Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders
Abstract
:1. Introduction
2. Case Report
3. Materials and Methods of the Systematic Literature Review
4. Results of the Systematic Literature Review
4.1. Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD)
4.2. Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies (MTPD/LCHADD)
4.3. Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCADD)
4.4. Carnitine Uptake Defect (CUD)
4.5. Carnitine Palmitoyltransferase I Deficiency (CPT1D)
4.6. Carnitine Palmitoyltransferase II Deficiency (CPT2D)
4.7. Carnitine-Acylcarnitine Translocase Deficiency (CACTD)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, K.; Pollitt, R.J.; Middleton, B. Human liver long-chain 3-hydroxyacyl-coenzyme a dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem. Biophys. Res. Commun. 1992, 183, 443–448. [Google Scholar] [CrossRef]
- Lampret, B.R.; Remec, Ž.I.; Torkar, A.D.; Tanšek, M.Ž.; Šmon, A.; Koračin, V.; Čuk, V.; Perko, D.; Ulaga, B.; Jelovšek, A.M.; et al. Ex-panded newborn screening program in Slovenia using tandem mass spectrometry and confirmatory next generation sequencing genetic testing. Slov. J. Public Health 2020, 59, 256. [Google Scholar] [CrossRef]
- Smon, A.; Lampret, B.R.; Groselj, U.; Tansek, M.Z.; Kovac, J.; Perko, D.; Bertok, S.; Battelino, T.; Podkrajsek, K.T. Next generation sequencing as a follow-up test in an expanded newborn screening programme. Clin. Biochem. 2018, 52, 48–55. [Google Scholar] [CrossRef]
- Remec, Z.I.; Podkrajsek, K.T.; Lampret, B.R.; Kovac, J.; Groselj, U.; Tesovnik, T.; Battelino, T.; Debeljak, M. Next-Generation Sequencing in Newborn Screening: A Review of Current State. Front. Genet. 2021, 12, 662254. [Google Scholar] [CrossRef] [PubMed]
- Lotz-Havla, A.S.; Röschinger, W.; Schiergens, K.; Singer, K.; Karall, D.; Konstantopoulou, V.; Wortmann, S.B.; Maier, E.M. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Orphanet J. Rare Dis. 2018, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Krous, H.F.; Beckwith, J.B.; Byard, R.W.; Rognum, T.O.; Bajanowski, T.; Corey, T.; Cutz, E.; Hanzlick, R.; Keens, T.G.; Mitchell, E.A. Sudden Infant Death Syndrome and Unclassified Sudden Infant Deaths: A Definitional and Diagnostic Approach. Pediatrics 2004, 114, 234–238. [Google Scholar] [CrossRef]
- Boles, R.G.; Buck, E.A.; Blitzer, M.G.; Platt, M.S.; Cowan, T.M.; Martin, S.K.; Yoon, H.; Madsen, J.A.; Reyes-Mugica, M.; Rinaldo, P. Ret-rospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J. Pediatr. 1998, 132, 924–933. [Google Scholar] [CrossRef]
- Chace, D.H.; DiPerna, J.C.; Mitchell, B.L.; Sgroi, B.; Hofman, L.F.; Naylor, E.W. Electrospray Tandem Mass Spectrometry for Analysis of Acylcarnitines in Dried Postmortem Blood Specimens Collected at Autopsy from Infants with Unexplained Cause of Death. Clin. Chem. 2001, 47, 1166–1182. [Google Scholar] [CrossRef] [PubMed]
- van Rijt, W.J.; Koolhaas, G.D.; Bekhof, J.; Fokkema, M.R.H.; de Koning, T.J.; Visser, G.; Schielen, P.C.; van Spronsen, F.J.; Derks, T.G. Inborn Errors of Metabolism That Cause Sudden Infant Death: A Systematic Review with Implications for Population Neonatal Screening Programmes. Neonatology 2016, 109, 297–302. [Google Scholar] [CrossRef] [PubMed]
- den Boer, M.E.; Ijlst, L.; Wijburg, F.A.; Oostheim, W.; van Werkhoven, M.A.; van Pampus, M.G.; Heymans, H.S.; Wanders, R.J. Heterozygosity for the common LCHAD mutation (1528g>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr. Res. 2000, 48, 151–154. [Google Scholar] [CrossRef]
- Cyriac, J.; Venkatesh, V.; Gupta, C. A Fatal Neonatal Presentation of Medium-chain Acyl Coenzyme a Dehydrogenase Deficiency. J. Int. Med. Res. 2008, 36, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Manoukian, A.A.; Ha, C.E.; Seaver, L.H.; Bhagavan, N.V. A Neonatal Death Due to Medium-Chain Acyl-CoA Dehydrogenase Defi-ciency: Utilization of the Neonatal Metabolic Screen in a Functional Approach to Sudden Unexplained Infant Death. Am. J. Forensic. Med. Pathol. 2009, 30, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Korman, S.H.; Gutman, A.; Brooks, R.; Sinnathamby, T.; Gregersen, N.; Andresen, B.S. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G > C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic status. Mol. Genet. Metab. 2004, 82, 121–129. [Google Scholar] [PubMed]
