Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Validation
2.1.1. Analytical Sensitivity
2.1.2. Interference
2.1.3. Carryover
2.1.4. Reproducibility and Precision
2.1.5. Clinical Validation
2.1.6. Stability
2.2. Pilot Study
2.3. Assay Procedure
2.4. LC-MS/MS Analysis
2.5. Genetic Testing
2.6. Data Analysis
3. Results
3.1. Assay Performance Characteristics
3.1.1. Analytical Sensitivity
3.1.2. Interference
3.1.3. Carryover
3.1.4. Reproducibility and Precision
3.1.5. Clinical Validation
3.1.6. Stability
3.2. Pilot Study
3.2.1. Demographic Information of the Study Cohort
3.2.2. Peptide Concentrations Across Gender, Birth Weight, Ethnicity, and Age of Collection
3.2.3. Determination of the Cutoff
3.2.4. Presumptive Positives
3.2.5. False Negatives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Assay Carryover Effects
Appendix A.2. Assay Reproducibility
Appendix A.3. Clinical Validation
References
- Caggana, M.; Jones, E.A.; Shahied, S.I.; Tanksley, S.; Hermerath, C.A.; Lubin, I.M. Newborn Screening: From Guthrie to Whole Genome Sequencing. Public Health Rep. 2013, 128, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gahl, W.A.; Wong-Rieger, D.; Hivert, V.; Yang, R.; Zanello, G.; Groft, S. Essential List of Medicinal Products for Rare Diseases: Recommendations from the IRDiRC Rare Disease Treatment Access Working Group. Orphanet J. Rare Dis. 2021, 16, 308. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.J.; Chang, I.J.; Jung, S.; Dayuha, R.; Whiteaker, J.R.; Segundo, G.R.S.; Torgerson, T.R.; Ochs, H.D.; Paulovich, A.G.; Hahn, S.H. Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders from Dried Blood Spots. Front. Immunol. 2018, 9, 2756. [Google Scholar] [CrossRef]
- Jung, S.; Whiteaker, J.R.; Zhao, L.; Yoo, H.-W.; Paulovich, A.G.; Hahn, S.H. Quantification of ATP7B Protein in Dried Blood Spots by Peptide Immuno-SRM as a Potential Screen for Wilson’s Disease. J. Proteome Res. 2017, 16, 862–871. [Google Scholar] [CrossRef]
- Chambers, A.G.; Percy, A.J.; Yang, J.; Camenzind, A.G.; Borchers, C.H. Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring-Mass Spectrometry. Mol. Cell. Proteom. 2013, 12, 781–791. [Google Scholar] [CrossRef]
- Whiteaker, J.R.; Paulovich, A.G. Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry for Peptide and Protein Quantification. Clin. Lab. Med. 2011, 31, 385–396. [Google Scholar] [CrossRef]
- Hoofnagle, A.N.; Becker, J.O.; Wener, M.H.; Heinecke, J.W. Quantification of Thyroglobulin, a Low-Abundance Serum Protein, by Immunoaffinity Peptide Enrichment and Tandem Mass Spectrometry. Clin. Chem. 2008, 54, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Lin, C.; Kennedy, J.; Hou, L.; Trute, M.; Sokal, I.; Yan, P.; Schoenherr, R.M.; Zhao, L.; Voytovich, U.J.; et al. A Targeted Proteomics–Based Pipeline for Verification of Biomarkers in Plasma. Nat. Biotechnol. 2011, 29, 625–634. [Google Scholar] [CrossRef]
