Yuan, H. Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: Evaluation of image quality and diagnostic performance. Insights Imaging 2022, 13, 182. [Google Scholar] [CrossRef]
- Sato, M.; Ichikawa, Y.; Domae, K.; Yoshikawa, K.; Kanii, Y.; Yamazaki, A.; Nagasawa, N.; Nagata, M.; Ishida, M.; Sakuma, H. Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen. Eur. Radiol. 2022, 32, 5499–5507. [Google Scholar] [CrossRef]
- Park, S.; Yoon, J.H.; Joo, I.; Yu, M.H.; Kim, J.H.; Park, J.; Kim, S.W.; Han, S.; Ahn, C.; Kim, J.H.; et al. Image quality in liver CT: Low-dose deep learning vs standard-dose model-based iterative reconstructions. Eur. Radiol. 2022, 32, 2865–2874. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, L.R.; Yu, K.; Qi, X.; Wen, Z.; Hua, Q.; Myint, S.H. 3D reconstruction for super-resolution CT images in the Internet of health things using deep learning. IEEE Access 2020, 8, 121513–121525. [Google Scholar] [CrossRef]
- Liang, C.H.; Liu, Y.C.; Wu, M.T.; Garcia-Castro, F.; Alberich-Bayarri, A.; Wu, F.Z. Identifying pulmonary nodules or masses on chest radiography using deep learning: External validation and strategies to improve clinical practice. Clin. Radiol. 2020, 75, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ye, J.C.; De Man, B. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2020, 2, 737–748. [Google Scholar] [CrossRef]
- Fu, J.; Dong, J.; Zhao, F. A deep learning reconstruction framework for differential phase-contrast computed tomography with incomplete data. IEEE Trans. Image Process. 2019, 29, 2190–2202. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Gui, Z.; Li, K.; Shangguang, H.; Wang, Y.; Liu, Y.; Zhang, P. A dual-domain CNN-based network for CT reconstruction. IEEE Access 2021, 9, 71091–71103. [Google Scholar] [CrossRef]
- Ichikawa, S.; Hamada, M.; Sugimori, H. A deep-learning method using computed tomography scout images for estimating patient body weight. Sci. Rep. 2021, 11, 15627. [Google Scholar] [CrossRef]
- Oostveen, L.J.; Meijer, F.J.; de Lange, F.; Smit, E.J.; Pegge, S.A.; Steens, S.C.; van Amerongen, M.J.; Prokop, M.; Sechopoulos, I. Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur. Radiol. 2021, 31, 5498–5506. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, X.; Zeng, W.; Peng, W.; Zhang, J.; Sixian, H.; Liu, K.; Xia, C.; Li, Z. Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction: Study for the application of deep learning noise reduction technology in low dose. Eur. J. Radiol. 2021, 135, 109487. [Google Scholar] [CrossRef]
- Verhelst, P.J.; Smolders, A.; Beznik, T.; Meewis, J.; Vandemeulebroucke, A.; Shaheen, E.; Van Gerven, A.; Willems, H.; Politis, C.; Jacobs, R. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. J. Dent. 2021, 114, 103786. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Chung, Y.W.; Choi, I.Y. Detection of abnormal extraocular muscles in small datasets of computed tomography images using a three-dimensional variational autoencoder. Sci. Rep. 2023, 13, 1765. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, S.; Liu, W.; Zhang, Y. Deep learning for COVID-19 chest CT (computed tomography) image analysis: A lesson from lung cancer. Comput. Struct. Biotechnol. J. 2021, 19, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.T.; Guan, S.; Chitnis, P.V. Comparing deep learning frameworks for photoacoustic tomography image reconstruction. Photoacoustics 2021, 23, 100271. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, J.; Schmidt, M.; Ganguly, P.S.; Andriiashen, V.; Coban, S.B.; Denker, A.; Bauer, D.; Hadjifaradji, A.; Batenburg, K.J.; Maass, P.; et al. Quantitative comparison of deep learning-based image reconstruction methods for low-dose and sparse-angle CT applications. J. Imaging 2021, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, M.; Zhou, J.; Akino, N.; Yu, Z. Feature-aware deep-learning reconstruction for context-sensitive X-ray computed tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 99–107. [Google Scholar] [CrossRef]
