Newborn Genetic Screening Improves the Screening Efficiency for Congenital Hypothyroidism: A Prospective Multicenter Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Newborn Screening
2.3. Diagnosis of CH
2.4. Genomic DNA Extraction and Sequencing
2.5. Analysis of Mutation Data
2.6. Treatment and Follow-Up
2.7. Statistical Analysis
3. Results
3.1. Newborn Screening for CH
3.2. Comparison of Biochemical Screening and Genetic Screening Results
3.3. Mutation Patterns of CH-Related Genes
3.4. Relationships Between Genotype and Phenotype
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rastogi, M.V.; LaFranchi, S.H. Congenital hypothyroidism. Orphanet J. Rare Dis. 2010, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; He, C.; Zhu, J.; Liang, J.; Li, X.; Xie, X.; Yu, P.; Li, N.; Li, Q.; Wang, Y. Incidence of congenital hypothyroidism in China: Data from the national newborn screening program, 2013–2015. J. Pediatr. Endocrinol. Metab. 2018, 31, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Long, W.; Yang, Y.; Wang, Y.; Jiang, L.; Cai, Z.; Wang, H. Newborn Screening and Molecular Profile of Congenital Hypothyroidism in a Chinese Population. Front. Genet. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Cherella, C.E.; Wassner, A.J. Congenital hypothyroidism: Insights into pathogenesis and treatment. Int. J. Pediatr. Endocrinol. 2017, 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.A. Newborn screening. Clin. Perinatol. 2015, 42, 441–453. [Google Scholar] [CrossRef]
- Keskinkilic, B. Neonatal screening programs. Clin. Biochem. 2014, 47, 692. [Google Scholar] [CrossRef]
- Peters, C.; van Trotsenburg, A.S.P.; Schoenmakers, N. Diagnosis of endocrine disease: Congenital hypothyroidism: Update and perspectives. Eur. J. Endocrinol. 2018, 179, R297–R317. [Google Scholar] [CrossRef] [PubMed]
- McMahon, R.; DeMartino, L.; Sowizral, M.; Powers, D.; Tracy, M.; Caggana, M.; Tavakoli, N.P. The Impact of Seasonal Changes on Thyroxine and Thyroid-Stimulating Hormone in Newborns. Int. J. Neonatal Screen. 2021, 7, 8. [Google Scholar] [CrossRef]
- Cavarzere, P.; Camilot, M.; Popa, F.I.; Lauriola, S.; Teofoli, F.; Gaudino, R.; Vincenzi, M.; Antoniazzi, F. Congenital hypothyroidism with delayed TSH elevation in low-birth-weight infants: Incidence, diagnosis and management. Eur. J. Endocrinol. 2016, 175, 395–402. [Google Scholar] [CrossRef]
- McGrath, N.; Hawkes, C.P.; Mayne, P.; Murphy, N.P. Optimal Timing of Repeat Newborn Screening for Congenital Hypothyroidism in Preterm Infants to Detect Delayed Thyroid-Stimulating Hormone Elevation. J. Pediatr. 2019, 205, 77–82. [Google Scholar] [CrossRef]
- Stoupa, A.; Kariyawasam, D.; Polak, M.; Carre, A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr. Investig. 2022, 6, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, K.; Minamitani, K.; Nakamura, A.; Kobayashi, H.; Numakura, C.; Itoh, M.; Mushimoto, Y.; Fujikura, K.; Fukushi, M.; Tajima, T. Guidelines for Newborn Screening of Congenital Hypothyroidism (2021 Revision). Clin. Pediatr. Endocrinol. 2023, 32, 26–51. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Wang, J.; Xiao, R.; Wu, B.B.; Zou, C.C.; Wu, D.W.; Wang, H.; Zou, H.; Han, L.S.; Yang, L.; et al. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: A consensus among Chinese newborn screening experts. World J. Pediatr. 2022, 18, 235–242. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, J.; Xu, Z. Chinese genetic variation database of inborn errors of metabolism: A systematic review of published variants in 13 genes. Orphanet J. Rare Dis. 2023, 18, 148. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.; Lau, L.; Eszlinger, M.; Paschke, R. The Thyrotropin Receptor Mutation Database Update. Thyroid 2020, 30, 931–935. [Google Scholar] [CrossRef]
