Consolidated Newborn Bloodspot Screening Efforts in Developing Countries in the Asia Pacific—2024
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Bangladesh
3.2. Cambodia
3.3. India
3.4. Indonesia
3.5. Laos
3.6. Mongolia
3.7. Myanmar
3.8. Nepal
3.9. Pakistan
3.10. Vietnam
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
KATHMANDU DECLARATION |
4 September 2024 |
Kathmandu, Nepal |
- -
- Continue regionalization and cooperation among countries by sharing expertise, information, and other resources in the implementation of universal newborn bloodspot screening.
- -
- Continue working towards legislation and/or policy development within the Ministry of Health. This legislation/policy will include the provision of necessary support to establish a systematic national newborn bloodspot screening program within the context of a global policy for children’s health. This will provide access and follow-up services to all newborns in these countries. Such services should integrate both public and private healthcare systems.
- -
- Continue developing population studies to determine the incidence of genetic disorders in the region. These data are needed to provide policymakers with a scientific basis for implementing and/or expanding the appropriate newborn bloodspot screening test panel.
- -
- Identify creative funding mechanisms such as inclusion in maternal/newborn/child benefit packages, health/social insurance, or other sources.
- -
- Develop strategies to involve more health facilities in the program.
- -
- Strengthen collaboration within the region.
- -
- Work towards the improvement of the system and operations including:
- ○
- Education and capacity-building through training programs that focus on role-specific activities that build interdisciplinary teams. The aim is to increase the number of healthcare professionals, trained specialists, genetic counselors, and nutritionists involved in newborn bloodspot screening;
- ○
- Capacity-building through establishing and strengthening newborn bloodspot screening and confirmatory laboratory centers;
- ○
- Capacity-building and collaboration for the treatment and long-term care of patients confirmed to have a disorder included in the newborn bloodspot screening panel;
- ○
- Increased access to specific treatment and/or medical foods for patients diagnosed through newborn bloodspot screening;
- ○
- Establishment of policies providing privacy to patients whose records may be part of newborn bloodspot screening;
- ○
- Establishment of external proficiency testing for newborn bloodspot screening laboratories in order to provide optimal quality assurance;
- ○
- Periodic monitoring and evaluation of all elements of the newborn bloodspot screening system.
- -
- Increase awareness through development of culturally sensitive advocacy materials, and dissemination through various channels/media.
- -
- Improve access to and utilization of electronic data management systems in support of newborn bloodspot screening.
- -
- Appropriately document satisfactory progress in completing all of the above items.
Appendix B
PENANG DECLARATION |
6 December 2015 |
Penang, Malaysia |
- -
- Continue regionalization and cooperation among countries by sharing expertise, information and other resources.
- -
- Continue working towards legislation and/or policy development within the Ministry of Health. This legislation/policy will include the provision of necessary support to establish as systematic national newborn screening program within the context of a global policy for children’s health. This will provide access fand follow-up services to all newborns in these countries. Such services should integrate public and private healthcare systems.
- -
- Continue developing population studies to determine the incidence of genetic disorders in the region. These data are needed to provide policymakers with a scientific basis for implementing and/or expanding the appropriate newborn screening testing panel.
- -
- Develop strategies to involve more health facilities in the program and to strengthen collaboration within the region.
- -
- Work towards the improvement of the system and operations, including:
- ○
- Capability building through training programs that focus on role-specific activities that build interdisciplinary teams. The aim is to increase the number of trained specialists, genetic counselors, and nutritionists involved in the program;
- ○
- Capacity building through establishment and strengthening of confirmatory laboratory centers;
- ○
- Increased access to treatment and medical foods for patients;
- ○
- Establishment of policies on the retention and use of the residual dried blood spots remaining after completion of screening;
- ○
- Establishment of policies providing privacy to patients whose records may be a part of newborn screening;
- ○
- Establishment of external proficiency testing for newborn screening laboratories in order to provide optimal quality assurance.
- -
- Increase awareness through development of culturally sensitive advocacy materials and dissemination through various channels/media.
- -
- Identify creative funding mechanisms, such as inclusion in maternal/child health packages and health/social insurance.
Appendix C
ULAANBAATAR DECLARATION |
28 August 2017 |
Ulaanbaatar, Mongolia |
- -
- Continue regionalization and cooperation among countries by sharing expertise, information, and other resources.
- -
- Continue working towards legislation and/or policy development within the Ministry of Health. This legislation/policy will include the provision of necessary support to establish a systematic national newborn screening program within the context of a global policy for children’s health. This will provide access and follow-up services to all newborns in these countries. Such services should integrate both public and private healthcare systems.
- -
- Continue developing population studies to determine the incidence of genetic disorders in the region. These data are needed to provide policymakers with a scientific basis for implementing and/or expanding the appropriate newborn screening testing panel.
- -
- Develop strategies to involve more health facilities in the program and to strengthen collaboration within the region.
- ○
- Capability building through training programs that focus on role-specific activities that build interdisciplinary teams. The aim is to increase the number of trainee specialists, genetic counselors, and nutritionists involve in the program.
- ○
- Capacity building through establishment and strengthening of confirmatory laboratory centers.
- ○
- Increased access to treatment and medical foods for patients.
- ○
- Establishment of policies on the retention and use of the residual dried blood spots remaining after completion of screening.
- ○
- Establishment of policies providing privacy to patients whose records may be a part of newborn screening.
- ○
- Establishment of external proficiency testing for newborn screening laboratories in order to provide optimal quality assurance.
- -
- Increase awareness through development of culturally sensitive advocacy materials and dissemination through various channels/media.
- -
- Identify creative funding mechanisms such as inclusion in maternal/child health packages and health/social insurance.