- Yusuf, K.; Jirapradittha, J.; Amin, H.J.; Yu, W.; Hasan, S.U. Neonatal Ventricular Tachyarrhythmias in Medium Chain Acyl-CoA Dehydrogenase Deficiency. Neonatology 2010, 98, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Mütze, U.; Nennstiel, U.; Odenwald, B.; Haase, C.; Ceglarek, U.; Janzen, N.; Garbade, S.F.; Hoffmann, G.F.; Kölker, S.; Haas, D. Sudden neonatal death in individuals with medi-um-chain acyl-coenzyme A dehydrogenase deficiency: Limit of newborn screening. Eur. J. Pediatr. 2022, 181, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Lovera, C.; Porta, F.; Caciotti, A.; Catarzi, S.; Cassanello, M.; Caruso, U.; Gallina, M.R.; Morrone, A.; Spada, M. Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype. Ital. J. Pediatr. 2012, 38, 59. [Google Scholar] [CrossRef]
- Anderson, D.R.; Viau, K.; Botto, L.D.; Pasquali, M.; Longo, N. Clinical and biochemical outcomes of patients with medium-chain acyl-CoA dehydrogenase deficiency. Mol. Genet. Metab. 2020, 129, 13–19. [Google Scholar] [CrossRef]
- Leung, K.-C.; Hammond, J.W.; Chabra, S.; Carpenter, K.H.; Potter, M.; Wilcken, B. A fatal neonatal case of medium-chain acyl-coenzyme a dehydrogenase deficiency with homozygous A→G985 transition. J. Pediatr. 1992, 121, 965–968. [Google Scholar] [CrossRef]
- Brackett, J.C.; Sims, H.F.; Steiner, R.D.; Nunge, M.; Zimmerman, E.M.; Demartinville, B.; Rinaldo, P.; Slaugh, R.; Strauss, A.W. A novel mutation in medium chain acyl-CoA dehydrogenase causes sudden neonatal death. J. Clin. Investig. 1994, 94, 1477–1483. [Google Scholar] [CrossRef]
- Catzeflis, C.; Bachmann, C.; Hale, D.E.; Coates, P.M.; Wiesmann, U.; Colombo, J.P.; Joris, F.; Délèze, G. Early diagnosis and treatment of neonatal medium-chain acyl-CoA dehydrogenase deficiency: Report of two siblings. Eur. J. Pediatr. 1990, 149, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Rücklová, K.; Hrubá, E.; Pavlíková, M.; Hanák, P.; Farolfi, M.; Chrastina, P.; Vlášková, H.; Kousal, B.; Smolka, V.; Foltenová, H.; et al. Impact of Newborn Screening and Early Dietary Management on Clinical Outcome of Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency and Medium Chain Acyl-CoA Dehydrogenase Deficiency—A Retrospective Nationwide Study. Nutrients 2021, 13, 2925. [Google Scholar] [CrossRef]
- Wilcken, B.; Carpenter, K.H.; Hammond, J. Neonatal symptoms in medium chain acyl coenzyme A dehydrogenase deficiency. Arch. Dis. Child. 1993, 69, 292–294. [Google Scholar] [CrossRef]
- Schwantje, M.; Fuchs, S.A.; De Boer, L.; Bosch, A.M.; Cuppen, I.; Dekkers, E. Genetic, biochemical, and clinical spectrum of pa-tients with mitochondrial trifunctional protein deficiency identified after the introduction of newborn screening in the Neth-erlands. J. Inherit. Metab. Dis. 2022, 45, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, U.; Mueller, M.; Cloppenburg, E.; Motz, R.; Mayatepek, E.; Bueltmann, B.; Korenke, C. Intrauterine cardiomyopathy and cardiac mitochondrial proliferation in mitochondrial trifunctional protein (TFP) deficiency. Mol. Genet. Metab. 2008, 94, 428–430. [Google Scholar] [CrossRef]
- Diekman, E.F.; Boelen, C.C.A.; Prinsen, B.H.C.M.T.; Ijlst, L.; Duran, M.; de Koning, T.J.; Waterham, H.R.; Wanders, R.J.A.; Wijburg, F.A.; Visser, G. Necrotizing Enterocolitis and Respiratory Distress Syndrome as First Clinical Presentation of Mitochondrial Trifunctional Protein Deficiency. In JIMD Reports—Case and Research Reports, 2012/4 [Internet]; Brown, G., Morava, E., Peters, V., Gibson, K.M., Zschocke, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7, pp. 1–6. Available online: http://link.springer.com/10.1007/8904_2012_128 (accessed on 4 January 2024).
