Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1
Abstract
:1. Introduction
2. Materials and Methods
2.1. NBS Data Set-Composition, Extraction and Data Cleaning
2.2. Data Analysis Methods
ANOVA
2.3. Machine Learning Classification Methods
2.3.1. Logistic Regression
2.3.2. Ridge Logistic Regression
2.3.3. Support Vector Machines
2.4. Experimental Setup
2.5. Validation
3. Results
3.1. Data Analysis
3.2. Machine Learning Results for Full and Suspected Diagnosis Data Set
3.3. Machine Learning Results for False-Positive Subgroups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-OH-GA | 3-hydroxyglutaric acid |
ANOVA | analysis of variance |
C14:1 | tetradecenoylcarnitine |
C5 | isovalerylcarnitine |
C10 | decanoylcarnitine |
GA1 | glutaric aciduria type 1 |
Glut | glutarylcarnitine |
GDPR | general data protection regulation |
Hci | homocitrulline |
LR | logistic regression |
ML | machine learning |
NBS | newborn screening |
RR | logistic ridge regression |
SVM | support vector machine |
UKHD | Heidelberg University Hospital |
References
- Mütze, U.; Garbade, S.; Gramer, G.; Lindner, M.; Freisinger, P.; Grünert, S.C.; Hennermann, J.; Ensenauer, R.; Thimm, E.; Zirnbauer, J.; et al. Long-Term Outcomes of Individuals with Metabolic Diseases Identified Through Newborn Screening. Pediatrics 2020, 146, e20200444. [Google Scholar] [CrossRef] [PubMed]
- Boy, N.; Mengler, K.; Thimm, E.; Schiergens, K.; Marquardt, T.; Weinhold, N.; Marquardt, I.; Das, A.; Freisinger, P.; Grünert, S.; et al. Newborn screening: A disease-changing intervention for glutaric aciduria type 1. Ann. Neurol. 2018, 83, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.; Puffenberger, E.; Robinson, D.; Morton, D. Type I glutaric aciduria, part 1: Natural history of 77 patients. Am. J. Med. Genet. Part C Semin. Med. Genet. 2003, 121C, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Rockman-Greenberg, C.; Prasad, A.; Dilling, L.; Thompson, J.; Haworth, J.; Martin, B.; Wood-Steiman, P.; Seargeant, L.; Seifert, B.; Booth, F.; et al. Outcome of the First 3-Years of a DNA-Based Neonatal Screening Program for Glutaric Acidemia Type 1 in Manitoba and Northwestern Ontario, Canada. Mol. Genet. Metab. 2002, 75, 70–78. [Google Scholar] [CrossRef] [PubMed]
- van der Watt, G.; Owen, E.; Berman, P.; Meldau, S.; Watermeyer, N.; Olpin, S.; Manning, N.; Baumgarten, I.; Leisegang, F.; Henderson, H. Glutaric aciduria type 1 in South Africa-high incidence of glutaryl-CoA dehydrogenase deficiency in black South Africans. Mol. Genet. Metab. 2010, 101, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Kölker, S.; Christensen, E.; Leonard, J.V.; Greenberg, C.R.; Boneh, A.; Burlina, A.B.; Burlina, A.P.; Dixon, M.; Duran, M.; García Cazorla, A.; et al. Diagnosis and management of glutaric aciduria type I—Revised recommendations. J. Inherit. Metab. Dis. 2011, 34, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Heringer, J.; Valayannopoulos, V.; Lund, A.; Wijburg, F.; Freisinger, P.; Barić, I.; Baumgartner, M.; Burgard, P.; Burlina, A.; Chapman, K.; et al. Impact of age at onset and newborn screening on outcome in organic acidurias. J. Inherit. Metab. Dis. 2016, 39. [Google Scholar] [CrossRef] [PubMed]