- Capps, M.; Mueller, J.L. Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography. IEEE Trans. Biomed. Eng. 2020, 68, 826–833. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, S.; Zhang, H.; Tao, X.; Lin, W.; Zhang, S.; Zeng, D.; Ma, J. Downsampled imaging geometric modeling for accurate CT reconstruction via deep learning. IEEE Trans. Med. Imaging 2021, 40, 2976–2985. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Nan, Y.; Gao, H.; Ji, H. Deep learning with adaptive hyper-parameters for low-dose CT image reconstruction. IEEE Trans. Comput. Imaging 2021, 7, 648–660. [Google Scholar] [CrossRef]
- Benz, D.C.; Ersözlü, S.; Mojon, F.L.; Messerli, M.; Mitulla, A.K.; Ciancone, D.; Kenkel, D.; Schaab, J.A.; Gebhard, C.; Pazhenkottil, A.P.; et al. Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography. Eur. Radiol. 2022, 32, 2620–2628. [Google Scholar] [CrossRef]
- Hammernik, K.; Würfl, T.; Pock, T.; Maier, A. A deep learning architecture for limited-angle computed tomography reconstruction. In Proceedings of the Bildverarbeitung für die Medizin 2017: Algorithmen-Systeme-Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg; Springer: Berlin/Heidelberg, Germany, 2017; pp. 92–97. [Google Scholar]
- Noda, Y.; Kawai, N.; Nagata, S.; Nakamura, F.; Mori, T.; Miyoshi, T.; Suzuki, R.; Kitahara, F.; Kato, H.; Hyodo, F.; et al. Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: Image quality and quantification of iodine concentration. Eur. Radiol. 2022, 32, 384–394. [Google Scholar] [CrossRef]
- De Santis, D.; Polidori, T.; Tremamunno, G.; Rucci, C.; Piccinni, G.; Zerunian, M.; Pugliese, L.; Del Gaudio, A.; Guido, G.; Barbato, L.; et al. Deep learning image reconstruction algorithm: Impact on image quality in coronary computed tomography angiography. La Radiol. Medica 2023, 128, 434–444. [Google Scholar] [CrossRef]
- Kim, I.; Kang, H.; Yoon, H.J.; Chung, B.M.; Shin, N.Y. Deep learning–based image reconstruction for brain CT: Improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology 2021, 63, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Thapaliya, S.; Brady, S.L.; Somasundaram, E.; Anton, C.G.; Coley, B.D.; Towbin, A.J.; Zhang, B.; Dillman, J.R.; Trout, A.T. Detection of urinary tract calculi on CT images reconstructed with deep learning algorithms. Abdom. Radiol. 2022, 47, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Durand, Q.; Frandon, J.; Si-Mohamed, S.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: A phantom study. Eur. Radiol. 2023, 33, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.F.J.; Liao, Y.S.; Barman, J.; Liu, S.C. Semi-supervised deep learning semantic segmentation for 3D volumetric computed tomographic scoring of chronic rhinosinusitis: Clinical correlations and comparison with Lund-Mackay scoring. Tomography 2022, 8, 718–729. [Google Scholar] [CrossRef]
- Lenfant, M.; Comby, P.O.; Guillen, K.; Galissot, F.; Haioun, K.; Thay, A.; Chevallier, O.; Ricolfi, F.; Loffroy, R. Deep Learning-Based Reconstruction vs. Iterative Reconstruction for Quality of Low-Dose Head-and-Neck CT Angiography with Different Tube-Voltage Protocols in Emergency-Department Patients. Diagnostics 2022, 12, 1287. [Google Scholar] [CrossRef]
- Xie, H.; Shan, H.; Cong, W.; Liu, C.; Zhang, X.; Liu, S.; Ning, R.; Wang, G. Deep efficient end-to-end reconstruction (DEER) network for few-view breast CT image reconstruction. IEEE Access 2020, 8, 196633–196646. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, K.; Jeon, K. Low-dose CT image reconstruction with a deep learning prior. IEEE Access 2020, 8, 158647–158655. [Google Scholar] [CrossRef]
- Thaler, F.; Hammernik, K.; Payer, C.; Urschler, M.; Štern, D. Sparse-view CT reconstruction using wasserstein GANs. In Proceedings of the International Workshop on Machine Learning for Medical Image Reconstruction, Granada, Spain, 16 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 75–82. [Google Scholar]
- Koike, Y.; Ohira, S.; Teraoka, Y.; Matsumi, A.; Imai, Y.; Akino, Y.; Miyazaki, M.; Nakamura, S.; Konishi, K.; Tanigawa, N.; et al. Pseudo low-energy monochromatic imaging of head and neck cancers: Deep learning image reconstruction with dual-energy CT. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1271–1279. [Google Scholar] [CrossRef]