- Van Hove, J.L.K.; Chace, D.H.; Kahler, S.G.; Millington, D.S. Acylcarnitines in Amniotic Fluid: Application to the Prenatal Diagnosis of Propionic Acidaemia. J. Inherit. Metab. Dis. 1993, 16, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahsan, H. Emerging Technology of Multiplexing in Clinical Diagnostics. Int. J. Health Sci. 2022, 16, 1–2. [Google Scholar]
- Poskanzer, S.A.; Thies, J.; Collins, C.J.; Myers, C.T.; Dayuha, R.; Duong, P.; Yi, F.; Chang, I.J.; Ochs, H.D.; Torgerson, T.R.; et al. The Co-occurrence of Wilson Disease and X-linked Agammaglobulinemia in One Family Highlights the Promising Diagnostic Potential of Proteolytic Analysis. Mol. Genet. Genom. Med. 2020, 8, e1172. [Google Scholar] [CrossRef]
- Collins, C.J.; Yi, F.; Dayuha, R.; Duong, P.; Horslen, S.; Camarata, M.; Coskun, A.K.; Houwen, R.H.J.; Pop, T.L.; Zoller, H.; et al. Direct Measurement of ATP7B Peptides Is Highly Effective in the Diagnosis of Wilson Disease. Gastroenterology 2021, 160, 2367–2382. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.J.; Yi, F.; Dayuha, R.; Whiteaker, J.R.; Ochs, H.D.; Freeman, A.; Su, H.C.; Paulovich, A.G.; Segundo, G.R.S.; Torgerson, T.; et al. Multiplexed Proteomic Analysis for Diagnosis and Screening of Five Primary Immunodeficiency Disorders from Dried Blood Spots. Front. Immunol. 2020, 11, 464. [Google Scholar] [CrossRef]
- Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s Disease. Lancet 2007, 369, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Ala, A.; Borjigin, J.; Rochwarger, A.; Schilsky, M. Wilson Disease in Septuagenarian Siblings: Raising the Bar for Diagnosis. Hepatology 2005, 41, 668–670. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.H. Population Screening for Wilson’s Disease. Ann. N. Y. Acad. Sci. 2014, 1315, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Aoki, T.; Arashima, S.; Ooura, T.; Takada, G.; Kitagawa, T.; Shigematsu, Y.; Shimada, M.; Kobayashi, M.; Itou, M.; et al. Mass Screening for Wilson’s Disease: Results and Recommendations. Pediatr. Int. 1999, 41, 405–408. [Google Scholar] [CrossRef]
- Owada, M.; Suzuki, K.; Fukushi, M.; Yamauchi, K.; Kitagawa, T. Mass Screening for Wilson’s Disease by Measuring Urinary Holoceruloplasmin. J. Pediatr. 2002, 140, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef] [PubMed]
- Winkelstein, J.A.; Marino, M.C.; Lederman, H.M.; Jones, S.M.; Sullivan, K.; Burks, A.W.; Conley, M.E.; Cunningham-Rundles, C.; Ochs, H.D. X-Linked Agammaglobulinemia: Report on a United States Registry of 201 Patients. Medicine 2006, 85, 193–202. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, Z.A.; Abramova, I.; Aldave, J.C.; Al-Herz, W.; Bezrodnik, L.; Boukari, R.; Bousfiha, A.A.; Cancrini, C.; Condino-Neto, A.; Dbaibo, G.; et al. X-Linked Agammaglobulinemia (XLA): Phenotype, Diagnosis, and Therapeutic Challenges around the World. World Allergy Organ. J. 2019, 12, 100018. [Google Scholar] [CrossRef]
- Moschese, V.; Martire, B.; Soresina, A.; Chini, L.; Graziani, S.; Monteferrario, E.; Bacchetta, R.; Cancrini, C.; Fiorilli, M.; Gambineri, E.; et al. Anti-Infective Prophylaxis for Primary Immunodeficiencies: What is done in Italian Primary Immunodeficiency Network CenterS (IPINet) and Review of the Literature. J. Biol. Regul. Homeost. Agents 2014, 27, 935–946. [Google Scholar]