- Boy, N.; Mengler, K.; Heringer-Seifert, J.; Hoffmann, G.; Garbade, S.; Kölker, S. Impact of newborn screening and quality of therapy on the neurological outcome in glutaric aciduria type 1: A meta-analysis. Genet. Med. 2021, 23, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Kölker, S.; Christensen, E.; Leonard, J.; Rockman-Greenberg, C.; Burlina, A.; Burlina, A.; Dixon, M.; Duran, M.; Goodman, S.; Koeller, D.; et al. Guideline for the diagnosis and management of glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I). J. Inherit. Metab. Dis. 2007, 30, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Boy, N.; Mühlhausen, C.; Maier, E.M.; Heringer, J.; Assmann, B.; Burgard, P.; Dixon, M.; Fleissner, S.; Greenberg, C.R.; Harting, I.; et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J. Inherit. Metab. Dis. 2017, 40, 75–101. [Google Scholar] [CrossRef]
- Heringer, J.; Boy, N.; Ensenauer, R.; Assmann, B.; Zschocke, J.; Harting, I.; Lücke, T.; Maier, E.; Mühlhausen, C.; Haege, G.; et al. Use of Guidelines Improves the Neurological Outcome in Glutaric Aciduria Type I. Ann. Neurol. 2010, 68, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Boy, N.; Mühlhausen, C.; Maier, E.M.; Ballhausen, D.; Baumgartner, M.R.; Beblo, S.; Burgard, P.; Chapman, K.A.; Dobbelaere, D.; Heringer-Seifert, J.; et al. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision. J. Inherit. Metab. Dis. 2023, 46, 482–519. [Google Scholar] [CrossRef] [PubMed]
- Baric, I.; Wagner, L.; Feyh, P.; Liesert, M.; Buckel, W.; Hoffmann, G. Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J. Inherit. Metab. Dis. 1999, 22, 867–882. [Google Scholar] [CrossRef] [PubMed]
- Spenger, J.; Maier, E.M.; Wechselberger, K.F.; Bauder, F.; Kocher, M.; Sperl, W.; Preisel, M.; Schiergens, K.A.; Konstantopoulou, V.; Röschinger, W.; et al. Glutaric Aciduria Type I Missed by Newborn Screening: Report of Four Cases from Three Families. Int. J. Neonatal Screen. 2021, 7, 32. [Google Scholar] [CrossRef]
- Guenzel, A.; Hall, P.; Scott, A.; Lam, C.; Chang, I.; Thies, J.; Ferreira, C.; Pichurin, P.; Laxen, W.; Raymond, K.; et al. The low excretor phenotype of glutaric acidemia type I is a source of false negative newborn screening results and challenging diagnoses. JIMD Rep. 2021, 60, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Hennermann, J.B.; Roloff, S.; Gellermann, J.; Grüters, A.; Klein, J. False-positive newborn screening mimicking glutaric aciduria type I in infants with renal insufficiency. J. Inherit. Metab. Dis. 2009, 32, 355–359. [Google Scholar] [CrossRef]
- Matsumoto, M.; Awano, H.; Bo, R.; Nagai, M.; Tomioka, K.; Nishiyama, M.; Ninchouji, T.; Nagase, H.; Yagi, M.; Morioka, I.; et al. Renal insufficiency mimicking glutaric acidemia type 1 on newborn screening. Pediatr. Int. 2018, 60, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Monostori, P.; Klinke, G.; Richter, S.; Barath, A.; Fingerhut, R.; Baumgartner, M.R.; Kölker, S.; Hoffmann, G.F.; Gramer, G.; Okun, J.G. Simultaneous determination of 3-hydroxypropionic acid, methylmalonic acid and methylcitric acid in dried blood spots: Second-tier LC-MS/MS assay for newborn screening of propionic acidemia, methylmalonic acidemias and combined remethylation disorders. PLoS ONE 2017, 12, e0184897. [Google Scholar] [CrossRef]