- Sykut-Cegielska, J.; Gradowska, W.; Piekutowska-Abramczuk, D.; Andresen, B.S.; Olsen, R.K.J.; Ołtarzewski, M.; Pronicki, M.; Pajdowska, M.; Bogdańska, A.; Jabłońska, E.; et al. Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J. Inherit. Metab. Dis. 2011, 34, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Bo, R.; Hasegawa, Y.; Yamada, K.; Kobayashi, H.; Taketani, T.; Fukuda, S.; Yamaguchi, S. A fetus with mitochondrial trifunctional protein deficiency: Elevation of 3-OH-acylcarnitines in amniotic fluid functionally assured the genetic diagnosis. Mol. Genet. Metab. Rep. 2015, 6, 1–4. [Google Scholar] [CrossRef]
- Bo, R.; Yamada, K.; Kobayashi, H.; Jamiyan, P.; Hasegawa, Y.; Taketani, T.; Fukuda, S.; Hata, I.; Niida, Y.; Shigematsu, Y.; et al. Clinical and molecular investigation of 14 Japanese patients with complete TFP deficiency: A comparison with Caucasian cases. J. Hum. Genet. 2017, 62, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.; Ensenauer, R.; Matern, D.; Uyanik, G.; Schnieders, B.; Wanders, R.J.; Lehnert, W. Complete deficiency of mitochondrial trifunc-tional protein due to a novel mutation within the β-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid β-oxidation with fatal outcome. Eur. J. Pediatr. 2003, 162, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Matern, D.; Strauss, A.W.; Hillman, S.L.; Mayatepek, E.; Millington, D.S.; Trefz, F.-K. Diagnosis of Mitochondrial Trifunctional Protein Deficiency in a Blood Spot from the Newborn Screening Card by Tandem Mass Spectrometry and DNA Analysis. Pediatr. Res. 1999, 46, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Hintz, S.R.; Matern, D.; Strauss, A.; Bennett, M.J.; Hoyme, H.E.; Schelley, S.; Kobori, J.; Colby, C.; Lehman, N.L.; Enns, G.M. Early Neonatal Diagnosis of Long-Chain 3-Hydroxyacyl Coenzyme A Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies. Mol. Genet. Metab. 2002, 75, 120–127. [Google Scholar] [CrossRef]
- Ojala, T.; Nupponen, I.; Saloranta, C.; Sarkola, T.; Sekar, P.; Breilin, A.; Tyni, T. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur. J. Pediatr. 2015, 174, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Torigoe, K.; Numata, O.; Haniu, H.; Uchiyama, A.; Ogawa, Y.; Kaneko, U.; Imamura, M.; Hasegawa, S. Mitochondrial trifunctional protein deficiency in a lethal neonate. Pediatr. Int. 2004, 46, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.E.D.; Dionisi-Vici, C.; Chakrapani, A.; van Thuijl, A.O.; Wanders, R.J.; Wijburg, F.A. Mitochondrial trifunctional protein deficiency: A severe fatty acid oxidation disorder with cardiac and neurologic involvement. J. Pediatr. 2003, 142, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, U.; Sun, B.; Khuchua, Z.; Bennett, M.J.; Strauss, A.W. Molecular and phenotypic heterogeneity in mitochondrial tri-functional protein deficiency due to beta-subunit mutations. Hum. Mutat. 2003, 21, 598–607. [Google Scholar] [CrossRef]
- Grünewald, S.; Bakkeren, J.; Wanders, R.A.; Wendel, U. Neonatal lethal mitochondrial trifunctional protein deficiency mimicking a respiratory chain defect. J. Inherit. Metab. Dis. 1997, 20, 835–836. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, U.; Khuchua, Z.; Yue, Z.; Strauss, A.W. The early-onset phenotype of mitochondrial trifunctional protein deficiency: A lethal disorder with multiple tissue involvement. J. Inherit. Metab. Dis. 2004, 27, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Emura, I.; Usuda, H. Morphological investigation of two sibling autopsy cases of mitochondrial trifunctional protein deficiency. Pathol. Int. 2003, 53, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.; Duran, M.; Ijlst, L.; De Jager, J.P.; Van Gennip, A.H.; Jakobs, C.; Dorland, L.; Van Sprang, F.J. Sudden infant death and long-chain 3-hydroxyacyl-coa dehydrogenase. Lancet 1989, 334, 52–53. [Google Scholar] [CrossRef]