- Subspecialty Group of Endocrinologic H; Metabolic Diseases TSoPCMA; Group for Newborn Screening SoCHCPMA. Consensus statement on the diagnosis and management of congenital hypothyroidism. Zhonghua Er Ke Za Zhi 2011, 49, 421–424. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Yao, Y.; Deng, K.; Zhu, J.; Xiang, L.; Yuan, X.; Li, Q.; Liu, L.; Xu, W. Increased incidence of congenital hypothyroidism in China: An analysis of 119 million screened newborns. Eur. J. Pediatr. 2023. ahead of print. [Google Scholar] [CrossRef]
- Tan, M.; Jiang, X.; Mei, H.; Feng, Y.; Xie, T.; Tang, C.; Chen, Q.; Zeng, C.; Huang, Y. Incidence tendency, etiological classification and outcome of congenital hypothyroidism in Guangzhou, China: An 11-year retrospective population-based study. J. Pediatr. Endocrinol. Metab. 2022, 35, 1141–1146. [Google Scholar] [CrossRef]
- Yao, Y.; Yuan, X.; Zhu, J.; Xiang, L.; Li, Q.; Deng, K.; Li, X.; Liu, H. Geographic variations in the incidence of congenital hypothyroidism in China: A retrospective study based on 92 million newborns screened in 2013–2018. Chin. Med. J. 2021, 134, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.E.; Tellechea, M.L. Update on Neonatal Isolated Hyperthyrotropinemia: A Systematic Review. Front. Endocrinol. 2021, 12, 643307. [Google Scholar] [CrossRef]
- Cuestas, E.; Gaido, M.I.; Capra, R.H. Transient neonatal hyperthyrotropinemia is a risk factor for developing persistent hyperthyrotropinemia in childhood with repercussion on developmental status. Eur. J. Endocrinol. 2015, 172, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, S.; Zeng, G.; Wang, W.; Lin, Z.; Xu, C.; He, Y.; Shi, J.; Zhou, X.; Niu, C.; et al. Epidemiologic Characteristics and Risk Factors for Congenital Hypothyroidism from 2009 To 2018 in Xiamen, China. Endocr. Pract. 2020, 26, 585–594. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, S.; Guo, M.; Qiu, Y.; Yang, L. Compound Heterozygous Mutations in the DUOX2/DUOXA2 Genes Cause Congenital Hypothyroidism. Yonsei Med. J. 2017, 58, 888–890. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Yin, Y.; Chen, M.; Gong, N.; Peng, Y.; Liu, H.; Miao, J. Combined genetic screening and traditional newborn screening to improve the screening efficiency of congenital hypothyroidism. Front. Pediatr. 2023, 11, 1185802. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Fan, C.; Huang, Y.; Feng, J.; Zhang, Y.; Miao, J.; Wang, X.; Li, Y.; Huang, C.; Jin, W.; et al. Genomic Sequencing as a First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw. Open. 2023, 6, e2331162. [Google Scholar] [CrossRef]
- Schoenmakers, N.; Alatzoglou, K.S.; Chatterjee, V.K.; Dattani, M.T. Recent advances in central congenital hypothyroidism. J. Endocrinol. 2015, 227, R51–71. [Google Scholar] [CrossRef]
- van Trotsenburg, P.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update-An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021, 31, 387–419. [Google Scholar] [CrossRef]
- De Deken, X.; Wang, D.; Many, M.C.; Costagliola, S.; Libert, F.; Vassart, G.; Dumont, J.E.; Miot, F. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 2000, 275, 23227–23233. [Google Scholar] [CrossRef]