- Murko, S.; Aseman, A.D.; Reinhardt, F.; Gramer, G.; Okun, J.G.; Mütze, U.; Santer, R. Neonatal screening for isovaleric aciduria: Reducing the increasingly high false-positive rate in Germany. JIMD Rep. 2023, 64, 114–120. [Google Scholar] [CrossRef]
- Sommerburg, O.; Hammermann, J.; Lindner, M.; Stahl, M.; Muckenthaler, M.; Kohlmueller, D.; Happich, M.; Kulozik, A.E.; Stopsack, M.; Gahr, M.; et al. Five years of experience with biochemical cystic fibrosis newborn screening based on IRT/PAP in Germany. Pediatr. Pulmonol. 2015, 50, 655–664. [Google Scholar] [CrossRef]
- Zaunseder, E.; Haupt, S.; Mütze, U.; Garbade, S.; Kölker, S.; Heuveline, V. Opportunities and challenges in machine learning-based newborn screening—A systematic literature review. JIMD Rep. 2022, 63, 250–261. [Google Scholar] [CrossRef]
- Zaunseder, E.; Mütze, U.; Garbade, S.F.; Haupt, S.; Kölker, S.; Heuveline, V. Deep Learning and Explainable Artificial Intelligence for Improving Specificity and Detecting Metabolic Patterns in Newborn Screening. In Proceedings of the 2023 IEEE Symposium Series on Computational Intelligence (SSCI), Mexico City, Mexico, 5–8 December 2023; pp. 1566–1571. [Google Scholar] [CrossRef]
- Peng, G.; Tang, Y.; Cowan, T.; Enns, G.; Zhao, H.; Scharfe, C. Reducing False-Positive Results in Newborn Screening Using Machine Learning. Int. J. Neonatal Screen. 2020, 6, 16. [Google Scholar] [CrossRef]
- Baumgartner, C.; Baumgartner, D. Biomarker Discovery, Disease Classification, and Similarity Query Processing on High-Throughput MS/MS Data of Inborn Errors of Metabolism. J. Biomol. Screen. 2006, 11, 90–99. [Google Scholar] [CrossRef]
- Zaunseder, E.; Mütze, U.; Garbade, S.F.; Haupt, S.; Feyh, P.; Hoffmann, G.F.; Heuveline, V.; Kölker, S. Machine Learning Methods Improve Specificity in Newborn Screening for Isovaleric Aciduria. Metabolites 2023, 13, 304. [Google Scholar] [CrossRef]
- Girden, E.R. ANOVA: Repeated measures; Number 84 in 1; Sage: Thousand Oaks, CA, USA, 1992. [Google Scholar]
- Hosmer, D.; Lemeshow, S. Introduction to the Logistic Regression Model; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000; Chapter 1; pp. 1–30. [Google Scholar] [CrossRef]
- Flach, P. Machine Learning: The Art and Science of Algorithms That Make Sense of Data; Cambridge University Press: Cambridge, UK, 2012; pp. 215–286. [Google Scholar]
- Le Cessie, S.; Van Houwelingen, J. Ridge Estimators in Logistic Regression. J. R. Stat. Society. Ser. C (Appl. Stat.) 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Van den Bulcke, T.; Vanden Broucke, P.; Van Hoof, V.; Wouters, K.; Broucke, S.V.; Smits, G.; Smits, E.; Proesmans, S.; Genechten, T.V.; Eyskens, F. Data Mining Methods for Classification of Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) Using Non-Derivatized Tandem MS Neonatal Screening Data. J. Biomed. Inform. 2011, 44, 319–325. [Google Scholar] [CrossRef]