- Duran, M.; Wanders, R.J.; De Jager, J.P.; Dorland, L.; Bruinvis, L.; Ketting, D.; Ijlst, L.; Van Sprang, F.J. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: Protective effect of medium-chain triglyceride treatment. Eur. J. Pediatr. 1991, 150, 190–195. [Google Scholar] [CrossRef]
- Martins, E.; Costa, A.; Silva, E.; Medina, M.; Cardoso, M.L.; Vianey-Saban, C.; Divry, P.; Vilarinho, L. Lethal dilated cardiomyopathy due to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 1996, 19, 373–374. [Google Scholar] [CrossRef]
- Wanders, R.J.; IJlst, L.; Van Gennip, A.H.; Jakobs, C.; De Jager, J.P.; Dorland, L.; Van Sprang, F.J.; Duran, M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: Identification of a new inborn error of mitochondrial fatty acid β -oxidation. J. Inherit. Metab. Dis. 1990, 13, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Sperk, A.; Mueller, M.; Spiekerkoetter, U. Outcome in six patients with mitochondrial trifunctional protein disorders identified by newborn screening. Mol. Genet. Metab. 2010, 101, 205–207. [Google Scholar] [CrossRef]
- Karall, D.; Brunner-Krainz, M.; Kogelnig, K.; Konstantopoulou, V.; Maier, E.M.; Möslinger, D.; Plecko, B.; Sperl, W.; Volkmar, B.; Scholl-Bürgi, S. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with Long-Chain 3-Hydroxy Acyl CoA Dehydrogenase Deficiency (LCHADD). Orphanet J. Rare Dis. 2015, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, U.; Lindner, M.; Santer, R.; Grotzke, M.; Baumgartner, M.R.; Boehles, H.; Das, A.; Haase, C.; Hennermann, J.B.; Karall, D.; et al. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: Results from a workshop. J. Inherit. Metab. Dis. 2009, 32, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Arivalagan, P.; Husain, M.S.; Subramaniam, K.; Kaslan, M.R.M. Fatty liver in a two days old neonate. Med. J. Malays. 2019, 74, 454–455. [Google Scholar]
- Coughlin, C.R.; Ficicioglu, C. Genotype–phenotype correlations: Sudden death in an infant with very-long-chain acyl-CoA de-hydrogenase deficiency. J. Inherit. Metab. Dis. 2010, 33, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Bleeker, J.C.; Kok, I.L.; Ferdinandusse, S.; van der Pol, W.L.; Cuppen, I.; Bosch, A.M.; Langeveld, M.; Derks, T.G.; Williams, M.; de Vries, M.; et al. Impact of newborn screening for very-long-chain acyl-CoA dehydrogenase deficiency on genetic, enzymatic, and clinical outcomes. J. Inherit. Metab. Dis. 2019, 42, 414–423. [Google Scholar] [CrossRef]
- Singh, P.; Amaro, D.; Obi, O.; Kiran, F.N.; Hediger, E.; Toler, T.L.; Dickson, P.I.; Grange, D.K. Postmortem diagnosis of very long chain acyl-CoA dehydrogenase (VLCAD) deficiency in a neonate with sudden cardiac death. JIMD Rep. 2023, 64, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Scalais, E.; Bottu, J.; Wanders, R.J.A.; Ferdinandusse, S.; Waterham, H.R.; De Meirleir, L. Familial very long chain acyl-CoA dehydro-genase deficiency as a cause of neonatal sudden infant death: Improved survival by prompt diagnosis. Am. J. Med. Genet. A 2015, 167, 211–214. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Yang, B.Z.; Roe, D.S.; Teramoto, R.; Aleck, K.; Grebe, T.A.; Roe, C.R.; Ding, J.H. Identification of Two Novel Mutations in the Hypoglycemic Phenotype of Very Long Chain Acyl-CoA Dehydrogenase Deficiency. Biochem. Biophys. Res. Commun. 1999, 264, 483–487. [Google Scholar] [CrossRef]
- Mathur, A.; Sims, H.F.; Gopalakrishnan, D.; Gibson, B.; Rinaldo, P.; Vockley, J.; Hug, G.; Strauss, A.W. Molecular Heterogeneity in Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency Causing Pediatric Cardiomyopathy and Sudden Death. Circulation 1999, 99, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, P.; Stanley, C.A.; Hsu, B.Y.; Sanchez, L.A.; Stern, H.J. Sudden neonatal death in carnitine transporter deficiency. J. Pediatr. 1997, 131, 304–305. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, F.; Burlina, A.B.; Donadio, A.; Giordano, G.; Taroni, F.; Garavaglia, B. Lethal neonatal presentation of carnitine palmitoyltransferase I deficiency. J. Inherit. Metab. Dis. 2001, 24, 601–602. [Google Scholar] [CrossRef]
