N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Type and Preparation
2.2. Acquisition, Quantification, and Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
PN | Parenteral nutrition |
IV | Intravenous |
TPN | Total parenteral nutrition |
NICU | Neonatal intensive care unit |
Phe | Phenylalanine |
Tyr | Tyrosine |
NAT | N-acetyltyrosine |
NBS | Newborn screening |
IEMs | Inborn error of metabolism |
FIA-MS/MS | Flow injection analysis tandem mass spectrometry |
Met | Methionine |
QC | Quality control |
ISs | Internal standard |
PN+ | Neonate with reported parenteral nutrition administration |
PN+PosElv | Neonate with reported parenteral nutrition administration and elevations in one or more biomarkers |
HRMS | High-resolution mass spectrometry |
Arg | Arginine |
Leu | Leucine |
C5 | Isovalerylcarnitine |
Val | Valine |
PN+NegElv | Neonate with reported parenteral nutrition administration and no elevations in biomarkers |
TYRSN1 | Tyrosinemia type 1 |
LOD | Limit of detection |
LOQ | Limit of quantification |
ARP | Amadori rearrangement product |
Val-Hex | Valine–hexose |
References
- Hamdan, M.; Puckett, Y. Total Parenteral Nutrition; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Riskin, A.; Shiff, Y.; Shamir, R. Parenteral nutrition in neonatology—To standardize or individualize? Isr. Med. Assoc. J. 2006, 8, 641–645. [Google Scholar] [PubMed]
- Slattery, E.; Rumore, M.M.; Douglas, J.S.; Seres, D.S. 3-in-1 vs. 2-in-1 parenteral nutrition in adults: A review. Nutr. Clin. Pract. 2014, 29, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Savarino, G.; Carta, M.; Cimador, M.; Corsello, A.; Giuffre, M.; Schierz, I.A.M.; Serra, G.; Corsello, G. Necrotizing enterocolitis in the preterm: Newborns medical and nutritional Management in a Single-Center Study. Ital. J. Pediatr. 2021, 47, 226. [Google Scholar] [CrossRef] [PubMed]
- Cerdo, T.; Garcia-Santos, J.A.; Rodriguez-Pohnlein, A.; Garcia-Ricobaraza, M.; Nieto-Ruiz, A.; Bermúdez, G.M.; Campoy, C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022, 14, 4691. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W., Jr. Nutritional Support Strategies for the Preterm Infant in the Neonatal Intensive Care Unit. Pediatr. Gastroenterol. Hepatol. Nutr. 2018, 21, 234–247. [Google Scholar] [CrossRef]
- Pineda, R.; Kati, K.; Breault, C.C.; Rogers, E.E.; Mack, W.J.; Fernandez-Fernandez, A. NICUs in the US: Levels of acuity, number of beds, and relationships to population factors. J. Perinatol. 2023, 43, 796–805. [Google Scholar] [CrossRef]
- Calkins, K.L.; Venick, R.S.; Devaskar, S.U. Complications associated with parenteral nutrition in the neonate. Clin. Perinatol. 2014, 41, 331–345. [Google Scholar] [CrossRef]
- Dinerstein, A.; Nieto, R.M.; Solana, C.L.; Perez, G.P.; Otheguy, L.E.; Larguia, A.M. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J. Perinatol. 2006, 26, 436–442. [Google Scholar] [CrossRef]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellu, R. Weight Growth Velocity and Postnatal Growth Failure in Infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef]
- Kadrofske, M.M.; Parimi, P.S.; Gruca, L.L.; Kalhan, S.C. Effect of intravenous amino acids on glutamine and protein kinetics in low-birth-weight preterm infants during the immediate neonatal period. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E622–E630. [Google Scholar] [CrossRef]
- Kalhan, S.C.; Parimi, P.S.; Gruca, L.L.; Hanson, R.W. Glutamine supplement with parenteral nutrition decreases whole body proteolysis in low birth weight infants. J. Pediatr. 2005, 146, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.A.; Ball, R.O.; Filler, R.M.; Moore, A.M.; Pencharz, P.B. Phenylalanine and tyrosine metabolism in neonates receiving parenteral nutrition differing in pattern of amino acids. Pediatr. Res. 1998, 44, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.A.; Ball, R.O.; Moore, A.M.; Filler, R.M.; Pencharz, P.B. The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr. Res. 2001, 49, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, A.S.; Clark, R.H.; Steinbach, M.; Chace, D.H.; Spitzer, A.R.; Pediatrix Amino-Acid Study, G. The influence of amino-acid supplementation, gestational age and time on thyroxine levels in premature neonates. J. Perinatol. 2008, 28, 270–274. [Google Scholar] [CrossRef]
- Belkadi, A.; Jacques, C.; Savagner, F.; Malthiery, Y. Phylogenetic analysis of the human thyroglobulin regions. Thyroid. Res. 2012, 5, 3. [Google Scholar] [CrossRef]
- Pharmacy Bulk Package Not for Direct Infusion. Available online: https://www.baxterpi.com/pi-pdf/Premasol_PI.pdf (accessed on 1 December 2023).