- Noda, Y.; Iritani, Y.; Kawai, N.; Miyoshi, T.; Ishihara, T.; Hyodo, F.; Matsuo, M. Deep learning image reconstruction for pancreatic low-dose computed tomography: Comparison with hybrid iterative reconstruction. Abdom. Radiol. 2021, 46, 4238–4244. [Google Scholar] [CrossRef]
- Nakamura, Y.; Narita, K.; Higaki, T.; Akagi, M.; Honda, Y.; Awai, K. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT. Eur. Radiol. 2021, 31, 4700–4709. [Google Scholar] [CrossRef]
- Nam, J.G.; Hong, J.H.; Kim, D.S.; Oh, J.; Goo, J.M. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: Similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Eur. Radiol. 2021, 31, 5533–5543. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, M.W.; Jin, K.H.; Yi, K.M.; Kohmura, Y.; Ishikawa, T.; Je, J.H.; Park, J. Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs. Sci. Rep. 2023, 13, 1738. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, X.; Kawasumi, Y.; Usui, A.; Ichiji, K.; Funayama, M.; Homma, N. A 2.5 D deep learning-based method for drowning diagnosis using post-mortem computed tomography. IEEE J. Biomed. Health Informatics 2022, 27, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Shiode, R.; Kabashima, M.; Hiasa, Y.; Oka, K.; Murase, T.; Sato, Y.; Otake, Y. 2D–3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks. Sci. Rep. 2021, 11, 15249. [Google Scholar] [CrossRef]
- Bornet, P.A.; Villani, N.; Gillet, R.; Germain, E.; Lombard, C.; Blum, A.; Gondim Teixeira, P.A. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: Objective and subjective image quality and low-contrast detectability assessment. Eur. Radiol. 2022, 32, 3161–3172. [Google Scholar] [CrossRef]
- Kroll, N.; Abu-Zurayk, M.; Dimitrov, D.; Franz, T.; Führer, T.; Gerhold, T.; Görtz, S.; Heinrich, R.; Ilic, C.; Jepsen, J.; et al. DLR project Digital-X: Towards virtual aircraft design and flight testing based on high-fidelity methods. CEAS Aeronaut. J. 2016, 7, 3–27. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Naeem, A.; Rizwan, M.; Alsubai, S.; Almadhor, A.; Akhtaruzzaman, M.; Islam, S.; Rahman, H. Enhanced clustering based routing protocol in vehicular ad-hoc networks. IET Electr. Syst. Transp. 2023, 13, e12069. [Google Scholar] [CrossRef]
- Arshad, M.Z.; Rahman, H.; Tariq, J.; Riaz, A.; Imran, A.; Yasin, A.; Ihsan, I. Digital Forensics Analysis of IoT Nodes using Machine Learning. J. Comput. Biomed. Inform. 2022, 4, 1–12. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Jubeen, M.; Rahman, H.; Rahman, A.U.; Wahid, S.A.; Imran, A.; Yasin, A.; Ihsan, I. An Automatic Breast Cancer Diagnostic System Based on Mammographic Images Using Convolutional Neural Network Classifier. J. Comput. Biomed. Inform. 2022, 4, 77–86. [Google Scholar]
- Tariq, T.; Hassan, M.; Hameedur, R.; Shah, A. Predictive Model for Lung Cancer Detection. LC Int. J. STEM 2020, 1, 61–74. [Google Scholar]
- Bonechi, S.; Andreini, P.; Mecocci, A.; Giannelli, N.; Scarselli, F.; Neri, E.; Bianchini, M.; Dimitri, G.M. Segmentation of aorta 3D CT images based on 2D convolutional neural networks. Electronics 2021, 10, 2559. [Google Scholar] [CrossRef]
- Tariq, J.; Javed, M.; Ayub, B.; Armghan, A.; Ijaz, A.; Alenezi, F.; Rahman, H.; Zulfiqar, A. Nature inspired algorithm based fast intra mode decision in HEVC. Multimed. Tools Appl. 2023, 82, 29789–29804. [Google Scholar] [CrossRef]
- Rahman, H.; Naik Bukht, T.F.; Ahmad, R.; Almadhor, A.; Javed, A.R. Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network. Comput. Intell. Neurosci. 2023, 2023, 7717712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, H. Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans. Med. Imaging 2018, 37, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Tariq, J.; Masood, M.A.; Subahi, A.F.; Khalaf, O.I.; Alotaibi, Y. Multi-tier sentiment analysis of social media text using supervised machine learning. Comput. Mater. Contin 2023, 74, 5527–5543. [Google Scholar] [CrossRef]
- Tasleem, S.; Bano, P.; Hameedur, R. Students Attendance Management System Based On Face Recognition. LC Int. J. STEM 2020, 1, 66–74. [Google Scholar]
- Jackson, A.S.; Bulat, A.; Argyriou, V.; Tzimiropoulos, G. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1031–1039. [Google Scholar]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [Google Scholar] [CrossRef]