- Isackson, P.J.; Bennett, M.J.; Lichter-Konecki, U.; Willis, M.; Nyhan, W.L.; Sutton, V.R.; Tein, I.; Vladutiu, G.D. CPT2 gene mutations resulting in lethal neonatal or severe infantile carnitine palmitoyltransferase II deficiency. Mol. Genet. Metab. 2008, 94, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Albers, S.; Marsden, D.; Quackenbush, E.; Stark, A.R.; Levy, H.L.; Irons, M. Detection of Neonatal Carnitine Palmitoyltransferase II Deficiency by Expanded Newborn Screening With Tandem Mass Spectrometry. Pediatrics 2001, 107, e103. [Google Scholar] [CrossRef]
- Pierce, M.R.; Pridjian, G.; Morrison, S.; Pickoff, A.S. Fatal Carnitine Palmitoyltransferase II Deficiency in a Newborn: New Phenotpic Features. Clin. Pediatr. 1999, 38, 13–20. [Google Scholar] [CrossRef]
- Vladutiu, G.D.; Quackenbush, E.J.; Hainline, B.E.; Albers, S.; Smail, D.S.; Bennett, M.J. Lethal neonatal and severe late infantile forms of carnitine palmitoyltransferase II deficiency associated with compound heterozygosity for different protein truncation mutations. J. Pediatr. 2002, 141, 734–736. [Google Scholar] [CrossRef]
- Sharma, R.; Perszyk, A.A.; Marangi, D.; Monteiro, C.; Raja, S. Lethal Neonatal Carnitine Palmitoyltransferase II Deficiency: An Unusual Presentation of a Rare Disorder. Am. J. Perinatol. 2003, 20, 25–32. [Google Scholar] [CrossRef]
- Yahyaoui, R.; Espinosa, M.G.; Gómez, C.; Dayaldasani, A.; Rueda, I.; Roldán, A.; Ugarte, M.; Lastra, G.; Pérez, V. Neonatal carnitine palmitoyltransferase II de-ficiency associated with Dandy-Walker syndrome and sudden death. Mol. Genet. Metab. 2011, 104, 414–416. [Google Scholar] [CrossRef]
- Zhou, D.; Cheng, Y.; Yin, X.; Miao, H.; Hu, Z.; Yang, J.; Zhang, Y.; Wu, B.; Huang, X. Newborn Screening for Mitochondrial Carnitine-Acylcarnitine Cycle Disorders in Zhejiang Province, China. Front. Genet. 2022, 13, 823687. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Gozalbo, M.; Vos, P.; Forget, P.; Meer, S.; Wanders, R.; Waterham, H.; Bakker, J. Carnitine-acylcarnitine translocase deficiency: Case report and review of the literature. Acta Paediatr. 2007, 92, 501–504. [Google Scholar] [CrossRef]
- Dorum, S.; Güney Varal, I.; Gorukmez, O.; Dogan, P.; Ekici, A. A novel mutation leading to the lethal form of carnitine palmito-yltransferase type-2 deficiency. J. Pediatr. Endocrinol. Metab. 2019, 32, 781–783. [Google Scholar] [CrossRef]
- Smeets, R.J.P.; Smeitink, J.A.M.; Semmekrot, B.A.; Scholte, H.R.; Wanders, R.J.A.; Heuvel, L.P.W.J.v.D. A novel splice site mutation in neonatal carnitine palmitoyl transferase II deficiency. J. Hum. Genet. 2003, 48, 0008–0013. [Google Scholar] [CrossRef] [PubMed]
- Semba, S.; Yasujima, H.; Takano, T.; Yokozaki, H. Autopsy case of the neonatal form of carnitine palmitoyltransferase-II deficiency triggered by a novel disease-causing mutation del1737C. Pathol. Int. 2008, 58, 436–441. [Google Scholar] [CrossRef]
- North, K.N.; Hoppel, C.L.; De Girolami, U.; Kozakewich, H.P.W.; Korson, M.S. Lethal neonatal deficiency of carnitine palmito-yltransferase II associated with dysgenesis of the brain and kidneys. J. Pediatr. 1995, 127, 414–420. [Google Scholar] [CrossRef]
- Hug, G.; Bove, K.E.; Soukup, S. Lethal Neonatal Multiorgan Deficiency of Carnitine Palmitoyltransferase II. N. Engl. J. Med. 1991, 325, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Du, S.-H.; Zhang, F.; Yu, Y.-G.; Chen, C.-X.; Wang, H.-J.; Li, D.-R. Sudden infant death from neonate carnitine palmitoyl transferase II deficiency. Forensic. Sci. Int. 2017, 278, e41–e44. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Xie, M.; Zhang, Y.; Cen, K.; Chen, L.; Cui, Y.; Li, H.; Wang, D. Carnitine-acylcarnitine translocase deficiency caused by SLC25A20 gene heterozygous variants in twins: A case report. J. Int. Med. Res. 2023, 51, 03000605231163811. [Google Scholar] [CrossRef]