References
- Therrell, B.L.; Padilla, C.D.; Borrajo, G.J.C.; Khneisser, I.; Schielen, P.C.J.I.; Knight-Madden, J.; Malherbe, H.L.; Kase, M. Current status of newborn bloodspot screening worldwide 2024: A Comprehensive Review of Recent Activities (2020–2023). Int. J. Neonatal Screen. 2024, 10, 38. [Google Scholar] [CrossRef]
- Metreau, E.; Young, K.E.; Eapen, S.G. World Bank Country Classifications by Income Level. Available online: https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025 (accessed on 18 December 2024).
- Guthrie, R. Blood screening for phenylketonuria. JAMA 1961, 78, 863. [Google Scholar] [CrossRef]
- Guthrie, R. The origin of newborn screening. Screening 1992, 1, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.D.; Therrell, B.L. Newborn screening in the Asia Pacific region. J. Inherit. Metab. Dis. 2007, 30, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Khneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef]
- Solanki, K.K. Training programmes for developing countries. J. Inherit. Metab. Dis. 2007, 30, 596–599. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D. Screening of Newborns for Congenital Hypothyroidism; International Atomic Energy Agency: Vienna, Austria, 2006; Available online: https://www.iaea.org/publications/7205/screening-of-newborns-for-congenital-hypothyroidism (accessed on 18 December 2024).
- Padilla, C.D.; Therrell, B.L., Jr. Working Group of the Asia Pacific Society for Human Genetics on Consolidating Newborn Screening Efforts in the Asia Pacific Region. Consolidating newborn screening efforts in the Asia Pacific region: Networking and shared education. J. Community Genet. 2012, 3, 35–45. [Google Scholar] [CrossRef]
- Therrell, B.L., Jr.; Schwartz, M.; Southard, C.; Williams, D.; Hannon, W.H.; Mann, M.Y.; PEAS Organizing and Working Groups. Newborn screening system performance evaluation assessment scheme (PEAS). Semin. Perinatol. 2010, 34, 105–120. [Google Scholar] [CrossRef] [PubMed]
- David-Padilla, C.; Basilio, J.A.; Therrell, B.L. A performance evaluation and assessment scheme (PEAS) for improving the Philippine newborn screening program. Acta Med. Philipp. 2009, 43, 58–63. [Google Scholar] [CrossRef]
- Padilla, C.D.; Therrell, B.L.; Panol, K.A.R.; Suarez, R.C.N.; Reyes, M.E.L.; Jomento, C.M.; Maceda, E.B.G.; Lising, J.A.C.; Beltran, F.D.E.; Orbillo, L.L. Philippine performance evaluation and assessment scheme (PPEAS): Experiences in newborn screening system quality improvement. Int. J. Neonatal Screen. 2020, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Neumann, K.; Mathmann, P.; Chadha, S.; Euler, H.A.; White, K.R. Newborn hearing screening benefits children, but global disparities persist. J. Clin. Med. 2022, 11, 271. [Google Scholar] [CrossRef]
- Hom, L.A.; Martin, G.R. Newborn critical congenital heart disease screening using pulse oximetry: Value and unique challenges in developing regions. Int. J. Neonatal Screen. 2020, 6, 74. [Google Scholar] [CrossRef]
- Hasan, M.; Nahar, N.; Moslem, F.; Begum, N.A. Newborn Screening in Bangladesh. Ann. Acad. Med. Singap. 2008, 37, 111–113. Available online: https://www.academia.edu/download/70651592/v37n12supplp111.pdf (accessed on 18 December 2024). [PubMed]
- Guidelines for Interventions After Delivery. In National Neonatal Health Strategy and Guidelines for Bangladesh; Ministry of Health and Family Welfare, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2009; p. 59.
- Azim, M.A.U.; Islam, M.A.; Biswasarma, S.C.; Uddin, M.J.; Jabin, Z.; Begum, F.; Begum, S.M.; Alam, F.; Hasan, M.; Nahar, N.; et al. Current status of newborn screening for the early diagnosis of congenital hypothyroidism in Bangladesh. Bangladesh J. Nucl. Med. 2022, 25, 15–21. [Google Scholar] [CrossRef]
- Murphy, M.S.Q.; Chakraborty, P.; Pervin, J.; Rahman, A.; Wilson, L.A.; Lamoureux, M.; Denize, K.; Henderson, M.; Hawken, S.; Potter, B.K.; et al. Incidental screen positive findings in a prospective cohort study in Matlab, Bangladesh: Insights into expanded newborn screening for low-resource settings. Orphanet J. Rare. Dis. 2019, 14, 25. [Google Scholar] [CrossRef]
- Sarker, S.K.; Islam, M.T.; Biswas, A.; Bhuyan, G.S.; Sultana, R.; Sultana, N.; Rakhshanda, S.; Begum, M.N.; Rahat, A.; Yeasmin, S.; et al. Age-Specific Cut-off Values of Amino Acids and Acylcarnitines for Diagnosis of Inborn Errors of Metabolism Using Liquid Chromatography Tandem Mass Spectrometry. Biomed. Res. Int. 2019, 2019, 3460902. [Google Scholar] [CrossRef]
- Al-Bari, A.A. Current scenario and future direction of newborn screening and management program for Phenylketonuria in Bangladesh. J. Inborn Errors Metab. Screen. 2022, 10, e20210024. [Google Scholar] [CrossRef]
- Sumaia, S.N.; Reshad, R.A.I.; Tabassum, F.; Mim, S.K.; Golam, M.; Mahmud, R.; Faruque, C.M.O.; Biswas, G.C.; Miah, M.F. Assessing newborn screening practices in Bangladesh: Perspectives of healthcare professionals and implications for improved infant health. J. Adv. Biotechnol. Exp. Ther. 2023, 6, 564–574. [Google Scholar] [CrossRef]
- Bin, S.; Phou, K.; Im, S. Primary congenital hypothyroidism: Challenges in a low-income country without paediatric endocrinologist and universal newborn screening. BMJ Case Rep. 2023, 16, e249997. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, X.; Lu, J.; Song, J.; Wang, T.; Gao, M.; Zhang, X.; Ma, M.; Shi, Y.; Fang, J.; et al. The ‘Ironclad friendship’ of China-Cambodia, lays the first step in the foundation of early diagnosis and treatment of asymptomatic congenital heart Defects—A multi-national screening and intervention project, 2017–2020. BMC Cardiovasc. Disord. 2023, 23, 288. [Google Scholar] [CrossRef]
- World Health Organization. Primary Health Care Approaches for the Prevention and Control of Congenital and Genetic Disorders WHO Meeting Report, Cairo, Egypt, 6–8 December 1999; WHO/HGN/WG/00.1; WHO: Geneva, Switzerland, 2000; Available online: https://iris.who.int/handle/10665/66571 (accessed on 26 September 2024).