- Eilertsen, G.; Kronander, J.; Denes, G.; Mantiuk, R.K.; Unger, J. HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. (TOG) 2017, 36, 1–15. [Google Scholar] [CrossRef]
- Abbas, M.; Arshad, M.; Hameedur, R. Detection of Breast Cancer Using Neural Networks. LC Int. J. STEM 2020, 1, 75–88. [Google Scholar]
- Abid, I.; Almakdi, S.; Rahman, H.; Almulihi, A.; Alqahtani, A.; Rajab, K.; Alqhatani, A.; Shaikh, A. A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture. Intell. Autom. Soft Comput. 2022, 33, 1407–1421. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, C.; Xiong, Z.; Liu, D.; Wu, F. Hscnn+: Advanced cnn-based hyperspectral recovery from rgb images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 939–947. [Google Scholar]
- Riaz, A.; Rahman, H.; Arshad, M.A.; Nabeel, M.; Yasin, A.; Al-Adhaileh, M.H.; Eldin, E.T.; Ghamry, N.A. Augmentation of Deep Learning Models for Multistep Traffic Speed Prediction. Appl. Sci. 2022, 12, 9723. [Google Scholar] [CrossRef]
- Sulaiman, A.; Rahman, H.; Ali, N.; Shaikh, A.; Akram, M.; Lim, W.H. An augmented reality PQRST based method to improve self-learning skills for preschool autistic children. Evol. Syst. 2022, 14, 859–872. [Google Scholar] [CrossRef]
- Krumm, M.; Kasperl, S.; Franz, M. Reducing non-linear artifacts of multi-material objects in industrial 3D computed tomography. Ndt E Int. 2008, 41, 242–251. [Google Scholar] [CrossRef]
- Torng, W.; Altman, R.B. 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC Bioinform. 2017, 18, 302. [Google Scholar] [CrossRef] [PubMed]
- Seol, Y.J.; Kim, Y.J.; Kim, Y.S.; Cheon, Y.W.; Kim, K.G. A study on 3D deep learning-based automatic diagnosis of nasal fractures. Sensors 2022, 22, 506. [Google Scholar] [CrossRef] [PubMed]
- Zia, Z.U.R.; Hameedur, R.; Malik, M.H.; Jahngir, A. Technical Challenges in Achieving Ultra-Reliable & Low Latency Communication in 5G Cellular-V2X Systems. LC Int. J. STEM 2020, 1, 89–95. [Google Scholar]
- Lim, K.S.; Ang, K.M.; Isa, N.A.M.; Tiang, S.S.; Rahman, H.; Chandrasekar, B.; Hussin, E.E.; Lim, W.H. Optimized Machine Learning Model with Modified Particle Swarm Optimization for Data Classification. In Proceedings of the Advances in Intelligent Manufacturing and Mechatronics: Selected Articles from the Innovative Manufacturing, Mechatronics & Materials Forum (iM3F 2022), Pahang, Malaysia; Springer Nature: Singapore, 2023; pp. 211–223. [Google Scholar]
- Image-based 3D object reconstruction: State-of-the-art and trends in the deep learning era. LC Int. J. STEM 2019, 43, 1578–1604.
- Lenfant, M.; Chevallier, O.; Comby, P.O.; Secco, G.; Haioun, K.; Ricolfi, F.; Lemogne, B.; Loffroy, R. Deep learning versus iterative reconstruction for CT pulmonary angiography in the emergency setting: Improved image quality and reduced radiation dose. Diagnostics 2020, 10, 558. [Google Scholar] [CrossRef]
- Jacobs, C.; van Rikxoort, E.M.; Murphy, K.; Prokop, M.; Schaefer-Prokop, C.M.; van Ginneken, B. Computer-aided detection of pulmonary nodules: A comparative study using the public LIDC/IDRI database. Eur. Radiol. 2016, 26, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Setio, A.A.A.; Traverso, A.; De Bel, T.; Berens, M.S.; Van Den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, A.; Hu, Z.; Wang, L. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; Proceedings, Part III 20. Springer: Berlin/Heidelberg, Germany, 2017; pp. 559–567. [Google Scholar]
- Asif, S.; Ambreen, M.; Muhammad, Z.; ur Rahman, H.; Iqbal, S. Cloud Computing in Healthcare-Investigation of Threats, Vulnerabilities, Future Challenges and Counter Measure. LC Int. J. STEM 2022, 3, 63–74. [Google Scholar]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C. TU-FG-207A-04: Overview of the low dose CT grand challenge. Med. Phys. 2016, 43, 3759–3760. [Google Scholar] [CrossRef]
- McCollough, C.H.; Bartley, A.C.; Carter, R.E.; Chen, B.; Drees, T.A.; Edwards, P.; Holmes III, D.R.; Huang, A.E.; Khan, F.; Leng, S.; et al. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 low dose CT grand challenge. Med. Phys. 2017, 44, e339–e352. [Google Scholar] [CrossRef]
- Bera, S.; Biswas, P.K. Noise conscious training of non local neural network powered by self attentive spectral normalized Markovian patch GAN for low dose CT denoising. IEEE Trans. Med. Imaging 2021, 40, 3663–3673. [Google Scholar] [CrossRef]