- Šinkovec, H.; Heinze, G.; Blagus, R.; Geroldinger, A. To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets. BMC Med Res. Methodol. 2021, 21, 199. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Malvagia, S.; Forni, G.; Ombrone, D.; La Marca, G. Development of Strategies to Decrease False Positive Results in Newborn Screening. Int. J. Neonatal Screen. 2020, 6, 84. [Google Scholar] [CrossRef]
- Lüders, A.; Blankenstein, O.; Brockow, I.; Ensenauer, R.; Lindner, M.; Schulze, A.; Nennstiel, U. Neonatal Screening for Congenital Metabolic and Endocrine Disorders. Dtsch. Arztebl. Int. 2021, 118, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Yin, J.; Shu, Q.; Deng, S.; Li, Y.; Jiang, P.; Yang, R.; Pu, C. Integration of Machine Learning Techniques as Auxiliary Diagnosis of Inherited Metabolic Disorders: Promising Experience with Newborn Screening Data. Collab. Comput. Netw. Appl. Work. 2019, 292, 334–349. [Google Scholar] [CrossRef]
- Cabitza, F.; Campagner, A.; Soares, F.; García de Guadiana-Romualdo, L.; Challa, F.; Sulejmani, A.; Seghezzi, M.; Carobene, A. The importance of being external. methodological insights for the external validation of machine learning models in medicine. Comput. Methods Programs Biomed. 2021, 208, 106288. [Google Scholar] [CrossRef]
- Waisbren, S.E.; Albers, S.; Amato, S.; Ampola, M.; Brewster, T.G.; Demmer, L.; Eaton, R.B.; Greenstein, R.; Korson, M.; Larson, C.; et al. Effect of Expanded Newborn Screening for Biochemical Genetic Disorders on Child Outcomes and Parental Stress. JAMA 2003, 290, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Chace, D.; Kalas, T.; Naylor, E. Use of Tandem Mass Spectrometry for Multianalyte Screening of Dried Blood Specimens from Newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef]
- Mørkrid, L.; Rowe, A.D.; Elgstoen, K.B.P.; Olesen, J.H.; Ruijter, G.; Hall, P.L.; Tortorelli, S.; Schulze, A.; Kyriakopoulou, L.; Wamelink, M.M.C.; et al. Continuous Age- and Sex-Adjusted Reference Intervals of Urinary Markers for Cerebral Creatine Deficiency Syndromes: A Novel Approach to the Definition of Reference Intervals. Clin. Chem. 2015, 61, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.C.; Zhao, X.; Dong, G.; Zhao, X.M. Improving Alzheimer’s Disease Diagnosis With Multi-Modal PET Embedding Features by a 3D Multi-Task MLP-Mixer Neural Network. IEEE J. Biomed. Health Inform. 2023, 27, 4040–4051. [Google Scholar] [CrossRef] [PubMed]
- Xgboost Developers. XGBoost. Available online: https://pypi.org/project/xgboost/ (accessed on 12 March 2023).
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2021, 11, 5088. [Google Scholar] [CrossRef]
- Ghanvatkar, S.; Rajan, V. Evaluating Explanations From AI Algorithms for Clinical Decision-Making: A Social Science-Based Approach. IEEE J. Biomed. Health Inform. 2024, 28, 4269–4280. [Google Scholar] [CrossRef]
- Budde, K.; Dasch, T.; Kirchner, E.; Ohliger, U.; Schapranow, M.; Schmidt, T.; Schwerk, A.; Thoms, J.; Zahn, T.; Hiltawsky, K. Künstliche Intelligenz: Patienten im Fokus. Dtsch. Ärzteblatt 2020, 117, A2407. Available online: https://www.aerzteblatt.de/archiv/216998/Kuenstliche-Intelligenz-Patienten-im-Fokus (accessed on 12 March 2023).