- Kaur, G.; Thakur, K.; Kataria, S.; Singh, T.R.; Chavan, B.S.; Kaur, G.; Atwal, R. Current and future perspective of newborn screening: An Indian scenario. J. Pediatr. Endocrinol. Metab. 2016, 29, 5–13. [Google Scholar] [CrossRef]
- Kapoor, S.; Gupta, A.K.; Thelma, B.K. Charting the Course: Towards a Comprehensive Newborn Screening Program in India. Int. J. Neonatal Screen. 2024, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Panchbudhe, S.A.; Shivkar, R.R.; Banerjee, A.; Deshmukh, P.; Maji, B.K.; Kadam, C.Y. Improving newborn screening in India: Disease gaps and quality control. Clin. Chim. Acta 2024, 557, 117881. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Vishwanath, T.; Sheth, A.R.; Raikar, R.S. Neonatal screening for hypothyroidism—A review experience with thyrotropin estimation in the newborn. Indian Pediatr. 1978, 15, 463–467. [Google Scholar]
- Devi, R.R.; Rao, N.A.; Bittles, A.H. Newborn Screening for Aminoacidopathies in South India; Naruse, H., Irie, M., Eds.; Excerpta Medica: Amsterdam, The Netherlands, 1982; pp. 493–494. [Google Scholar]
- Kapoor, S. Newborn screening—The roadmap for India. Mol. Cytogenet. 2014, 7 (Suppl. S1), I41. [Google Scholar] [CrossRef]
- Verma, I.C.; Bijarnia-Mahay, S.; Jhingan, G.; Verma, J. Newborn screening: Need of the hour in India. Indian J. Pediatr. 2015, 82, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L., Jr. Newborn screening for congenital hypothyroidism in India: Let’s just do it! Indian. Pediatr. 2019, 56, 275–276. Available online: https://www.indianpediatrics.net/apr2019/275.pdf (accessed on 18 December 2024). [CrossRef] [PubMed]
- Mookken, T. Universal Implementation of newborn screening in India. Int. J. Neonatal Screen. 2020, 6, 24. [Google Scholar] [CrossRef]
- Miller, F.A. The complex promise of newborn screening. Indian J. Med. Ethics 2009, 6, 142–148. [Google Scholar] [CrossRef]
- Raveendran, A.; Chacko, T.J.; Prabhu, P.; Varma, R.; Lewis, L.E.; Rao, P.; Shetty, P.P.; Mallimoggala, Y.S.P.; Hedge, A.; Nayak, D.M.; et al. Need and viability of newborn screening programme in India: Report from a pilot study. Int. J. Neonatal Screen. 2022, 8, 26. [Google Scholar] [CrossRef]
- Darshan, M.; Kumar, N. Evolution of newborn screening in India and the way forward. Indian J. Community Fam. Med. 2023, 9, 103–107. [Google Scholar] [CrossRef]
- Chaube, P.; Singh, A.K.; Choudhury, M.C. Expansion of India’s national child healthcare programme, Rashtriya Bal Swasthya Karyakram (RBSK), for rare disease management: A health policy perspective. Orphanet J. Rare Dis. 2023, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Dabas, A.; Bothra, M.; Kapoor, S. CAH newborn screening in India: Challenges and opportunities. Int. J. Neonatal Screen. 2020, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Pulungan, A.B.; Puteri, H.A.; Faizi, M.; Hofman, P.L.; Utari, A.; Chanoine, J.-P. Experiences and challenges with congenital hypothyroidism newborn screening in Indonesia: A national cross-sectional survey. Int. J. Neonatal Screen. 2024, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Rustama, D.S.; Fadil, M.R.; Harahap, E.R.; Primadi, A. Newborn Screening in Indonesia. Southeast Asian J. Trop. Med. Public Health 2004, 34, 76–79. Available online: https://www.tm.midol.ac.th/seameo/2003-34-suppl-3/southeast-2003-vol-34-supp-3-p-76.pdf (accessed on 18 December 2024).
- Ministry of Health Republic of Indonesia. Ministry of Health Republic of Indonesia Regulation No. 78 Year 2014 on Congenital Hypothyroidism Screening; Ministry of Health Republic of Indonesia: Jakarta, Indonesia, 2014. [Google Scholar]
- Pulungan, A.B.; Soesanti, F.; Utari, A.; Pritayati, N.; Julia, M.; Annisa, D.; Andarie, A.A.; Bikin, I.W. Preliminary study of newborn screening for congenital hypothyroidism and congenital adrenal hyperplasia in Indonesia. eJournal Kedokt. Indones. 2020, 8, 381847. [Google Scholar]
- Octavius, G.S.; Daleni, V.A.; Sagala, Y.D.S. An insight into Indonesia’s challenges in implementing newborn screening programs and their future implications. Children 2023, 10, 1216. [Google Scholar] [CrossRef]
- Sehat, N. Kemenkes Relaunching Skrining Hipotiroid Kongenital Untuk Kurangi Risiko Kecacatan Pada Anak. 31 August 2022. Available online: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220831/2641015/kemenkes-relaunching-skrining-hipotiroid-kongenital-untuk-kurangi-risiko-kecacatan-pada-anak/ (accessed on 13 September 2024).