- Latsios, G.; Spyridopoulos, T.N.; Toutouzas, K.; Synetos, A.; Trantalis, G.; Stathogiannis, K.; Penesopoulou, V.; Oikonomou, G.; Brountzos, E.; Tousoulis, D. Multi-slice CT (MSCT) imaging in pretrans-catheter aortic valve implantation (TAVI) screening. How to perform and how to interpret. Hell. J. Cardiol. 2018, 59, 3–7. [Google Scholar] [CrossRef]
- Michiels, K.; Heffinck, E.; Astudillo, P.; Wong, I.; Mortier, P.; Bavo, A.M. Automated MSCT analysis for planning left atrial appendage occlusion using artificial intelligence. J. Interv. Cardiol. 2022, 2022, 5797431. [Google Scholar] [CrossRef]
Database | Search String |
---|---|
Elsevier | 3D + deep learning + computed tomography + reconstruction |
MDPI | 3D deep learning AND computed tomography AND reconstruction |
Nature | 3D deep learning AND computed tomography AND reconstruction |
IEEE | (“All Metadata”: deep learning) AND (“All Metadata”: computed tomography) AND (“All Metadata”: reconstruction) |
Springer | 3D deep learning + computed tomography + reconstruction |
Resource Name | Total Results Found | Final Selection |
---|---|---|
IEEE Xplore Digital Library | 30 | 14 |
Springer | 31 | 22 |
Elsevier | 27 | 10 |
MDPI | 25 | 5 |
Nature Publishing Group | 22 | 4 |
Snowball | 6 | 6 |
Total | 141 | 60 |
Author | Method | Population | Performance | Country | Year | Database | Ref. |
---|---|---|---|---|---|---|---|
Setio [41] | ConvNet | CT | 85.4% and 90.1% at 1 and 4 false positives per scan | Germany | 2016 | IEEE | P01 |
Li, Meng [42] | 3D ECNN | CT | PSNR = 29.3087, SSIM = 0.8529 | USA | 2018 | Springer | P02 |
Wang [43] | 3D CNN | HRCT | 84.0% accuracy, 88.5% sensitivity, 80.1% specificity, AUC 89.2% | China | 2018 | pubmed | P03 |
Gruetzema [44] | DNN | CT | 89.29% detection rate, 94.21% sensitivity, 1.789 false positives/scan | USA | 2018 | https://academic.oup.com/ | P04 |
Gu, Yu [45] | 3D CNN | CT | 87.94% sensitivity, 92.93% at 4 FPs/scan | China | 2018 | Elsevier | P05 |
Ren, Xuhua [46] | 3D CNN | CT | Higher segmentation accuracy (DC: 0.58–0.71, 95HD: 2.23–2.81 mm) | China | 2018 | Wiley Online Library | P06 |
Gupta H [47] | CNN | CT | High sensitivity (100%), specificity (82.5%) for pneumothorax detection | USA | 2018 | IEEE | P07 |
Li, Xiang [48] | CNN | CT | Slightly increased reconstruction (27.02 dB) with reduced training time (50%) | Switzerland | 2019 | Elsevier | P08 |
Uthoff [49] | CNN | CT | High sensitivity (100%) and specificity (82.5%) for pneumothorax detection | USA | 2019 | Wiley Online Library | P09 |
Annarumma [50] | CNN | CT | 100% sensitivity, 96% specificity for lung nodule classification | USA | 2019 | RSNA | P10 |
Lee H [51] | CNN | CT | Sensitivity 71%, specificity 95% for normal radiographs triaging | UK | 2019 | IEEE | P11 |
Jung, Woojin [52] | DNN-MPRAGE | MRI | DNN-MPRAGE reduced acquisition time by 38% | Republic of Korea | 2019 | Springer | P12 |
Jiang, Chenyu [53] | DLIR-H | CT | DLIR-H significantly improved image quality, noise, and texture compared to ASIR-V. DLIR-L and DLIR-M showed comparable denoising. | China | 2019 | Springer | P13 |
Sato, Mineka [54] | DLIR | CT | DLIR significantly reduced image noise, improved CNR, vessel conspicuity, overall image quality | Japan | 2019 | Springer | P14 |
Park, Sungeun [55] | LDCT | CT | LDCT using DLD with 67% dose reduction showed non-inferior overall image quality and lesion detectability compared to SDCT. | 2019 | Springer | P15 | |
Higaki, Toru [38] | DLR | CT | 33.3% dose non-inferior to MBIR at 100% for liver lesion detection using LDCT | Republic of Korea | 2020 | Elsevier | P16 |
Singh, Satya P [20] | 3D CNN | MRI | Discussing the challenges and future trends of 3D CNNs and deep learning models in medical imaging. | Japan | 2020 | MDPI | P17 |
Lenfant, Marc [25] | DLR | CT | DLR significantly improved image quality and reduced radiation dose compared to hybrid-IR in CTPA examination | Singapore | 2020 | MDPI | P18 |
Zhang J [56] | EDLF-CGAN algorithm | CT | Compared to traditional algorithms, EDLF-CGAN showed superior SR reconstruction effects | China | 2020 | IEEE | P19 |