- Chun, J.-K.; Lee, T.J.; Song, J.W.; Linton, J.A.; Kim, D.S. Analysis of Clinical Presentations of Bruton Disease: A Review of 20 Years of Accumulated Data from Pediatric Patients at Severance Hospital. Yonsei Med. J. 2008, 49, 28. [Google Scholar] [CrossRef] [PubMed]
- Grammatikos, A.; Donati, M.; Johnston, S.L.; Gompels, M.M. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front. Immunol. 2021, 12, 731643. [Google Scholar] [CrossRef] [PubMed]
- Lutskiy, M.I.; Rosen, F.S.; Remold-O’Donnell, E. Genotype-Proteotype Linkage in the Wiskott-Aldrich Syndrome. J. Immunol. 2005, 175, 1329–1336. [Google Scholar] [CrossRef]
- Jin, Y.; Mazza, C.; Christie, J.R.; Giliani, S.; Fiorini, M.; Mella, P.; Gandellini, F.; Stewart, D.M.; Zhu, Q.; Nelson, D.L.; et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): Hotspots, Effect on Transcription, and Translation and Phenotype/Genotype Correlation. Blood 2004, 104, 4010–4019. [Google Scholar] [CrossRef]
- Ochs, H.D.; Filipovich, A.H.; Veys, P.; Cowan, M.J.; Kapoor, N. Wiskott-Aldrich Syndrome: Diagnosis, Clinical and Laboratory Manifestations, and Treatment. Biol. Blood Marrow Transplant. 2009, 15, 84–90. [Google Scholar] [CrossRef]
- Shin, C.R.; Kim, M.-O.; Li, D.; Bleesing, J.J.; Harris, R.; Mehta, P.; Jodele, S.; Jordan, M.B.; Marsh, R.A.; Davies, S.M.; et al. Outcomes Following Hematopoietic Cell Transplantation for Wiskott–Aldrich Syndrome. Bone Marrow Transpl. 2012, 47, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Parkman, R.; Rappeport, J.; Geha, R.; Belli, J.; Cassady, R.; Levey, R.; Nathan, D.G.; Rosen, F.S. Complete Correction of the Wiskott-Aldrich Syndrome by Allogeneic Bone-Marrow Transplantation. N. Engl. J. Med. 1978, 298, 921–927. [Google Scholar] [CrossRef]
- Blackburn, M.R.; Kellems, R.E. Adenosine Deaminase Deficiency: Metabolic Basis of Immune Deficiency and Pulmonary Inflammation. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 86, pp. 1–41. ISBN 978-0-12-004486-3. [Google Scholar]
- Hershfield, M.; Tarrant, T. Adenosine Deaminase Deficiency; GeneReviews: Seattle, WA, USA, 2006. [Google Scholar]
- Morinishi, Y.; Imai, K.; Nakagawa, N.; Sato, H.; Horiuchi, K.; Ohtsuka, Y.; Kaneda, Y.; Taga, T.; Hisakawa, H.; Miyaji, R.; et al. Identification of Severe Combined Immunodeficiency by T-Cell Receptor Excision Circles Quantification Using Neonatal Guthrie Cards. J. Pediatr. 2009, 155, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Kahwash, B.M.; Yonkof, J.R.; Abraham, R.S.; Mustillo, P.J.; Abu-Arja, R.; Rangarajan, H.G.; Scherzer, R. Delayed-Onset ADA1 (ADA) Deficiency Not Detected by TREC Screen. Pediatrics 2021, 147, e2020005579. [Google Scholar] [CrossRef]