- Hoehn, T.; Lukacs, Z.; Stehn, M.; Mayatepek, E.; Philavanh, K.; Bounnack, S. Establishment of the first newborn screening program in the People’s Democratic Republic of Laos. J. Trop. Pediatr. 2013, 59, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, T.; Lukacs, Z.; Huckenbeck, W.; Torresani, T.; Blankenstein, O.; Bounnack, S. Congenital adrenal hyperplasia with non-functional mutations in both alleles in a clinically unaffected infant. J. Trop. Pediatr. 2016, 62, 158–160. [Google Scholar] [CrossRef]
- Hoehn, T.; Saysanasongkham, B. P299 Revival of a newborn screening program in the People’s Democratic Republic of Laos. Arch. Dis. Child. 2019, 104, A277. [Google Scholar]
- Vesaphong, P.; Lindemuth, L.; Istaz, B.; Kedsatha, P.; Saysanasongkham, B.; Hoehn, T. Establishment of a sustainable newborn TSH-screening program in the People’s Democratic Republic of Laos. Early Hum. Dev. 2021, 154, 105306. [Google Scholar] [CrossRef] [PubMed]
- Erdenechimeg, S. National Neonatal Hypothyroid Screening Program in Mongolia. Southeast Asian J. Trop. Med. Pub. Health 2003, 34 (Suppl. S3), 85–86. Available online: https://www.tm.mahidol.ac.th/seameo/2003-34-suppl-3/southeast-2003-vol-34-supp-3-p-85.pdf (accessed on 18 December 2024).
- Tsevgee, A.; Batjargal, K.; Munkhchuluun, T.; Khurelbaatar, N.; Nansal, G.; Bulgan, O.E.; Nyamjav, S.; Zagd, G.; Ganbaatar, E. First experiences with newborn screening for congenital hypothyroidism in Ulaanbaatar, Mongolia. Int. J. Neonatal Screen. 2021, 7, 29. [Google Scholar] [CrossRef]
- Pang, S.; Murphey, W.; Levine, L.S.; Spence, D.A.; Leon, A.; LaFranchi, S.; Surve, A.S.; New, M.I. A pilot newborn screening for congenital adrenal hyperplasia in Alaska. J. Clin. Endocrinol. Metab. 1982, 55, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Naranchimeg, K. Determining Congenital Adrenal Hyperplasia: Clinical Forms and Early Manifestations. Master’s Thesis, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia, 2015. [Google Scholar]
- Batjargal, K.; Nansal, G.; Zagd, G.; Ganbaatar, E. Glucose-6 phosphate dehydrogenase deficiency among Mongolian neonates. Ann. Transl. Med. 2015, 3 (Suppl. S2), AB104. [Google Scholar] [CrossRef]
- Khurelbaatar, N.; (Development Projects and International Affairs, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia). Personal communication, 2024.
- Aye, T.T.; Latt, T.S.; Aung, M.W.; Ko, K. Summary of Myanmar Clinical Practice Guidelines for Disorders of Thyroid Function. J. ASEAN Fed. Endocr. Soc. 2014, 27, 44. Available online: https://asean-endocrinejournal.org/index.php/JAFES/article/view/12 (accessed on 18 December 2024). [CrossRef]
- Child Health Division, Department of Public Health, Ministry of Health, The Republic of the Union of Myanmar. National Strategic Plan for Newborn and Child Health Development (2015–2018). 1 January 2015. Available online: https://medbox.org/document/national-strategic-plan-for-newborn-and-child-health-development-2015-2018 (accessed on 26 September 2024).
- Ministry of Health and Sports, The Republic of the Union of Myanmar. Hospital Statistics Report (2017–2018). June 2020; pp. 67–77. Available online: https://www.mohs.gov.mm/page/12868 (accessed on 26 September 2024).