- Maruo, Y.; Nagasaki, K.; Matsui, K.; Mimura, Y.; Mori, A.; Fukami, M.; Takeuchi, Y. Natural course of congenital hypothyroidism by dual oxidase 2 mutations from the neonatal period through puberty. Eur. J. Endocrinol. 2016, 174, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhang, S.; Su, J.; Luo, S.; Zheng, H.; Wang, J.; Qin, H.; Chen, Y.; Shen, Y.; Hu, X.; et al. Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. J. Endocrinol. Investig. 2015, 38, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa-Ogasawara, A.; Ogikubo, S.; Satoh, M.; Narumi, S.; Hasegawa, T. Congenital hypothyroidism caused by a novel mutation of the dual oxidase 2 (DUOX2) gene. J. Pediatr. Endocrinol. Metab. 2013, 26, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kong, X.; Pei, Y.; Cui, X.; Zhu, Y.; He, Z.; Wang, Y.; Zhang, L.; Zhuo, L.; Chen, C.; et al. Mutation spectrum analysis of 29 causative genes in 43 Chinese patients with congenital hypothyroidism. Mol. Med. Rep. 2020, 22, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Zhou, L.; Wang, Y.; Liu, J.; Wang, H.; Yu, B. Complicated Relationship between Genetic Mutations and Phenotypic Characteristics in Transient and Permanent Congenital Hypothyroidism: Analysis of Pooled Literature Data. Int. J. Endocrinol. 2020, 2020, 6808517. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Yang, L.; Sun, C.; Wu, J.; Luo, F.; Zhou, W.; Lu, W. Genotype and phenotype correlation in a cohort of Chinese congenital hypothyroidism patients with DUOX2 mutations. Ann. Transl. Med. 2020, 8, 1649. [Google Scholar] [CrossRef] [PubMed]
Region | Screening Number | CH | HTT | Total | Incidence Rate |
---|---|---|---|---|---|
Shanghai | 4888 | 1 | 3 | 4 | 1/1222 |
Jinan | 4797 | 7 | 40 | 47 | 1/102 |
Guangzhou | 4813 | 7 | 3 | 10 | 1/481 |
Hainan | 977 | 1 | 1 | 2 | 1/489 |
Chongqing | 2988 | 10 | 7 | 17 | 1/176 |
Yunnan | 3006 | 3 | 8 | 11 | 1/273 |
Shijiazhuang | 4899 | 1 | 0 | 1 | 1/4899 |
Inner Mongolia | 3233 | 0 | 2 | 2 | 1/1616 |
Total | 29,601 | 30 | 64 | 94 | 1/315 |
Project | Cases (%) | Project | Cases (%) |
---|---|---|---|
Gender | Clinical phenotype | ||
Male | 46 (49%) | CH | 30 (32%) |
Female | 48 (51%) | HTT | 64 (68%) |
Gestational age (week) | blood spot TSH (mIU/L) | ||
<37 | 4 (4%) | <10 | 35 (37%) |
37–42 | 90 (96%) | 10–40 | 48 (51%) |
≥42 | 0 | ≥40 | 11 (12%) |
Birth weight (g) | Serum TSH (μIU/mL) | ||
<2500 | 2 (2%) | 5–20 | 47 (50%) |
2500–4000 | 89 (95%) | 20–100 | 33 (35%) |
≥4000 | 3 (3%) | ≥100 | 14 (15%) |
Gene mutation | Serum FT4 (pmol/mL) | ||
NO variants | 76 (81%) | <6 | 7 (7%) |
DUOX2 variants | 18 (19%) | 6–12 ≥12 | 33 (35%) 54 (58%) |
Combined Screening | Predictive Value | Total | |||
---|---|---|---|---|---|
+ | − | ||||
Biochemical screening | + | 86 | 0 | PPV: 100% | 86 |
− | 8 | 29,507 | NPV: 99.97% | 29,515 | |
Sensitivity: 91.4% | Specificity: 100% | ||||
Genetic screening | + | 18 | 0 | PPV: 100% | 18 |
− | 76 | 29,507 | NPV: 99.74% | 29,583 | |
Sensitivity: 19.14% | Specificity: 100% | ||||
Total | 94 | 29,504 | 29,601 |
Gene | Position | cDNA Change | Amino Acids Change | ACMG Classification | Mutation Type | No. of Cases | Frequency (%) |
---|---|---|---|---|---|---|---|
DUOX2 | Exon14 | c.1588A>T | p.Lys530* | P | nonsense | 12 | 33.33% |
DUOX2 | Exon25 | c.3329G>A | p.Arg1110Gln | P | missense | 4 | 11.11% |
DUOX2 | Exon10 | c.2635G>A | p.Glu879Lys | P | missense | 3 | 8.33% |
DUOX2 | Exon20 | c.2654G>T | p.Arg885Leu | LP | missense | 3 | 8.33% |