- La Marca, G.; Canessa, C.; Giocaliere, E.; Romano, F.; Duse, M.; Malvagia, S.; Lippi, F.; Funghini, S.; Bianchi, L.; Della Bona, M.L.; et al. Tandem Mass Spectrometry, but Not T-Cell Receptor Excision Circle Analysis, Identifies Newborns with Late-Onset Adenosine Deaminase Deficiency. J. Allergy Clin. Immunol. 2013, 131, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Cagdas, D.; Gur Cetinkaya, P.; Karaatmaca, B.; Esenboga, S.; Tan, C.; Yılmaz, T.; Gümüş, E.; Barış, S.; Kuşkonmaz, B.; Ozgur, T.T.; et al. ADA Deficiency: Evaluation of the Clinical and Laboratory Features and the Outcome. J. Clin. Immunol. 2018, 38, 484–493. [Google Scholar] [CrossRef]
- Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Rolfe, K.; De Boever, E.; Reinhardt, R.R.; Appleby, J.; Roncarolo, M.G.; Aiuti, A. Gene Therapy for Adenosine Deaminase Deficiency: A Comprehensive Evaluation of Short- and Medium-Term Safety. Mol. Ther. 2018, 26, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Grunebaum, E.; Mazzolari, E.; Porta, F.; Dallera, D.; Atkinson, A.; Reid, B.; Notarangelo, L.D.; Roifman, C.M. Bone Marrow Transplantation for Severe Combined Immune Deficiency. JAMA 2006, 295, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Puck, J.M. Development of Population-Based Newborn Screening for Severe Combined Immunodeficiency. J. Allergy Clin. Immunol. 2005, 115, 391–398. [Google Scholar] [CrossRef]
- Borte, S.; Wang, N.; Óskarsdóttir, S.; Von Döbeln, U.; Hammarström, L. Newborn Screening for Primary Immunodeficiencies: Beyond SCID and XLA. Ann. N. Y. Acad. Sci. 2011, 1246, 118–130. [Google Scholar] [CrossRef]
- Klangkalya, N.; Fleisher, T.A.; Rosenzweig, S.D. Diagnostic Tests for Primary Immunodeficiency Disorders: Classic and Genetic Testing. Allergy Asthma Proc. 2024, 45, 355–363. [Google Scholar] [CrossRef]
- Kobrynski, L.J. Newborn Screening in the Diagnosis of Primary Immunodeficiency. Clinic. Rev. Allerg. Immunol. 2021, 63, 9–21. [Google Scholar] [CrossRef]
- Blom, M.; Pico-Knijnenburg, I.; Imholz, S.; Vissers, L.; Schulze, J.; Werner, J.; Bredius, R.; Van Der Burg, M. Second Tier Testing to Reduce the Number of Non-Actionable Secondary Findings and False-Positive Referrals in Newborn Screening for Severe Combined Immunodeficiency. J. Clin. Immunol. 2021, 41, 1762–1773. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.; Flores, S.; De Jesús, V. Influence of Hematocrit and Total-Spot Volume on Performance Characteristics of Dried Blood Spots for Newborn Screening. Int. J. Neonatal Screen. 2015, 1, 69–78. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Liquid Chromatography-Mass Spectrometry Methods, 2nd ed.; Approved Guideline, C62; CLSI: Wayne, PA, USA, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Quantitative Measurement of Proteins and Peptides by Mass Spectrometry, 1st ed.; Approved Guideline, C64; CLSI: Wayne, PA, USA, 2021. [Google Scholar]
- Clinical and Laboratory Standards Institute. Evaluation of Precision of Quantitative Measurement Procedures, 3rd ed.; Approved Guideline, EP05-A3; CLSI: Wayne, PA, USA, 2014; ISBN 978-1-56238-967-3. [Google Scholar]