Liang, C-H [57] | CNN | X-rays | 76.6% sensitivity, 88.68% specificity | Taiwan | 2020 | Elsevier | P20 |
Wang, Ge [58] | cycleGAN | CT | Deep learning algorithms for tomographic imaging are data-driven and must continually evolve to accommodate new data sources. | 2020 | Nature Publishing Group UK London | P21 | |
Fu J [59] | DLFBP | DPC-CT | The proposed framework achieves improved imaging quality, faster processing | 2020 | IEEE | P22 | |
Jiao F [60] | CNN(iBP-Net) | CT | The experimental validation demonstrates the efficacy of iBP-Net in CT reconstruction. | China | 2020 | IEEE | P23 |
Ichikawa [61] | CNN-based | CT | The proposed deep-learning method showed clinically acceptable accuracy for estimating body weights from CT scout images. | Japan | 2020 | Springer | P24 |
Oostveen [62] | DLR | CT | DLR showed superior image quality, and shorter reconstruction times (27 s DLR, 44 s Hybrid-IR, 176 s MBIR). | Netherlands | 2020 | Springer | P25 |
McLeavy [39] | DLR | CT | DLR uses AI and supercomputer technology for high image quality, low radiation dose | UK | 2021 | Elsevier | P26 |
Zeng [63] | CNN | CT | LDCTDL showed 73.5% sensitivity and 82.4% specificity. | China | 2021 | Elsevier | P27 |
Verhelst [64] | CNN | CT | AI and RAI scored an IoU of 94.6% and 94.4%, respectively. | Belgium | 2021 | Elsevier | P28 |
Aggarwal [65] | DL algorithm | CT | DL algorithms demonstrated high diagnostic accuracy in identifying various diseases. | UK | 2021 | Nature Publishing Group UK London | P29 |
Han XF [66] | CNN | CT | The 2.5D method outperformed other 2D, 2.5D, and 3D methods in drowning diagnosis. | China | 2021 | IEEE | P30 |
Zeng [63] | LDCTDL | CT | LDCTDL showed lower noise, higher SNR and CNR compared to SDCTHIR and LDCTHIR, maintaining image quality. | China | 2021 | Elsevier | P31 |
Jiang, Hao [67] | CycleGAN | CT | Deep learning models show excellent accuracy, precision, recall, and F1 score in COVID-19 classification using synthesized and real CT images. | China | 2021 | Elsevier | P32 |
Hsu, Ko-Tsung [68] | GAN | CT | Model-based learning outperforms other methods despite longer reconstruction times. | USA | 2021 | Elsevier | P33 |
Leuschner [69] | CNN | CT | Deep-learning-based methods consistently improved reconstruction quality metrics in both low-dose and sparse-angle CT applications. | Germany | 2021 | MDPI | P34 |
Matsuura M [70] | DLR | CT | The feature-aware DLR method outperforms conventional FBP and standard MBIR techniques in improving CT image quality. | Japan | 2021 | IEEE | P35 |
Capps M [71] | D-bar reconstruction | CT | The proposed approach is evaluated on simulated and experimental data representing the heart and lungs. | USA | 2021 | IEEE | P36 |
He J [72] | DSigNet | CT | Clinical patient data is used to demonstrate the effectiveness of DSigNet in achieving accurate CT image reconstruction. | China | 2021 | IEEE | P37 |
Ding Q [73] | CNN | CT | The effectiveness of the proposed method is evaluated using both simulated and real data. | Singapore | 2021 | IEEE | P38 |
Benz [74] | DLIR | CT | DLIR lowers CCTA radiation dose by 43% with minimal impact on accuracy. | Switzerland | 2021 | Springer | P39 |
Hammernik [75] | variational network | CT | The approach achieves superior destreaking results compared to existing non-linear filtering methods. | Austria | 2021 | Springer | P40 |
Noda [76] | DLIR | CT | DLIR improved image quality and reduced IC variability, suggesting its potential benefits for pancreatic dual-energy CT. | Japan | 2021 | Springer | P41 |
De Santis [77] | DLIR | CT | DLIR_M yields similar objective quality to ASiR-V 80% and 90%, excelling. | Italy | 2021 | Springer | P42 |
Kim [78] | DLIR | CT | DLIR at higher strength levels demonstrated reduced noise, and improved contrast-to-noise ratio compared to ASIR-V. | Republic of Korea | 2021 | Springer | P43 |
Thapaliya [79] | DLR | CT | All DLR algorithms showed substantial to almost perfect agreement on the presence of urinary tract calculi. | USA | 2021 | Springer | P44 |
Greffier [80] | AI-DLR | CT | The study found that using the Smooth and Smoother levels of the AI-DLR algorithm reduced image noise. | France | 2021 | Springer | P45 |