- TrophAmine. Available online: https://www.rxlist.com/trophamine-drug.htm#description (accessed on 1 November 2023).
- Im, H.A.; Meyer, P.D.; Stegink, L.D. N-acetyl-L-tyrosine as a tyrosine source during total parenteral nutrition in adult rats. Pediatr. Res. 1985, 19, 514–518. [Google Scholar] [CrossRef]
- Magnusson, I.; Ekman, L.; Wangdahl, M.; Wahren, J. N-acetyl-L-tyrosine and N-acetyl-L-cysteine as tyrosine and cysteine precursors during intravenous infusion in humans. Metabolism 1989, 38, 957–961. [Google Scholar] [CrossRef]
- Druml, W.; Lochs, H.; Roth, E.; Hubl, W.; Balcke, P.; Lenz, K. Utilization of tyrosine dipeptides and acetyltyrosine in normal and uremic humans. Am. J. Physiol. 1991, 260 Pt 1, E280–E285. [Google Scholar] [CrossRef]
- Hoffer, L.J.; Sher, K.; Saboohi, F.; Bernier, P.; MacNamara, E.M.; Rinzler, D. N-acetyl-L-tyrosine as a tyrosine source in adult parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2003, 27, 419–422. [Google Scholar] [CrossRef]
- Shelton, C.M.; Clark, A.J.; Storm, M.C.; Helms, R.A. Plasma amino Acid concentrations in 108 children receiving a pediatric amino Acid formulation as part of parenteral nutrition. J. Pediatr. Pharmacol. Ther. 2010, 15, 110–118. [Google Scholar] [CrossRef]
- Administration, H.R.S. Recommended Uniform Screening Panel. Available online: https://newbornscreening.hrsa.gov/about-newborn-screening/recommended-uniform-screening-panel#:~:text=The%20Recommended%20Uniform%20Screening%20Panel%20(RUSP)%20is%20a%20national%20guideline#:~:text=The%20Recommended%20Uniform%20Screening%20Panel%20(RUSP)%20is%20a%20national%20guideline (accessed on 25 September 2024).
- Ten Hoedt, A.E.; van Kempen, A.A.; Boelen, A.; Duran, M.; Kemper-Proper, E.A.; Oey-Spauwen, M.J.; Wijburg, F.A.; Bosch, A.M. High incidence of hypermethioninaemia in a single neonatal intensive care unit detected by a newly introduced neonatal screening programme. J. Inherit. Metab. Dis. 2007, 30, 978. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, J.B.; Khan, M.; Vergales, B.D. Pausing TPN to Decrease Abnormal Newborn Screens: A NICU Quality Initiative. Pediatr. Qual. Saf. 2022, 7, e595. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.L.; Castellanos-Brown, K.; Childress, S.; Bonhomme, N.; Oktay, J.S.; Terry, S.F.; Kyler, P.; Davidoff, A.; Greene, C. The impact of false-positive newborn screening results on families: A qualitative study. Genet. Med. 2012, 14, 76–80. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Clark, R.H.; Chace, D.H.; Spitzer, A.R.; Pediatrix Amino Acid Study Group. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: A randomized, controlled trial. Pediatrics 2007, 120, 1286–1296. [Google Scholar] [CrossRef]
- Taylor, J.K. Quality Assurance of Chemical Measurements, 1st ed; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Van Outersterp, R.E.; Moons, S.J.; Engelke, U.F.H.; Bentlage, H.; Peters, T.M.A.; van Rooij, A.; Huigen, M.; de Boer, S.; van der Heeft, E.; Kluijtmans, L.A.J.; et al. Amadori rearrangement products as potential biomarkers for inborn errors of amino-acid metabolism. Commun. Biol. 2021, 4, 367. [Google Scholar] [CrossRef]