- Clinical and Laboratory Standards Institute. Interference Testing in Clinical Chemistry, 3rd ed.; Approved Guideline, EP07; CLSI: Wayne, PA, USA, 2018; ISBN 978-1-56238-846-1. [Google Scholar]
- Clinical and Laboratory Standards Institute. Supplemental Tables for Interference Testing in Clinical Chemistry, 1st ed.; EP37; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Evaluation of Stability of In Vitro Diagnostic Reagents; Approved Guideline, EP25; CLSI: Wayne, PA, USA, 2009. [Google Scholar]
- Clinical and Laboratory Standards Institute. Evaluation of Detection Capability, 2nd ed.; EP17-A2; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef]
- Faber, J.; Fonseca, L.M. How Sample Size Influences Research Outcomes. Dental Press J. Orthod. 2014, 19, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.-A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm Birth: Case Definition & Guidelines for Data Collection, Analysis, and Presentation of Immunisation Safety Data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef]
- Kamleh, M.; Williamson, J.M.; Casas, K.; Mohamed, M. Reduction in Newborn Screening False Positive Results Following a New Collection Protocol: A Quality Improvement Project. J. Pediatr. Pharmacol. Ther. 2021, 26, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Al Fadda, M.; Al Quaiz, M.; Al Ashgar, H.; Al Kahtani, K.; Helmy, A.; Al Benmousa, A.; Abdulla, M.; Peedikayil, M. Wilson Disease in 71 Patients Followed for over Two Decades in a Tertiary Center in Saudi Arabia: A Retrospective Review. Ann. Saudi Med. 2012, 32, 623–629. [Google Scholar] [CrossRef]
- Kalinsky, H.; Funes, A.; Zeldin, A.; Pel-Or, Y.; Korostishevsky, M.; Gershoni-Baruch, R.; Farrer, L.A.; Bonne-Tamir, B. Novel ATP7B Mutations Causing Wilson Disease in Several Israeli Ethnic Groups. Hum. Mutat. 1998, 11, 145–151. [Google Scholar] [CrossRef]
- Dedoussis, G.V.Z.; Genschel, J.; Sialvera, T.; Bochow, B.; Manolaki, N.; Manios, Y.; Tsafantakis, E.; Schmidt, H. Wilson Disease: High Prevalence in a Mountaineous Area of Crete. Ann. Hum. Genet. 2005, 69, 268–274. [Google Scholar] [CrossRef]
- Ferenci, P. Regional Distribution of Mutations of the ATP7B Gene in Patients with Wilson Disease: Impact on Genetic Testing. Hum. Genet. 2006, 120, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Loudianos, G.; Dessi, V.; Lovicu, M.; Angius, A.; Figus, A.; Lilliu, F.; De Virgiliis, S.; Nurchi, A.M.; Deplano, A.; Moi, P.; et al. Molecular Characterization of Wilson Disease in the Sardinian Population? Evidence of a Founder Effect. Hum. Mutat. 1999, 14, 294–303. [Google Scholar] [CrossRef]
- Cheung, K.-S.; Seto, W.-K.; Fung, J.; Mak, L.-Y.; Lai, C.-L.; Yuen, M.-F. Epidemiology and Natural History of Wilson’s Disease in the Chinese: A Territory-Based Study in Hong Kong between 2000 and 2016. World J. Gastroenterol. 2017, 23, 7716–7726. [Google Scholar] [CrossRef] [PubMed]