- Bancone, G.; Gornsawun, G.; Peerawaranun, P.; Penpitchaporn, P.; Paw, M.K.; Poe, D.D.; Win, D.; Cicelia, N.; Mukaka, M.; Archasuksan, L.; et al. Contribution of genetic factors to high rates of neonatal hyperbilirubinaemia on the Thailand-Myanmar border. PLoS Glob. Public Health 2022, 2, e0000475. [Google Scholar] [CrossRef] [PubMed]
- Thielemans, L.; Gornsawun, G.; Hanboonkunupakarn, B.; Paw, M.K.; Porn, P.; Moo, P.K.; Van Overmeire, B.; Proux, S.; Nosten, F.; McGready, R.; et al. Diagnostic performances of the fluorescent spot test for G6PD deficiency in newborns along the Thailand-Myanmar border: A cohort study. Wellcome Open Res. 2018, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Bancone, G.; Gilder, M.E.; Win, E.; Gornsawun, G.; Penpitchaporn, P.; Moo, P.K.; Archasuksan, L.; Wai, N.S.; Win, S.; Aung, K.K.; et al. Technical evaluation and usability of a quantitative G6PD POC test in cord blood: A mixed-methods study in a low-resource setting. BMJ Open 2022, 12, e066529. [Google Scholar] [CrossRef]
- Archasuksan, L.; Wai, N.S.; Win, S.; Hanboonkunupakarn, B.; Nosten, F.; Carrara, V.I.; McGready, R. Non-invasive detection of bilirubin concentrations during the first week of life in a low-resource setting along the Thailand-Myanmar border. BMJ Paediatr. Open 2024, 8, e002754. [Google Scholar] [CrossRef]
- Chatterjea, J.B. Haemoglobinopathies, glucose-6-phosphate dehydrogenase deficiency and allied problems in the Indian subcontinent. Bull. World Health Organ. 1966, 35, 837–856. [Google Scholar] [PubMed]
- Pandey, A.S. Metabolic disease in Nepal: A perspective. Kathmandu Univ. Med. J. 2010, 8, 333–340. [Google Scholar] [CrossRef]
- Sharma Pandey, A. Case reports of metabolic disorders from Nepal. Mol. Genet. Metab. Rep. 2019, 21, 100542. [Google Scholar] [CrossRef] [PubMed]
- Sharma Pandey, A.; Joshi, S.; Rajbhandari, R.; Kansakar, P.; Dhakal, S.; Fingerhut, R. Newborn Screening for Selected Disorders in Nepal: A Pilot Study. Int. J. Neonatal Screen. 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.Y.; Subedi, K.U.; Karmacharya, S.B.; Paudel, P.; Manandhar, D.S.; Hennessy Garza, R.; Dookeran, K.A.; Manandhar, S.R. Feasibility of clinical newborn metabolic screening in a high-volume maternity center in Nepal. BMC Glob. Public Health 2024, 2, 10. [Google Scholar] [CrossRef]
- Lakhani, M.; Khurshid, M.; Naqvi, S.; Akber, M. Neonatal Screening for Congenital Hypothyroidism in Pakistan. J. Pak. Med. Assoc. 1989, 39, 282. Available online: http://ecommons.aku.edu/pakistan_fhs_mc_women_childhealth_paediatr/269 (accessed on 18 December 2024). [PubMed]
- Afroze, B.; Humayun, K.N.; Qadir, M. Newborn screening in Pakistan-lessons from a hospital-based congenital hypothyroidism screening programme. Ann. Acad. Med. Singap. 2008, 37 (Suppl. S12), 114–116. [Google Scholar]
- Ghafoor, G.; Mohsin, S.N.; Mukhtar, S.; Younas, S.; Hussain, W. Newborn screening for congenital hypothyroidism in a public sector hospital. Pak. J. Med. Res. 2013, 52, 39–42. Available online: https://applications.emro.who.int/imemrf/PAK_J_MED_RES/PAK_J_MED_RES_2013_52_2_39_42.PDF (accessed on 18 December 2024).
- The Aga Khan University. Nationwide Screening Needed to Protect Newborns. 28 February 2019. Available online: https://www.aku.edu/news/Pages/News_Details.aspx?nid=NEWS-001762 (accessed on 22 September 2024).
- Provincial Pakistani Society of Chemical Pathologists. PAK-OIMD-NET-NAMA 2022–2023 Newsletter. Available online: https://pscp.org.pk/wp-content/uploads/2023/07/Pak-IMD-Nama-2022-2023.pdf (accessed on 22 September 2024).
- Assembly of Sindh. The Sindh Newborn Screening Act of 2013. 23 September 2013. Available online: https://shrc.org.pk/downloads/laws/Sindh/The-Sindh-Newborn-Screening-Act-2013.pdf (accessed on 21 September 2024).
- The News International. Over 75,000 Children Screened for Birth Defects in Sindh in 18 Months. 13 June 2021. Available online: https://www.thenews.com.pk/print/848809-over-75-000-children-screened-for-birth-defects-in-sindh-in-18-months (accessed on 21 September 2024).
- Wasim, M.; Awan, F.R.; Khan, H.N.; Tawab, A.; Iqbal, M.; Ayesha, H. Aminoacidopathies: Prevalence, etiology, screening, and treatment options. Biochem. Genet. 2018, 56, 7–21. [Google Scholar] [CrossRef]
- Wasim, M.; Khan, H.N.; Ayesha, H.; Goorden, S.M.I.; Vaz, F.M.; van Karnebeek, C.D.M.; Awan, F.R. Biochemical screening of intellectually disabled patients: A steppingstone to initiate a newborn screening program in Pakistan. Front. Neurol. 2019, 10, 762. [Google Scholar] [CrossRef]
- Wasim, M.; Khan, H.N.; Ayesha, H.; Awan, F.R. Biochemical screening of intellectually disabled and healthy children in Punjab, Pakistan: Differences in liver function test and lipid profiles. Int. J. Dev. Disabil. 2019, 66, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Wasim, M.; Khan, H.N.; Ayesha, H.; Tawab, A.; Habib, F.E.; Asi, M.R.; Iqbal, M.; Awan, F.R. High levels of blood glutamic acid and ornithine in children with intellectual disability. Int. J. Dev. Disabil. 2020, 68, 609–614. [Google Scholar] [CrossRef]