- Olney, R.S.; Bonham, J.R.; Schielen, P.; Slavin, D.; Ojodu, J. 2023 APHL/ISNS Newborn Screening Symposium. Int. J. Neonatal Screen. 2023, 9, 54. [Google Scholar] [CrossRef]
- Chace, D.H.; De Jesus, V.R.; Lim, T.H.; Hannon, W.H.; Spitzer, A.R. Tandem mass spectrometric identification of dextrose markers in dried-blood spots from infants receiving total parenteral nutrition. Clin. Chim. Acta 2010, 411, 1806–1816. [Google Scholar] [CrossRef]
- Pickens, C.A.; Sternberg, M.; Seeterlin, M.; De Jesus, V.R.; Morrissey, M.; Manning, A.; Bhakta, S.; Held, P.K.; Mei, J.; Cuthbert, C.; et al. Harmonizing Newborn Screening Laboratory Proficiency Test Results Using the CDC NSQAP Reference Materials. Int. J. Neonatal Screen. 2020, 6, 75. [Google Scholar] [CrossRef]
- Borges de Oliveira Nascimento Freitas, R.G.; Hessel, G.; Junqueira Vasques, A.C.; Negrao Nogueira, R.J. Transthyretin levels: Potential biomarker for monitoring nutritional support efficacy and clinical complications risk in patients receiving parenteral nutrition. Clin. Nutr. ESPEN 2018, 24, 134–139. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Elkhatib, R.; Alnuwaysir, H.; Aldhalaan, H.; Alismail, E.; Binmanee, A.; Hawari, A.; Alhazzani, F.; Jabr, M.B.; Mohamed, G. Exposure of preterm neonates receiving total parenteral nutrition to phthalates and its impact on neurodevelopment at the age of 2 months. Sci. Rep. 2023, 13, 6969. [Google Scholar] [CrossRef]
- Persico, R.S.; Silveira, R.; Gazal, C.H.A.; Viana, L.V. Prevalence of thyroid dysfunction in neonates receiving parenteral nutrition in the intensive care unit. J. Pediatr. 2023, 99, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, S.K.; Odle, J. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr. 2012, 3, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Fairney, A.; Francis, D.; Ersser, R.S.; Seakins, J.W.; Cottom, D. Diagnosis and treatment of tyrosinosis. Arch. Dis. Child. 1968, 43, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Uryu, O.; Matsuhisa, F.; Tajiri, K.; Matsumoto, H.; Hayakawa, Y. N-acetyl-l-tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals. EMBO Rep. 2020, 21, e49211. [Google Scholar] [CrossRef]
- Peng, G.; Tang, Y.; Cowan, T.M.; Zhao, H.; Scharfe, C. Timing of Newborn Blood Collection Alters Metabolic Disease Screening Performance. Front. Pediatr. 2020, 8, 623184. [Google Scholar] [CrossRef]
- De Jesús, V.R.; Mei, J.V.; Cordovado, S.K.; Cuthbert, C.D. The Newborn Screening Quality Assurance Program at the Centers for Disease Control and Prevention: Thirty-five Year Experience Assuring Newborn Screening Laboratory Quality. Int. J. Neonatal Screen 2015, 1, 13–26. [Google Scholar] [CrossRef]
- Young, B.; Hendricks, J.; Foreman, D.; Pickens, C.A.; Hovell, C.; De Jesús, V.R.; Haynes, C.; Petritis, K. Development of dried blood spot quality control materials for adenosine deaminase severe combined immunodeficiency and LC-MS/MS method for their characterization. Clin. Mass Spectrom. 2020, 17, 4–11. [Google Scholar] [CrossRef]