- Yan, H.M.; Hu, H.; Ahmed, A.; Feng, B.B.; Liu, J.; Jia, Z.J.; Wang, H. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review. Medicine 2017, 96, e8549. [Google Scholar] [CrossRef] [PubMed]
- Carmona, S.M.G.; Abacan, M.A.R.; Alcausin, M.M.L.B. Carnitine-acylcarnitine Translocase Deficiency with c.199-10T>G Mutation in Two Filipino Neonates Detected through Parental Carrier Testing. Int. J. Neonatal Screen. 2023, 9, 4. [Google Scholar] [CrossRef]
- Li, X.; Zhao, F.; Zhao, Z.; Zhao, X.; Meng, H.; Zhang, D.; Zhao, S.; Ding, M. Neonatal sudden death caused by a novel heterozygous mutation in SLC25A20 gene: A case report and brief literature review. Leg. Med. 2021, 54, 101990. [Google Scholar] [CrossRef] [PubMed]
- Ryder, B.; Inbar-Feigenberg, M.; Glamuzina, E.; Halligan, R.; Vara, R.; Elliot, A.; Coman, D.; Minto, T.; Lewis, K.; Schiff, M.; et al. New insights into carnitine-acylcarnitine translocase deficiency from 23 cases: Management challenges and potential therapeutic approaches. J. Inherit. Metab. Dis. 2021, 44, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, J. One potential hotspot SLC25A20 gene variants in Chinese patients with carnitine-acylcarnitine translocase defi-ciency. Front. Pediatr. 2022, 10, 1029004. [Google Scholar] [CrossRef]
- Fukushima, T.; Kaneoka, H.; Yasuno, T.; Sasaguri, Y.; Tokuyasu, T.; Tokoro, K.; Fukao, T.; Saito, T. Three novel mutations in the carnitine–acylcarnitine translocase (CACT) gene in patients with CACT deficiency and in healthy individuals. J. Hum. Genet. 2013, 58, 788–793. [Google Scholar] [CrossRef]
- Tran, V.K.; Diep, Q.M.; Qiu, Z.; Le, T.P.; Do, L.D.; Tran, H.A.; Bui, T.-H.; Van Ta, T.; Tran, T.H. Whole exome sequencing analysis in a couple with three children who died prematurely due to carnitine-acylcarnitine translocase deficiency. Taiwan. J. Obstet. Gynecol. 2022, 61, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Liu, S.; Wu, M.; Lin, S.; Lin, Y.; Su, L.; Zhang, J.; Feng, Y.; Huang, Y. Clinical and molecular characteristics of carnitine-acylcarnitine translocase deficiency: Experience with six patients in Guangdong China. Clin. Chim. Acta 2019, 495, 476–480. [Google Scholar] [CrossRef]
- Korman, S.H.; Pitt, J.J.; Boneh, A.; Dweikat, I.; Zater, M.; Meiner, V.; Gutman, A.; Brivet, M. A novel SLC25A20 splicing mutation in patients of different ethnic origin with neonatally lethal carnitine-acylcarnitine translocase (CACT) deficiency. Mol. Genet. Metab. 2006, 89, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Niezen-Koning, K.E.; van Spronsen, F.J.; Ijlst, L.; Wanders, R.J.A.; Brivet, M.; Duran, M.; Reijngoud, D.J.; Heymans, H.S.A.; Smit, G.P.A. A patient with lethal cardiomyopathy and a carnitine—Acylcarnitine translocase deficiency. J. Inherit. Metab. Dis. 1995, 18, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Stanley, C.A.; Hale, D.E.; Berry, G.T.; Deleeuw, S.; Boxer, J.; Bonnefont, J.P. Brief report: A deficiency of carnitine-acylcarnitine trans-locase in the inner mitochondrial membrane. N. Engl. J. Med. 1992, 327, 19–23. [Google Scholar] [CrossRef]
- Lee, R.S.Y.; Lam, C.W.; Lai, C.K.; Yuen, Y.P.; Chan, K.Y.; Shek, C.C.; Chan, A.Y.W.; Chow, C.B. Carnitine-acylcarnitine translocase deficiency in three neonates presenting with rapid deterioration and cardiac arrest. Hong Kong Med. J. 2007, 13, 66–68. [Google Scholar]
- Pande, S.V.; Brivet, M.; Slama, A.; Demaugre, F.; Aufrant, C.; Saudubray, J.M. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts. J. Clin. Investig. 1993, 91, 1247–1252. [Google Scholar] [CrossRef]
- Yang, B.-Z.; Mallory, J.M.; Roe, D.S.; Brivet, M.; Strobel, G.; Jones, K.M.; Ding, J.-H.; Roe, C.R. Carnitine/Acylcarnitine Translocase Deficiency (Neonatal Phenotype): Successful Prenatal and Postmortem Diagnosis Associated with a Novel Mutation in a Single Family. Mol. Genet. Metab. 2001, 73, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Costa, J.M.; Nuoffer, J.M.; Slama, A.; Boutron, A.; Saudubray, J.M.; Legrand, A.; Brivet, M. Identification of the molecular defect in a severe case of carnitine-acylcarnitine carrier deficiency. J. Inherit. Metab. Dis. 1999, 22, 267–270. [Google Scholar] [CrossRef]