Kuo, C [81] | CNN | CT | Dice coefficient of 91.57%, a MioU of 89.43%, and a pixel accuracy of 99.75%. | Taiwan | 2022 | MDPI | P46 |
Lenfant [82] | DLR | CT | The effective dose decreased as the tube voltage decreased (1.5 mSv for 120 kVp, 1.1 mSv for 100 kVp, and 0.68 mSv for 80 kVp). | France | 2022 | MDPI | P47 |
Hu D [14] | DEER | CT | The DEER network’s performance is evaluated using a cone-beam breast CT dataset acquired from a commercial scanner. | USA | 2022 | IEEE | P48 |
Xie H [83] | PWLS | CT | The proposed method’s effectiveness is demonstrated using clinical SDCT and simulated LDCT scans from ten patients. | USA | 2022 | IEEE | P49 |
Park HS [84] | wGAN | CT | Machine learning approaches (wGAN and CNN) outperform FBP in image quality. | Austria | 2022 | Springer | P50 |
Thaler [85] | DDCNN, DnCNN, Win5RB | CT | U-Net best performance, with the lowest MAE, highest PSNR, and highest SSIM. | Japan | 2022 | Springer | P51 |
Koike [86] | DLIR, IR | CT | The use of DLIR significantly reduced image noise and improved image quality in pancreatic LDCT images compared to hybrid-IR. | Japan | 2022 | Springer | P52 |
Noda [87] | DLR, Hybrid-IR, MBIR | CT | In terms of image noise, LD DLR and LD MBIR images were superior to SD hybrid-IR images in the hepatic arterial and equilibrium phase. | Japan | 2022 | Springer | P53 |
Nakamura [88] | DLIR | CT | DLIR achieved comparable image quality in upper abdomen chest CT with <50% of the radiation dose. | Republic of Korea | 2022 | Springer | P54 |
Nam [89] | 3D DPI | CT | Successful visualization of 3D alveolar units of intact mouse lungs at expiration and measurement of alveolar diameter. | Republic of Korea | 2023 | Nature Publishing Group UK London | P55 |
Shin [90] | DCNN | CT | The proposed method outperformed other 2D, 2.5D, and 3D methods in diagnosing drowning. | Japan | 2023 | IEEE | P56 |
Zeng Y [91] | VAE | CT | The model achieved a sensitivity of 79.2%, specificity of 72.7%, accuracy of 77.1%, F1-score of 0.667, and AUROC of 0.801. | Republic of Korea | 2023 | Nature Publishing Group UK London | P57 |
Chung [66] | CNN | CT | The developed deep learning network enabled high-accuracy estimation of 3D bone models. | Japan | 2023 | Springer | P58 |
Shiode [92] | DLR | CT | DLR showed finer image texture compared to one of the traditional methods and was closer to another in terms of texture. | France | 2023 | Springer | P59 |
Bornet [93] | DLR | CT | DLR led to significantly lower image noise and higher CNR compared to hybrid-IR and MBIR images. | Japan | 2023 | Springer | P60 |
Author | Dataset | TEST SET | Population | Year | Database | Country | Ref. |
---|---|---|---|---|---|---|---|
Setio [41] | LIDC | 118,650,898 | CT | 2016 | IEEE | Germany | P01 |
Li, Meng [42] | LIDC | 20,672 | CT | 2018 | Springer | USA | P02 |
Wang [43] | Fudan University Shanghai Cancer Centre | 200 | HRCT | 2018 | pubmed | China | P03 |
Gruetze [44] | LUNA16 | 1186 | CT | 2018 | https://academic.oup.com/ | USA | P04 |
Gu, Yu [45] | LUNA16 | 1186 | CT | 2018 | Elsevier | China | P05 |
Ren, Xuhua [46] | LUNA16 | 1186 | CT | 2018 | Wiley Online Library | China | P06 |
Gupta H [47] | 2016 NIH-AAPM-Mayo | 500 CT images (1493 pixels in the view direction) (720 views) | CT | 2018 | IEEE | USA | P07 |
Li, Xiang [48] | Massachusetts General Hospital | 200 | CT | 2019 | Elsevier | Switzerland | P08 |
Uthoff [49] | INHALE study | 100 | CT | 2019 | Wiley Online Library | USA | P09 |
Annarumma [50] | Kings College London | 15,887 | X-rays | 2019 | RSNA | USA | P10 |
Lee H [51] | Evaluation utilized lung CT data from 8 distinct patients | 662 slices | CT | 2019 | IEEE | UK | P11 |
Jung, Woojin [52] | k-space data | 240 scans | MRI | 2019 | Springer | Republic of Korea | P12 |
Jiang, Chenyu [53] | carotid DECTA datasets | 28 consecutive patients | CT | 2019 | Springer | China | P13 |
Sato, Mineka [54] | contrast-enhanced DECT images | 40 patients | CT | 2019 | Springer | Japan | P14 |
Park, Sungeun [55] | not mentioned | CT images from 80 patients | CT | 2019 | Springer | - | P15 |
Higaki, Toru [38] | CMSC | CT images reconstructed with MBIR | CT | 2020 | Elsevier | Republic of Korea | P16 |
Singh, Satya P [20] | ADNI dataset | 345 AD, NC, 605,991 MCI | MRI | 2020 | MDPI | Japan | P17 |