- Arnold, M. Teasing out Artificial Intelligence in Medicine: An Ethical Critique of Artificial Intelligence and Machine Learning in Medicine. J. Bioethical Inq. 2021, 18, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Zaunseder, E.; Mütze, U.; Okun, J.G.; Hoffmann, G.F.; Kölker, S.; Heuveline, V.; Thiele, I. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab. 2024, 36, 1882–1897.e7. [Google Scholar] [CrossRef] [PubMed]
(A) Full NBS Data Set | (B) Suspected Diagnosis Data Set | ||||||
---|---|---|---|---|---|---|---|
Feature | Normal () | GA1 () | F Value | Feature | Normal () | GA1 () | F Value |
Glut | 0.2 ± 0.1 | 2.7 ± 1.5 | 17,270.68 | Glut | 0.5 ± 0.1 | 2.7 ± 1.5 | 757.7 |
Hci | 1.6 ± 0.8 | 2.7 ± 1.4 | 17.4 | C10 | 0.2 ± 0.1 | 0.1 ± 0 | 10.1 |
C5 | 0.1 ± 0.1 | 0.2 ± 0.1 | 13.2 | C14:1 | 0.3 ± 0.1 | 0.1 ± 0.1 | 5.7 |
Glu | 400 ± 105 | 524 ± 108 | 12.6 | C8 | 0.2 ± 0.1 | 0.1 ± 0.1 | 5.6 |
C18:1 | 1 ± 0.3 | 1.2 ± 0.4 | 10.1 | C12 | 0.3 ± 0.1 | 0.1 ± 0.1 | 5.3 |
Method | Features | Train + Validation Set | CV | Test Set | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FN | FP | TN | TP | (%) | (%) | FN | FP | TN | TP | ||
(A) TRADITIONAL NEWBORN SCREENING | |||||||||||
NBS | Glut | 0 | 485 | 1.03 M | 9 | 100 | 99.9527 | 0 | 235 | 0.26 M | 2 |
(B) FULL DATA SET | |||||||||||
LR | Glut, C10 | 0 | 31 | 1.03 M | 9 | 99.11 | 99.996 | 0 | 16 | 0.26 M | 2 |
RR | Glut, C10, C14:1 | 3 | 735 | 1.03M | 6 | 92.44 | 99.25 | 1 | 71 | 0.26 M | 1 |
SVM | Glut, C10 | 0 | 87 | 1.03 M | 9 | 92.44 | 99.999 | 0 | 23 | 0.26 M | 2 |
(C) SUSPECTED DIAGNOSIS DATA SET | |||||||||||
LR | Glut, C10 | 0 | 24 | 461 | 9 | 86.67 | 99.999 | 0 | 18 | 217 | 2 |
RR | Glut, C10 | 0 | 69 | 416 | 9 | 84.67 | 99.997 | 0 | 35 | 200 | 2 |
SVM | Glut, C10 | 0 | 33 | 452 | 9 | 90.89 | 99.998 | 0 | 20 | 215 | 2 |
(D) SUSPECTED DIAGNOSIS DATA SET OPTIMIZED () | |||||||||||
LR-100 | Glut, C10 | 0 | 147 | 338 | 9 | 100 | 99.989 | 0 | 115 | 120 | 2 |
RR-100 | Glut, C10 | 0 | 235 | 250 | 9 | 100 | 99.981 | 0 | 146 | 89 | 2 |
SVM-100 | Glut, C10 | 0 | 164 | 321 | 9 | 100 | 99.987 | 0 | 123 | 112 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaunseder, E.; Teinert, J.; Boy, N.; Garbade, S.F.; Haupt, S.; Feyh, P.; Hoffmann, G.F.; Kölker, S.; Mütze, U.; Heuveline, V. Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1. Int. J. Neonatal Screen. 2024, 10, 83. https://doi.org/10.3390/ijns10040083
Zaunseder E, Teinert J, Boy N, Garbade SF, Haupt S, Feyh P, Hoffmann GF, Kölker S, Mütze U, Heuveline V. Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1. International Journal of Neonatal Screening. 2024; 10(4):83. https://doi.org/10.3390/ijns10040083
Chicago/Turabian StyleZaunseder, Elaine, Julian Teinert, Nikolas Boy, Sven F. Garbade, Saskia Haupt, Patrik Feyh, Georg F. Hoffmann, Stefan Kölker, Ulrike Mütze, and Vincent Heuveline. 2024. "Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1" International Journal of Neonatal Screening 10, no. 4: 83. https://doi.org/10.3390/ijns10040083
APA StyleZaunseder, E., Teinert, J., Boy, N., Garbade, S. F., Haupt, S., Feyh, P., Hoffmann, G. F., Kölker, S., Mütze, U., & Heuveline, V. (2024). Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1. International Journal of Neonatal Screening, 10(4), 83. https://doi.org/10.3390/ijns10040083