- Wasim, M.; Khan, H.N.; Ayesha, H.; Awan, F.R. Initiating newborn screening for metabolic disorders in Pakistan: A qualitative study of the early challenge and opportunities. Rare 2023, 1, 100011. [Google Scholar] [CrossRef]
- Wasim, M.; Khan, H.N.; Ayesha, H.; Awan, F.R. Need and challenges in establishing newborn screening programs for inherited metabolic disorders in developing countries. Adv. Biol. 2023, 7, e2200318. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, S. Trends of congenital hypothyroidism and inborn errors of metabolism in Pakistan. Orphanet J. Rare Dis. 2020, 15, 321. [Google Scholar] [CrossRef] [PubMed]
- Majid, H.; Jafri, L.; Ahmed, S.; Humayun, K.; Kirmani, S.; Ali, N.; Moiz, B.; Khan, A.H.; Afroze, B. Perspective on newborn screening (NBS): Evidence sharing on conditions to be included in NBS in Pakistan. J. Pak. Med. Assoc. 2022, 72, 526–531. [Google Scholar] [CrossRef]
- Majid, H.; Jafri, L.; Khan, N.; Khan, A.H. Establishing a nationwide newborn screening program for congenital hypothyroidism: A systematic review. Pak. J. Pathol. 2022, 33, 104–108. [Google Scholar] [CrossRef]
- Bibi, A.; Haroon, Z.H.; Shujaat, A.; Aamir, M.; Irum, S.; Jaffar, S.R. Establishing biotinidase reference interval: A foundation stone for newborn screening of biotinidase deficiency in Pakistan. J. Pak. Med. Assoc. 2022, 72, 97–100. [Google Scholar] [CrossRef]
- Chaudhri, N.; Haider, S. Diagnostic evaluation of heel prick newborn screening of thyroid stimulating hormone on dissociation- enhanced lanthanide fluorescence immunoassay with the establishment of reference value in Pakistani neonates. J. Pak. Med. Assoc. 2021, 71, 191–194. [Google Scholar] [CrossRef]
- Jafri, L.; Khan, A.H.; Ilyas, M.; Nisar, I.; Khalid, J.; Majid, H.; Hotwani, A.; Jehan, F. Metabolomics of a neonatal cohort from the Alliance for Maternal and Newborn Health Improvement biorepository: Effect of preanalytical variables on reference intervals. PLoS ONE 2023, 18, e0279931. [Google Scholar] [CrossRef]
- Majid, H.; Ahmed, S.; Siddiqui, I.; Humayun, K.; Karimi, H.; Khan, A.H. Newborn screening for congenital hypothyroidism: Improvement in short-term follow-up by audit and monitoring. BMC Res. Notes 2020, 13, 563. [Google Scholar] [CrossRef]
- Tariq, B.; Ahmed, A.; Habib, A.; Turab, A.; Ali, N.; Soofi, S.B.; Nooruddin, S.; Kumar, R.J.; Tariq, A.; Shaheen, F.; et al. Assessment of knowledge, attitudes and practices towards newborn screening for congenital hypothyroidism before and after a health education intervention in pregnant women in a hospital setting in Pakistan. Int. Health 2018, 10, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, S.N.; Zulfiqar, S.; Javed, R.; Razi, A. Newborn screening for congenital hypothyroidism: Impact of parents counseling on the uptake of program. Prof. Med. J. 2020, 27, 2350–2356. [Google Scholar] [CrossRef]
- Kanani, F.; Shahid, S.; Sameer, D.; Maqsood, S. Selective screening for inherited metabolic disorders in a tertiary care hospital of Karachi-A retrospective chart review. Pak. J. Med. Sci. 2024, 40 (Suppl. S2ICON), S80–S84. [Google Scholar] [CrossRef] [PubMed]
- Vankwani, S.; Wasim, M.; Mirza, M.R.; Awan, F.R. Closing the gap: An urgent need for newborn screening of organic acid disorders in developing countries. J. Pak. Med. Assoc. 2024, 74, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.H.; Giguère, Y.; Reinharaz, D. Expected benefits and challenges of using economic evaluations to make decisions about the content of newborn screening programs in Vietnam: A scoping review of the literature. J. Inborn Errors Metab. Screen. 2023, 11, e20220011. [Google Scholar] [CrossRef]
- Shibata, N.; Hasegawa, Y.; Yamada, K.; Kobayashi, H.; Purevsuren, J.; Yang, Y.; Dung, V.C.; Khanh, N.N.; Verma, I.C.; Bijarnia-Mahay, S.; et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: Selective screening vs. expanded newborn screening. Mol. Genet. Metab. Rep. 2018, 16, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.N.; Abdelkreem, E.; Colombo, R.; Hasegawa, Y.; Can, N.T.; Bui, T.P.; Le, H.T.; Tran, M.T.; Nguyen, H.T.; Trinh, H.T.; et al. Characterization and outcome of 41 patients with beta-ketothiolase deficiency: 10 years’ experience of a medical center in northern Vietnam. J. Inherit. Metab. Dis. 2017, 40, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Can, N.T.B.; Tran, D.M.; Bui, T.P.; Nguyen, K.N.; Nguyen, H.H.; Nguyen, T.V.; Hwu, W.L.; Tomatsu, S.; Vu, D.C. Molecular Analysis of Vietnamese patients with mucopolysaccharidosis type I. Life 2021, 11, 1162. [Google Scholar] [CrossRef]
- Vietnam Plus. Prenatal, Newborn Screening Programme Helps Improve Population Quality. 26 March 2023. Available online: https://en.vietnamplus.vn/prenatal-newborn-screening-programme-helps-improve-population-quality/250241.vnp (accessed on 24 September 2024).
- Hanh, P.T.; Thu, T.T. An assessment of heel blood sampling procedures for postnatal screening in newborn infants at the National Hospital of Obstetrics and Gynecology in Vietnam, 2023. Int. J. Health Sci. 2023, 7 (Suppl. S1), 3014–3019. Available online: https://sciencescholar.us/journal/index.php/ijhs/article/view/14637 (accessed on 18 December 2024).