DUOX2 | Exon16 | c.1883delA | p.Lys628Argfs* | P | frameshift | 2 | 5.55% |
DUOX2 | IVS28 | c.3693+1G>T | / | LP | splicing | 2 | 5.55% |
DUOX2 | Exon5 | c.477delC | p.Glu160Argfs* | LP | frameshift | 1 | 2.78% |
DUOX2 | Exon6 | c.596delC | p.Ser199Trpfs* | LP | frameshift | 1 | 2.78% |
DUOX2 | Exon6 | c.605_621delAGCTGGCGTCGGGGCCC | p.Gln202fs* | LP | frameshift | 1 | 2.78% |
DUOX2 | Exon9 | c.978_979delGGinsTT | p.Glu327* | LP | frameshift | 1 | 2.78% |
DUOX2 | Exon15 | c.1708C>T | p.Gln570* | LP | nonsense | 1 | 2.78% |
DUOX2 | Exon17 | c.2048G>T | p.Arg683Leu | LP | missense | 1 | 2.78% |
DUOX2 | Exon20 | c.2654G>A | p.Arg885Gln | P | missense | 1 | 2.78% |
DUOX2 | Exon25 | c.3285_3286delTT | p.Ile1097Leufs* | LP | frameshift | 1 | 2.78% |
DUOX2 | Exon27 | c.3516_3531delGTCCAAGCTTCCCCAG | p.Lys1174Serfs* | P | frameshift | 1 | 2.78% |
DUOX2 | Exon30 | c.4000C>T | p.Arg1334Trp | LP | missense | 1 | 2.78% |
Total | 36 | 100% |
Groups | Cases | CH (n) | HTT (n) | Blood Spot TSH (mIU/L) | Serum TSH (uIU/mL) | Serum FT4 (pmol/L) |
---|---|---|---|---|---|---|
No c.1588A>T variant | 85 | 26 | 59 | 11.29 (9.01, 16.72) | 20.99 (11.68, 45.02) | 14.05 (10.27, 16.29) |
c.1588A>T homozygous variant | 3 | 2 | 1 | 13.84 (12.47, -) | 18.41 (17.07, -) | 9.62 (5.62, -) |
c.1588A>T compound heterozygous variant | 6 | 4 | 2 | 16.38 (5.66, 31.14) | 24.12 (11.67, 72.64) | 9.07 (6.42, 11.50) |
Statistics | Χ2 = 4.718; p = 0.095 | H = 0.759; p = 0.684 | H = 0.278; p = 0.870 | H = 8.592; p = 0.014 * |
Groups | Cases | CH (n) | HTT (n) | Blood Spot TSH (mIU/L) | Serum TSH (uIU/mL) | Serum FT4 (pmol/L) |
---|---|---|---|---|---|---|
No c.3329G>A variant | 91 | 29 | 62 | 11.60 (9.03, 16.77) | 20.99 (12.23, 54.28) | 13.65 (9.35, 15.43) |
c.3329G>A homozygous variant | 1 | 0 | 1 | 9.30 (9.30, 9.30) | 17.92 (17.92, 17.92) | 12.79 (12.79, 12.79) |
c.3329G>A compound heterozygous variant | 2 | 1 | 1 | 7.70 (6.32, -) | 21.27 (9.88, -) | 11.17 (10.72, -) |
Statistics | Χ2 = 0.770; p = 0.680 | H = 3.003; p = 0.223 | H = 0.215.; p = 0.898 | H = 0.947; p = 0.623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Zhang, Y.; Feng, J.; Huang, C.; Wang, X.; Han, L.; Huang, Y.; Zou, H.; Zhu, B.; Miao, J. Newborn Genetic Screening Improves the Screening Efficiency for Congenital Hypothyroidism: A Prospective Multicenter Study in China. Int. J. Neonatal Screen. 2024, 10, 78. https://doi.org/10.3390/ijns10040078
Ye L, Zhang Y, Feng J, Huang C, Wang X, Han L, Huang Y, Zou H, Zhu B, Miao J. Newborn Genetic Screening Improves the Screening Efficiency for Congenital Hypothyroidism: A Prospective Multicenter Study in China. International Journal of Neonatal Screening. 2024; 10(4):78. https://doi.org/10.3390/ijns10040078
Chicago/Turabian StyleYe, Liang, Yinhong Zhang, Jizhen Feng, Cidan Huang, Xiaohua Wang, Lianshu Han, Yonglan Huang, Hui Zou, Baosheng Zhu, and Jingkun Miao. 2024. "Newborn Genetic Screening Improves the Screening Efficiency for Congenital Hypothyroidism: A Prospective Multicenter Study in China" International Journal of Neonatal Screening 10, no. 4: 78. https://doi.org/10.3390/ijns10040078
APA StyleYe, L., Zhang, Y., Feng, J., Huang, C., Wang, X., Han, L., Huang, Y., Zou, H., Zhu, B., & Miao, J. (2024). Newborn Genetic Screening Improves the Screening Efficiency for Congenital Hypothyroidism: A Prospective Multicenter Study in China. International Journal of Neonatal Screening, 10(4), 78. https://doi.org/10.3390/ijns10040078