- Choong, K.; Clarke, J.T.R.; Cutz, E.; Pollit, R.J.; Olpin, S.E. Lethal Cardiac Tachyarrhythmia in a Patient with Neonatal Car-nitine-Acylcarnitine Translocase Deficiency. Pediatr. Dev. Pathol. 2001, 4, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.A.; Stanley, C.A.; English, N.; Wigglesworth, J.S. Mitochondrial carnitine-acylcarnitine translocase deficiency presenting as sudden neonatal death. J. Pediatr. 1997, 131, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Wasant, P.; Matsumoto, I.; Naylor, E.; Liammongkolkul, S. Mitochondrial fatty acid oxidation disorders in Thai infants: A report of 3 cases. J. Med. Assoc. Thail. Chotmaihet Thangphaet. 2002, 85 (Suppl. S2), S710–S719. [Google Scholar]
- Habib, A.; Azize, N.A.; Abd Rahman, S.; Yakob, Y.; Suberamaniam, V.; Nazri, M.I.; Sani, H.A.; Ch’ng, G.S.; Yin, L.H.; Olpin, S.; et al. Novel mutations associated with carnitine-acylcarnitine translocase and carnitine palmitoyl transferase 2 deficiencies in Malaysia. Clin. Biochem. 2021, 98, 48–53. [Google Scholar] [CrossRef]
- Geven, W.; Niezen-Koning, K.; Timmer, A.; van Loon, A.; Wanders, R.; van Spronsen, F. Pre-eclampsia in a woman whose child suffered from lethal carnitine-acylcarnitine translocase deficiency. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 1028–1030. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, C.; Du, S.; Tan, X.; Yue, X.; Qiao, D. Sudden death with cardiac involvement in a neonate with carnitine-acylcarnitine translocase deficiency. Cardiovasc. Pathol. 2024, 70, 107630. [Google Scholar] [CrossRef] [PubMed]
- IJlst, L.; Wanders, R.J.; Ushikubo, S.; Kamijo, T.; Hashimoto, T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: Identification of the major disease-causing mutation in the α-subunit of the mitochondrial trifunctional protein. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1994, 1215, 347–350. [Google Scholar] [CrossRef]
- Nedoszytko, B.; Siemińska, A.; Strapagiel, D.; Dąbrowski, S.; Słomka, M.; Sobalska-Kwapis, M.; Marciniak, B.; Wierzba, J.; Skokowski, J.; Fijałkowski, M.; et al. High prevalence of carriers of variant c. 1528G> C of HADHA gene causing long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the population of adult Kashubians from North Poland. PLoS ONE 2017, 12, e0187365. [Google Scholar] [CrossRef] [PubMed]
- Joost, K.; Ounap, K.; Žordania, R.; Uudelepp, M.L.; Olsen, R.K.; Kall, K.; Kilk, K.; Soomets, U.; Kahre, T. Prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Estonia. JIMD Rep.-Case Res. Rep. 2011, 2012, 79–85. [Google Scholar]
- Tyni, T.; Pihko, H. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Acta Paediatr. 1999, 88, 237–245. [Google Scholar] [CrossRef]
- Lund, A.M.; Hougaard, D.M.; Simonsen, H.; Andresen, B.S.; Christensen, M.; Dunø, M.; Skogstrand, K.; Olsen, R.K.; Jensen, U.G.; Cohen, A.; et al. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland—Experience and development of a routine program for expanded newborn screening. Mol. Genet. Metab. 2012, 107, 281–293. [Google Scholar] [CrossRef]
- Rasmussen, J.; Nielsen, O.W.; Janzen, N.; Duno, M.; Køber, L.; Steuerwald, U.; Lund, A.M. Carnitine levels in 26,462 individuals from the nationwide screening program for primary carnitine deficiency in the Faroe Islands. J. Inherit. Metab. Dis. 2014, 37, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.J.; Cardona, A.; Inchley, C.E.; Peter, B.M.; Jacobs, G.; Pagani, L.; Lawson, D.J.; Antão, T.; Vicente, M.; Mitt, M.; et al. A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. Am. J. Hum. Genet. 2014, 95, 584–589. [Google Scholar] [CrossRef]
- Wolfe, L.; Jethva, R.; Oglesbee, D.; Vockley, J. Short-Chain Acyl-CoA Dehydrogenase Deficiency. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar] [PubMed]