Biomarker | Precision Range | R2 | Estimated LOD | Estimated LOQ |
---|---|---|---|---|
Alanine | [6.56–8.86] | 0.99 | 23.5 | 78.2 |
Arginine | [13.71–15.32] | 0.99 | 1.6 | 5.2 |
C0 | [6.23–8.47] | 0.99 | 2.4 | 8.0 |
C2 | [6.69–9.17] | 0.99 | 3.2 | 11 |
C3 | [6.62–8.87] | 0.99 | 0.37 | 0.99 |
C3DC + C4OH | [7.62–10.15] | 0.99 | 0.16 | 0.2 |
C4 | [6.39–9.8] | 0.99 | 0.04 | 0.1 |
C5 | [5.97–8.47] | 0.99 | 0.07 | 0.2 |
C5:1 | [6.87–10.62] | 0.99 | 0.04 | 0.1 |
C5DC | [8.23–14.19] | 0.98 | 0.2 | 0.5 |
C5OH | [6.3–8.42] | 0.99 | 0.3 | 0.9 |
C6 | [7.39–9.17] | 0.99 | 0.05 | 0.2 |
C8 | [8.24–9] | 0.99 | 0.3 | 1.0 |
C10 | [7.52–13.59] | 0.99 | 0.1 | 0.4 |
C10:1 | - | 0.99 | 0.07 | 0.3 |
C10:2 | - | 0.99 | 0.07 | 0.2 |
C12 | [7.06–9.68] | 0.99 | 0.1 | 0.4 |
C14:0 | [6.31–8.56] | 0.99 | 0.1 | 0.3 |
C14:1 | [6.02–8.14] | 0.99 | 0.1 | 0.3 |
C16 | [6.86–8.62] | 0.99 | 0.4 | 1.2 |
C16OH | [8.66–9.84] | 0.99 | 0.06 | 0.2 |
C18:0 | [6.79–8.41] | 0.99 | 0.3 | 0.9 |
C18:1 | - | 0.99 | 0.4 | 1 |
C18OH | [14.51–15.34] | 0.99 | 0.09 | 0.3 |
Citrulline | [12.84–13.52] | 0.99 | 15.0 | 49.8 |
Creatine | [5.05–6.82] | 0.99 | 13.6 | 45.4 |
Creatinine | [5.84–9.97] | 0.99 | 2.7 | 9.1 |
Glycine | [6.83–8.86] | 0.99 | 26.8 | 89.3 |
GUAC | [8.68–12.11] | 0.99 | 0.9 | 2.9 |
Leucine | [5.87–7.51] | 0.99 | 4.6 | 15.4 |
Methionine | [13.96–14.48] | 0.99 | 2.8 | 9.4 |
NAT | [8.99–14.59] | 0.99 | 3.2 * | 10.7 * |
Ornithine | [14.01–15.65] | 0.99 | 10.4 | 34.6 |
Phenylalanine | [5.88–8.8] | 0.99 | 5.5 | 18.4 |
SUAC | [7.95–12.02] | 0.99 | 0.3 | 0.9 |
Tyrosine | [6.95–9.68] | 0.99 | 6.6 | 21.9 |
Valine | [6.19–9.21] | 0.99 | 4.6 | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickens, C.A.; Sah, S.; Chandrappa, R.; Isenberg, S.L.; Courtney, E.R.; Lim, T.; Chace, D.H.; Lee, R.; Cuthbert, C.; Petritis, K. N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays. Int. J. Neonatal Screen. 2024, 10, 81. https://doi.org/10.3390/ijns10040081
Pickens CA, Sah S, Chandrappa R, Isenberg SL, Courtney ER, Lim T, Chace DH, Lee R, Cuthbert C, Petritis K. N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays. International Journal of Neonatal Screening. 2024; 10(4):81. https://doi.org/10.3390/ijns10040081
Chicago/Turabian StylePickens, C. Austin, Samyukta Sah, Rahul Chandrappa, Samantha L. Isenberg, Elya R. Courtney, Timothy Lim, Donald H. Chace, Rachel Lee, Carla Cuthbert, and Konstantinos Petritis. 2024. "N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays" International Journal of Neonatal Screening 10, no. 4: 81. https://doi.org/10.3390/ijns10040081
APA StylePickens, C. A., Sah, S., Chandrappa, R., Isenberg, S. L., Courtney, E. R., Lim, T., Chace, D. H., Lee, R., Cuthbert, C., & Petritis, K. (2024). N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays. International Journal of Neonatal Screening, 10(4), 81. https://doi.org/10.3390/ijns10040081