- Poujois, A.; Woimant, F.; Samson, S.; Chaine, P.; Girardot-Tinant, N.; Tuppin, P. Characteristics and Prevalence of Wilson’s Disease: A 2013 Observational Population-Based Study in France. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Massingale, S.P.; Williams, A.M.; Rollin, D.M.; Morris, D.; Green, L.; Kennedy, D. Newborn Screening Collection Guidelines; Alabama Department of Public Health Bureau of Clinical Laboratories: Montgomery, AL, USA, 2019. [Google Scholar]
- Washington State Department of Health. The Complete Guide to Newborn Screening in Washington State; Washington State Department of Health: Tumwater, WA, USA, 2019. [Google Scholar]
- Stalke, A.; Skawran, B.; Auber, B.; Illig, T.; Schlegelberger, B.; Junge, N.; Goldschmidt, I.; Leiskau, C.; Von Neuhoff, N.; Baumann, U.; et al. Diagnosis of Monogenic Liver Diseases in Childhood by Next-generation Sequencing. Clin. Genet. 2018, 93, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Verbsky, J.W.; Baker, M.W.; Grossman, W.J.; Hintermeyer, M.; Dasu, T.; Bonacci, B.; Reddy, S.; Margolis, D.; Casper, J.; Gries, M.; et al. Newborn Screening for Severe Combined Immunodeficiency; The Wisconsin Experience (2008–2011). J. Clin. Immunol. 2012, 32, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.H.; Bonagura, V.; Weinberg, G.A.; Ballow, M.; Isabelle, J.; DiAntonio, L.; Parker, A.; Young, A.; Cunningham-Rundles, C.; Fong, C.-T.; et al. Newborn Screening for SCID in New York State: Experience from the First Two Years. J. Clin. Immunol. 2014, 34, 289–303. [Google Scholar] [CrossRef]
Detection Capability (pmol/L) | ATP7B 887 | ATP7B 1056 | WASP 274 | ADA 93 | BTK 407 | BTK 545 |
---|---|---|---|---|---|---|
Limit of Blank | 15.5 | 13.7 | 6.2 | 77.5 | 7.5 | 2.6 |
Limit of Detection | 24.5 | 22.7 | 23.9 | 172.7 | 21.4 | 13.3 |
Limit of Quantification | 40.2 | 49.6 | 51.4 | 197.8 | 41.2 | 108.8 |
Target Peptide | Carryover (%) |
---|---|
ATP7B 887 | 0.2–4.1 |
ATP7B 1056 | 0.9–4.2 |
WASP 274 | 0.1–0.6 |
ADA 93 | 5.0–21.2 |
BTK 545 | 0.4–2.0 |
BTK 407 | 0.0–0.8 |
Peptide Target | Mean (pmol/L) | Median (pmol/L) | SD | Initial Cutoff (pmol/L) |
---|---|---|---|---|
ATP7B 887 | 273.1 | 266.2 | 80.1 | 66.6 |
ATP7B 1056 | 275.0 | 269.8 | 75.1 | 67.5 |
WASP 274 | 2291.9 | 2263.7 | 575.9 | 226.4 |
ADA 93 | 5800.0 | 5728.2 | 1543.0 | 1145.6 |
BTK 407 | 1148.7 | 1122.1 | 225.7 | 112.2 |
BTK 545 | 1599.1 | 1563.7 | 342.3 | 156.4 |
Peptide | 10 °C | 22 °C | 37 °C |
---|---|---|---|
% Difference | % Difference | % Difference | |
ATP7B 887 | −6.4 | −6.2 | −6.5 |
ATP7B 1056 | −10.5 | 0.1 | −4.9 |
WASP 274 | −22.5 | −22.8 | −21.4 |
ADA 93 | 6.3 | −7.1 | 2.0 |
BTK 545 | 4.1 | −2.2 | 3.1 |
BTK 407 | −2.1 | 11.3 | 2.6 |
(A) Gender and Birth Weight | ||
Category | Number | % |
Male | 14,548 | 48.5 |
Female | 15,476 | 51.5 |
<1500 g BW | 311 | 1.0 |
1500–2500 g BW | 1796 | 6.0 |
>2500 g | 27,917 | 93.0 |
(B) Ethnic Background | ||
Ethnicity | Number | % |
White | 16,104 | 58.6 |
Hispanic | 5109 | 18.6 |
Asian | 2879 | 10.5 |
Black | 1906 | 6.9 |
Native American | 560 | 2.0 |
Other | 916 | 3.3 |
(C) Date of Collection After Birth | ||
Date of Collection After Birth | Number | % |
0 day | 4845 | 16.1 |
1 day | 12,361 | 41.2 |