- Iroh Tam, P.Y.; Padilla, C.D.; Zlotkin, S.; Ayede, A.I.; Banu, T.; Kayita, J.; Khanna, R.; Rao, S.P.; Siddeeg, K.; Walani, S.; et al. The 77th World Health Assembly resolution calling for newborn screening, diagnosis, and management of birth defects: Moving towards action in low-income and middle-income countries. Lancet Glob. Health 2024, 12, e1754–e1755. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.D.; Abadingo, M.E.; Munda, K.V.; Therrell, B.L. Overcoming challenges in sustaining newborn screening in low-middle-income countries: The Philippine newborn screening system. Rare Dis. Orphan Drugs J. 2023, 2, 27. [Google Scholar] [CrossRef]
- Padilla, C.D.; Therrell, B.L., Jr.; Alcausin, M.M.L.B.; de Castro, R.C., Jr.; Gepte, M.B.P.; Reyes, M.E.L.; Jomento, C.M.; Suarez, R.C.N.; Maceda, E.B.G.; Abarquez, C.G.; et al. Successful implementation of newborn screening for hemoglobin disorders in the Philippines. Int. J. Neonatal Screen. 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.D.; Therrell, B.L., Jr.; Alcausin, M.M.L.B.; Chiong, M.A.D.; Abacan, M.A.R.; Reyes, M.E.L.; Jomento, C.M.; Dizon-Escoreal, M.T.T.; Canlas, M.A.E.; Abadingo, M.E.; et al. Successful implementation of expanded newborn screening in the Philippines using tandem mass spectrometry. Int. J. Neonatal Screen. 2022, 8, 8. [Google Scholar] [CrossRef]
- Cavan, B.C.V.; de Castro-Hamoy, L.G.; Abarquez, C.G.; Maceda, E.B.G.; Alcausin, M.M.L.B. Clinical, biochemical, and molecular characteristics of Filipino patients with tyrosinemia type 1. Int. J. Neonatal Screen. 2024, 10, 59. [Google Scholar] [CrossRef]
- Almonte, C.S.; Ellong, M.S.; Macrohon, B.C. A Case report of the first Filipino infant diagnosed with cystic fibrosis through the Philippine newborn screening program. Acta Med. Philipp. 2024, 58, 69–73. [Google Scholar] [CrossRef]
- Therrell, B.L., Jr. U.S. newborn screening policy dilemmas for the twenty-first century. Mol. Genet. Metab. 2001, 74, 64–74. [Google Scholar] [CrossRef]
- WHO Seventy-Seventh World Health Assembly. Accelerate Progress Towards Reducing Maternal, Newborn and Child Mortality in Order to Achieve Sustainable Development Goal Targets 3.1 and 3.2. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA77/A77_R5-en.pdf (accessed on 5 September 2024).
- Therrell, B.L., Jr.; Padilla, C.D. Barriers to implementing sustainable national newborn screening in developing health systems. Int. J. Pediatr. Adolesc. Med. 2014, 1, 49–60. [Google Scholar] [CrossRef]
- Padilla, C.D.; Krotoski, D.; Therrell, B.L., Jr. Newborn screening progress in developing countries--overcoming internal barriers. Semin. Perinatol. 2010, 34, 145–155. [Google Scholar] [CrossRef]
Year | Screened | CH Cases | G6PDD Cases |
---|---|---|---|
2013 | 7753 | 2 | 585 |
2014 | 9529 | 3 | 638 |
2015 | 10,176 | 5 | 807 |
2016 | 10,381 | 4 | 747 |
2017 | 12,688 | 4 | 978 |
2018 | 15,245 | 7 | 935 |
2019 | 17,632 | 8 | 1202 |
2020 | 15,035 | 11 | 685 |
2021 | 7293 | 6 | 445 |
2022 | 7133 | 3 | 606 |
2023 | 10,628 | 6 | 899 |
Totals | 123,493 | 59 | 8527 |
Abbreviations: CH = congenital hypothyroidism; G6PDD = glucose-6-phosphate dehydrogenase deficiency. |
Date Range | Newborns Screened | Coverage | CH | CAH | GALT | CF | ||||
---|---|---|---|---|---|---|---|---|---|---|
Pos | Diag | Pos | Diag | Pos | Diag | Pos | Diag | |||
2000–2002 | 2897 | 2.0% | 15 | 2 | - | - | - | - | - | - |
2012–2014 | 6849 | 6.7% | 38 | 2 | 32 | 2 | - | - | - | - |
2015 | 686 | 1.6% | 2 | - | - | - | - | - | - | - |
2016–2018 | 6346 | 5.3% | 11 | 3 | 24 | 2 | - | - | - | - |
2019–2022 | 14,766 | 5.2% | 338 | 7 | 86 | 13 | - | - | - | - |
2023 | 10,551 | 15.9% | 439 | 3 | 17 | 10 | - | - | 33 | - |
2024 (through September) | 7836 | Incomplete a | 169 | 1 | 49 | - | 13 | - | 15 | - |
Total (2000–2023) | 42,095 | 1012 | 18 | |||||||
Total (2012–2023) | 39,198 | 159 | 23 | |||||||
Prevalence | 1:2338 | 1:1452 | ||||||||
a Data for 2024 are not yet complete and have not been included in the prevalence calculations. Abbreviations: CH = congenital hypothyroidism; CAH = 21-hydroxylase deficient congenital adrenal hyperplasia; GALT = transferase deficient galactosemia; CF = cystic fibrosis; Pos = screen positive; Diag = diagnosed case. |
Year | Newborns Screened | Screen Positive | Percent Screen Positive | Returned for Second Screen | Second Screen Positive | Calculated Prevalence |
---|---|---|---|---|---|---|
2023 | 7952 | 273 | 3.4 | 273 | 19 | 1:419 |
2024 (through September) | 6855 | 278 | 4.1 | 278 | 20 | 1:343 |