Zhang J [56] | HR (high-resolution) medical CT images | not mentioned | CT | 2020 | IEEE | China | P19 |
Liang, C-H [57] | Kaohsiung Veterans General Hospital, Taiwan | 100 | X-rays | 2020 | Elsevier | Taiwan | P20 |
Ichikawa [61] | Patients who underwent medical checkups | 1831 chest and 519 abdominal CT scout images | CT | 2020 | Springer | Japan | P24 |
Oostveen [62] | not mentioned | 50 consecutive patients | CT | 2020 | Springer | Netherlands | P25 |
Zeng [63] | Reconstructing raw data with FBP to obtain (SDCTTrain) | 100,000 images | CT | 2021 | Elsevier | China | P27 |
Verhelst [64] | CBCT images | 160 scans | CT | 2021 | Elsevier | Belgium | P28 |
Aggarwal [65] | not mentioned | not mentioned | CT | 2021 | Nature Publishing Group UK London | UK | P29 |
Han XF [120] | MSCT | not mentioned | CT | 2021 | IEEE | China | P30 |
Zeng [63] | DELTA | 100,000 images | CT | 2021 | Elsevier | China | P31 |
Jiang, Hao [67] | not mentioned | 888 lung cancer CT scans | CT | 2021 | Elsevier | China | P32 |
Hsu, [68] | not mentioned | (500) training, (500) testing | CT | 2021 | Elsevier | USA | P33 |
Leuschner [69] | LoDoPaB-CT dataset | 40,000 scan slices from around 800 patients | CT | 2021 | MDPI | Germany | P34 |
Matsuura M [70] | not mentioned | 5000 images | CT | 2021 | IEEE | Japan | P35 |
Capps M [71] | ACE1 EIT system at Colorado State University | 100,000 scattering | CT | 2021 | IEEE | USA | P36 |
He J [72] | 2016 NIH-AAPM-Mayo | 4791 slices | CT | 2021 | IEEE | China | P37 |
Ding Q [73] | 2016 NIH-AAPM-Mayo | 2000 training epochs | CT | 2021 | IEEE | Singapore | P38 |
Benz [74] | TrueFidelity, GE Health-care | 50 patients | CT | 2021 | Springer | Switzerland | P39 |
Hammernik [75] | not mentioned | 450 fan-beam projections of size 512 × 512 | CT | 2021 | Springer | Austria | P40 |
De Santis [77] | not mentioned | 51 patients | CT | 2021 | Springer | Italy | P42 |
Kim [78] | not mentioned | 62 patients underwent noncontrast brain CT scans | CT | 2021 | Springer | Republic of Korea | P43 |
Thapaliya [79] | not mentioned | 14 patients, with a mean age of 17.3 years | CT | 2021 | Springer | USA | P44 |
Kuo, C [81] | not mentioned | 75 datasets obtained from 111 men and 64 women | CT | 2022 | MDPI | Taiwan | P46 |
Hu D [121] | Koning Corporation | 19,575 breast CT images from 42 patients | CT | 2022 | IEEE | USA | P48 |
Xie H [83] | 2016 NIH-AAPM-Mayo | LDCT and SDCT images of size 512 × 512. | CT | 2022 | IEEE | USA | P49 |
Thaler [85] | not mentioned | 13,650 slices | CT | 2022 | Springer | Japan | P51 |
Koike [86] | pancreatic ductal adenocarcinoma (PDAC) | 28 consecutive patients | CT | 2022 | Springer | Japan | P52 |
Noda [87] | not mentioned | 72 patients | CT | 2022 | Springer | Japan | P53 |
Nakamura [88] | not mentioned | 100 patients | CT | 2022 | Springer | Republic of Korea | P54 |
Shin [90] | MSCT | not mentioned | CT | 2023 | IEEE | Japan | P56 |
Zeng Y [91] | not mentioned | 334 CT images of normal orbits | CT | 2023 | Nature Publishing Group UK London | Republic of Korea | P57 |
Chung [66] | not mentioned | 173 CT images, 105 X-ray images | CT | 2023 | Springer | Japan | P58 |
Bornet [93] | not mentioned | 46 patients (December 2017 and April 2018) | CT | 2023 | Springer | Japan | P60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, H.; Khan, A.R.; Sadiq, T.; Farooqi, A.H.; Khan, I.U.; Lim, W.H. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography 2023, 9, 2158-2189. https://doi.org/10.3390/tomography9060169
Rahman H, Khan AR, Sadiq T, Farooqi AH, Khan IU, Lim WH. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography. 2023; 9(6):2158-2189. https://doi.org/10.3390/tomography9060169
Chicago/Turabian StyleRahman, Hameedur, Abdur Rehman Khan, Touseef Sadiq, Ashfaq Hussain Farooqi, Inam Ullah Khan, and Wei Hong Lim. 2023. "A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction" Tomography 9, no. 6: 2158-2189. https://doi.org/10.3390/tomography9060169
APA StyleRahman, H., Khan, A. R., Sadiq, T., Farooqi, A. H., Khan, I. U., & Lim, W. H. (2023). A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography, 9(6), 2158-2189. https://doi.org/10.3390/tomography9060169