2 days | 6617 | 22.0 |
3 days | 3836 | 12.8 |
4 days | 1352 | 4.5 |
5 days | 567 | 1.9 |
6–14 days | 446 | 1.5 |
ESI Low Flow | ||||||
---|---|---|---|---|---|---|
ATP7B 887 | ATP7B 1056 | WASP 274 | ADA 93 | BTK 545 | BTK 407 | |
MEDIAN | 279.5 | 255.1 | 2104.5 | 5805.7 | 1604.7 | 1163.6 |
SD | 96.0 | 81.2 | 844.9 | 1624.1 | 447.8 | 289.9 |
CV | 34.4 | 31.8 | 40.1 | 28.0 | 27.9 | 24.9 |
Number | 19,524 | 19,526 | 19,526 | 19,526 | 18,114 | 19,526 |
CUTOFF | 78.3 | 71.4 | 210.5 | 1161.1 | 160.5 | 116.4 |
IonKey | ||||||
ATP7B 887 | ATP7B 1056 | WASP 274 | ADA 93 | BTK 545 | BTK 407 | |
MEDIAN | 359.8 | 292.4 | 2018.8 | 4189.4 | 1211.2 | 1299.9 |
SD | 149.7 | 99.2 | 599 | 1297.7 | 721.9 | 322.3 |
CV | 41.6 | 33.9 | 29.7 | 30.5 | 59.6 | 24.8 |
Number | 10,488 | 10,498 | 10,498 | 10,498 | 10,498 | 10,498 |
CUTOFF | 64.8 | 52.6 | 201.9 | 837.9 | 121.2 | 130.0 |
True Positive | ||||||||||||
Sample | Specimen Age (Days) | BW (g) | Sex | Diagnosis | MS System | ATP7B 887 | ATP 1056 | WASP 274 | ADA 93 | BTK 545 | BTK 407 | GENOTYPE |
1 | 1 | 4105 | M | WD | ESI Low Flow | 71.0 | 96.5 | 1782.7 | 5169.5 | 1467.8 | 1677.9 | p.Pro610Leu/ p.Arg1224Leu |
False Positive | ||||||||||||
Sample | Specimen Age (Days) | BW (g) | Sex | Diagnosis | MS System | ATP7B887 | ATP1056 | WASP274 | ADA93 | BTK 545 | BTK 407 | GENOTYPE |
1 | 2 | 3690 | M | WD | ionKey | 67.6 | 134.5 | 2569.4 | 3452.7 | 823.3 | 895.5 | c.3402del |
2 | 2 | 3870 | M | WD | ESI Low Flow | 66.4 | 70.0 | 2193.3 | 7598.3 | 2030.5 | 1293.1 | NO VARIANTS |
3 | 2 | 3840 | F | WD | ESI Low Flow | 64.3 | 59.2 | 1307.1 | 2414.2 | 594.8 | 470.3 | p.Met33Thr |
4 | 1 | 2290 | M | WAS | ionKey | 248.7 | 224.1 | 144.0 | 2750.5 | 506.9 | 402.3 | NO VARIANTS |
5 | 4 | 1760 | M | WAS | ionKey | 345.1 | 506.2 | 155.1 | 2752.8 | 728.0 | 656.2 | INSUFF DNA |
6 | 0 | 1550 | M | WAS | ESI Low Flow | 126.6 | 188.1 | 39.9 | 2512.8 | 206.3 | 216.9 | INSUFF DNA |
7 | 0 | 1800 | M | WAS | ESI Low Flow | 182.0 | 235.7 | 47.2 | 3068.1 | 279.8 | 206.9 | INSUFF DNA |
8 | 1 | 2067 | M | WAS | ESI Low Flow | 265.2 | 284.2 | 192.4 | 4348.9 | 605.9 | 410.0 | INSUFF DNA |
9 | 1 | 1090 | F | ADAD | ionKey | 583.6 | 1078.5 | 1291.3 | 1078.1 | 1363.6 | 835.5 | p.Gly94Asp |
10 | 2 | 3175 | F | ADAD | ionKey | 498.4 | 427.5 | 1690.0 | 1129.5 | 971.9 | 1101.7 | NO VARIANTS |
11 | 1 | 2740 | M | ADAD | ionKey | 567.9 | 511.4 | 2572.0 | 1186.2 | 1207.9 | 1308.9 | p.Ala215Thr |
12 | 3 | 3530 | M | XLA | ESI Low Flow | 190.4 | 90.5 | 762.0 | 4701.1 | 129.0 | 369.1 | NO VARIANTS |
Case | Gene | Gender | ATP7B 887 | ATP7B 1056 | Sequencing | Conclusion |
---|---|---|---|---|---|---|
1 | ATP7B | F | 141.5 | 59.3 | p.Trp779Gly | Likely pathogenic; no second variant |
2 | M | 88.3 | 70.4 | p.Ile161Thr/p.Leu1015= | One VUS; second benign | |
3 | M | 107.6 | 86.7 | p.Leu1015= | Benign | |
4 | M | 73.6 | 57.0 | p.Gly256Ala/p.Leu1015= | One pathogenic and one benign | |
5 | M | 97.5 | 90.6 | No variants detected | Negative | |
6 | M | 156.0 | 56.3 | No variants detected | Negative | |