Total | 14,807 | 551 | 3.7 | 551 | 39 | 1:380 |
Date Range | Newborns | Screened | CH | CAH | G6PDD | |||
---|---|---|---|---|---|---|---|---|
Pos | Diag | Pos | Diag | Pos | Diag | |||
2021 | 1,152,136 | 580,378 | 220 | 57 | 53 | 30 | 4412 | 1648 |
2022 | 1,046,456 | 575,615 | 441 | 171 | 171 | 148 | 3878 | 1389 |
2023 | 1,159,051 | 660,201 | 388 | 304 | 119 | 68 | 3125 | 678 |
Total | 3,357,543 | 1,816,194 | 1049 | 532 | 353 | 246 | 11,661 | 3715 |
Prevalence | - | - | 1:3414 | 1:7383 | 1:489 | |||
Abbreviations: CH = congenital hypothyroidism; CAH = 21-hydroxylase deficient congenital adrenal hyperplasia; G6PDD = glucose-6-phosphate dehydrogenase deficiency; Pos = screen positive; Diag = diagnosed case. |
1996–2022 * | 2014–2023 * | ||||||
---|---|---|---|---|---|---|---|
Condition | Screened | Confirmed | Prevalence | Hb Condition | Screened | Confirmed | Prevalence |
G6PDD | 17,599,479 | 282,691 | 1:62 | HbH-Disease d | 7,117,133 | 2932 | 1:2427 |
CH | 17,678,577 | 6794 | 1:2602 | HbE-Disease | 7,117,133 | 290 | 1;24,542 |
CAH | 17,678,577 | 854 | 1:20,700 | β-Thal e | 7,117,133 | 49 | 1:145,248 |
MSUD | 13,903,794 | 221 | 1:62,903 | HbE,β-Thal | 7,117,133 | 27 | 1:263,598 |
GAL a | 17,687,577 | 170 | 1:103,991 | HbE,α-Thal | 7,117,133 | 16 | 1:444,821 |
HPA b | 17,678,577 | 141 | 1:125,379 | HbS,S-Disease | 7,117,133 | 4 | - |
GA-1 | 5,718,974 | 40 | 1:142,974 | HbS,E-Disease | 7,117,133 | 3 | - |
3-MCC | 5,718,974 | 29 | 1:197,206 | α-Thal Major | 7,117,133 | 2 | - |
TYR-1 | 5,718,974 | 15 | 1:381,265 | Other f | 7,117,133 | - | - |
Other c | - | - | - | ||||
* Data collection began in 1996 for CH, CAH, GAL, and HPA; in 2000 for G6PDD; in 2012 for MSUD; and in 2014 for MS/MS conditions reported (GA-1, 3-MCC, TYR-1, ASA, IVA, MMA, PA, CIT-I, MAT, and MCD); BIO; and CF; and in 2014 for hemoglobinopathies and thalassemias. Data for hemoglobinopathies and thalassemias include 2023 confirmed cases. Abbreviations: G6PDD = glucose-6-dehydrogenase deficiency; CH = congenital hypothyroidism; CAH = 21-hydroxylase deficient congenital adrenal hyperplasia; MSUD = maple syrup urine disease; GAL = galactosemia; GA-1 = glutaric aciduria type I; 3-MCC = 3-methylcrotonyl-CoA carboxylase deficiency; TYR-1=tyrosinemia type I; Hb = hemoglobin; Thal = thalassemia. a Includes classical galactosemia (40) and non-classical galactosemia (130). b HPA = hyperphenylalaninemia Includes classic PKU (23), mild HPA (38), 6-pyruvoyl-tetrahydropterin synthase deficiency (10), and benign HPA (70). c Other confirmed cases include ASA (8); IVA (5); MMA (5); PA (4); BIO (3); CIT-I (3); MAT (2); MCD (1); CF (1). d Includes 2917 deletional variants and 15 non-deletional variants. e Includes β-Thal Major and β-Thal Intermedia—status determined at age 6 months but not yet reported. f Other hemoglobinopathies detected include HbD disease (1); HbD β-Thal (1). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Therrell, B.L.; Padilla, C.D.; Abadingo, M.E.; Adhikari, S.P.; Aung, T.; Aye, T.T.; Dey, S.K.; Faizi, M.; Ganbaatar, E.; Giang, T.T.H.; et al. Consolidated Newborn Bloodspot Screening Efforts in Developing Countries in the Asia Pacific—2024. Int. J. Neonatal Screen. 2025, 11, 2. https://doi.org/10.3390/ijns11010002
Therrell BL, Padilla CD, Abadingo ME, Adhikari SP, Aung T, Aye TT, Dey SK, Faizi M, Ganbaatar E, Giang TTH, et al. Consolidated Newborn Bloodspot Screening Efforts in Developing Countries in the Asia Pacific—2024. International Journal of Neonatal Screening. 2025; 11(1):2. https://doi.org/10.3390/ijns11010002
Chicago/Turabian StyleTherrell, Bradford L., Carmencita D. Padilla, Michelle E. Abadingo, Shree Prasad Adhikari, Thuza Aung, Thet Thet Aye, Sanjoy Kumer Dey, Muhammad Faizi, Erdenetuya Ganbaatar, Tran Thi Huong Giang, and et al. 2025. "Consolidated Newborn Bloodspot Screening Efforts in Developing Countries in the Asia Pacific—2024" International Journal of Neonatal Screening 11, no. 1: 2. https://doi.org/10.3390/ijns11010002
APA StyleTherrell, B. L., Padilla, C. D., Abadingo, M. E., Adhikari, S. P., Aung, T., Aye, T. T., Dey, S. K., Faizi, M., Ganbaatar, E., Giang, T. T. H., Hang, H. T., Heng, R., Kapoor, S., Nyamdavaa, K., Paudel, P., Phou, K., Pulungan, A. B., Sayyavong, C., Walani, S. R., & Zafar, T. (2025). Consolidated Newborn Bloodspot Screening Efforts in Developing Countries in the Asia Pacific—2024. International Journal of Neonatal Screening, 11(1), 2. https://doi.org/10.3390/ijns11010002