7 | F | 99.5 | 85.8 | p.Arg919Trp | Likely pathogenic. No second variant | |
8 | F | 134.3 | 65.6 | p.Asn687Ile | One VUS; no second variant | |
9 | M | 105.1 | 85.0 | No variants detected | Negative | |
10 | M | 111.0 | 85.0 | c.-370C>A | One VUS; no second variant | |
11 | F | 89.2 | 167.6 | No variants detected | Negative | |
12 | F | 88.0 | 239.3 | No variants detected | Negative | |
13 | M | 80.3 | 296.5 | p.Gly367Asp | One VUS; no second variant | |
14 | M | 69.5 | 97.6 | p.Ala971Val | One VUS; no second variant | |
15 | F | 78.1 | 95 | c.2009_2015de | Pathogenic variant; no second variant | |
16 | M | 80.2 | 183.1 | c.3402del | Pathogenic variant; no second variant | |
17 | F | 83.4 | 151 | p.Pro461Ser | One VUS; no second variant | |
18 | M | 80.8 | 115.4 | p.Thr977Met | Pathogenic variant; no second variant | |
19 | F | 81.7 | 110.6 | p.Val1262Phe | Likely pathogenic; no second variant | |
20 | M | 79.7 | 100.8 | c.2304dup | Pathogenic variant; no second variant | |
21 | F | 77 | 147.1 | p.Ile747= | One VUS; no second variant | |
22 | M | 86.9 | 136.9 | p.Pro539Leu/p.Ser876Cys | One likely pathogenic and one VUS | |
23 | F | 81.4 | 122.8 | No variants detected | Negative | |
Case | Gene | Gender | WASP 274 | Sequencing | Conclusion | |
24 | WASP | M | 227.3 | No variants detected | Negative | |
25 | M | 281.6 | No variants detected | Negative | ||
26 | M | 328.5 | No variants detected | Negative | ||
27 | M | 352.1 | No variants detected | Negative | ||
28 | M | 381.4 | No variants detected | Negative | ||
Case | Gene | Gender | ADA 93 | Sequencing | Conclusion | |
30 | ADA | F | 1129.5 | No variants detected | Negative | |
31 | M | 1186.2 | p.Ala215Thr | One VUS; no second variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klippel, C.; Park, J.; Sandin, S.; Winstone, T.M.L.; Chen, X.; Orton, D.; Singh, A.; Hill, J.D.; Shahbal, T.K.; Hamacher, E.; et al. Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. Int. J. Neonatal Screen. 2025, 11, 6. https://doi.org/10.3390/ijns11010006
Klippel C, Park J, Sandin S, Winstone TML, Chen X, Orton D, Singh A, Hill JD, Shahbal TK, Hamacher E, et al. Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. International Journal of Neonatal Screening. 2025; 11(1):6. https://doi.org/10.3390/ijns11010006
Chicago/Turabian StyleKlippel, Claire, Jiwoon Park, Sean Sandin, Tara M. L. Winstone, Xue Chen, Dennis Orton, Aranjeet Singh, Jonathan D. Hill, Tareq K. Shahbal, Emily Hamacher, and et al. 2025. "Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity" International Journal of Neonatal Screening 11, no. 1: 6. https://doi.org/10.3390/ijns11010006
APA StyleKlippel, C., Park, J., Sandin, S., Winstone, T. M. L., Chen, X., Orton, D., Singh, A., Hill, J. D., Shahbal, T. K., Hamacher, E., Officer, B., Thompson, J., Duong, P., Grotzer, T., & Hahn, S. H. (2025). Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. International Journal of Neonatal Screening, 11(1), 6. https://doi.org/10.3390/ijns11010006