- Sadat, R.; Hall, P.L.; Wittenauer, A.L.; Vengoechea, E.D.; Park, K.; Hagar, A.F.; Singh, R.; Moore, R.H.; Gambello, M.J. Increased parental anxiety and a benign clinical course: Infants identified with short-chain acyl-CoA dehydrogenase deficiency and isobutyr-yl-CoA dehydrogenase deficiency through newborn screening in Georgia. Mol. Genet. Metab. 2020, 129, 20–25. [Google Scholar] [CrossRef]
- Immonen, T.; Turanlahti, M.; Paganus, A.; Keskinen, P.; Tyni, T.; Lapatto, R. Earlier diagnosis and strict diets improve the survival rate and clinical course of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Acta Paediatr. 2016, 105, 549–554. [Google Scholar] [CrossRef]
- Boer, M.E.J.D.; Wanders, R.J.A.; Morris, A.A.M.; Ijlst, L.; Heymans, H.S.A.; Wijburg, F.A. Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency: Clinical Presentation and Follow-Up of 50 Patients. Pediatrics 2002, 109, 99–104. [Google Scholar] [CrossRef] [PubMed]
- De Biase, I.; Viau, K.S.; Liu, A.; Yuzyuk, T.; Botto, L.D.; Pasquali, M.; Longo, N. Diagnosis, treatment, and clinical outcome of patients with mitochondrial trifunctional protein/long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency. JIMD Rep. 2017, 31, 63–71. [Google Scholar] [PubMed]
- Stinton, C.; Fraser, H.; Geppert, J.; Johnson, R.; Connock, M.; Johnson, S.; Clarke, A.; Taylor-Phillips, S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots—A Systematic Review of Test Accuracy. Front. Pediatr. 2021, 9, 606194. [Google Scholar] [CrossRef]
- Fraser, H.; Geppert, J.; Johnson, R.; Johnson, S.; Connock, M.; Clarke, A.; Taylor-Phillips, S.; Stinton, C. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: A systematic review. Orphanet J. Rare Dis. 2019, 14, 258. [Google Scholar] [CrossRef]
- Jones, P.M.; Bennett, M.J. The changing face of newborn screening: Diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin. Chim. Acta 2002, 324, 121–128. [Google Scholar] [CrossRef]
- Sander, J.; Sander, S.; Steuerwald, U.; Janzen, N.; Peter, M.; Wanders, R.J.; Marquardt, I.; Korenke, G.C.; Das, A.M. Neonatal screening for defects of the mitochondrial trifunctional protein. Mol. Genet. Metab. 2005, 85, 108–114. [Google Scholar] [CrossRef]
- Remec, Z.I.; Groselj, U.; Drole Torkar, A.; Zerjav Tansek, M.; Cuk, V.; Perko, D.; Ulaga, B.; Lipovec, N.; Debeljak, M.; Kovac, J.; et al. Very long-chain acyl-CoA dehydrogenase deficiency: High incidence of detected patients with expanded newborn screening program. Front. Genet. 2021, 12, 648493. [Google Scholar] [CrossRef]
- Marsden, D.; Bedrosian, C.L.; Vockley, J. Impact of newborn screening on the reported incidence and clinical outcomes associated with medium- and long-chain fatty acid oxidation disorders. Anesth. Analg. 2021, 23, 816–829. [Google Scholar] [CrossRef]
- Spiekerkoetter, U.; Mueller, M.; Sturm, M.; Hofmann, M.; Schneider, D.T. Lethal undiagnosed very long-chain acyl-CoA dehydro-genase deficiency with mild C14-Acylcarnitine abnormalities on newborn screening. JIMD Rep. 2012, 6, 113–115. [Google Scholar] [PubMed]
- Ficicioglu, C.; Coughlin, C.R.; Bennett, M.J.; Yudkoff, M. Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J. Pediatr. 2010, 156, 492–494. [Google Scholar] [CrossRef]
- Estrella, J.; Wilcken, B.; Carpenter, K.; Bhattacharya, K.; Tchan, M.; Wiley, V. Expanded newborn screening in New South Wales: Missed cases. J. Inherit. Metab. Dis. 2014, 37, 881–887. [Google Scholar] [CrossRef]
- Spiekerkoetter, U.; Haussmann, U.; Mueller, M.; ter Veld, F.; Stehn, M.; Santer, R.; Lukacs, Z. Tandem Mass Spectrometry Screening for Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: The Value of Second-Tier Enzyme Testing. J. Pediatr. 2010, 157, 668–673. [Google Scholar] [CrossRef]
- Ahrens-Nicklas, R.C.; Pyle, L.C.; Ficicioglu, C. Morbidity and mortality among exclusively breastfed neonates with medium-chain acyl-CoA dehydrogenase deficiency. Genet. Med. 2016, 18, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Haas, M.; Joy, P.; Wiley, V.; Chaplin, M.; Black, C.; Fletcher, J.; McGill, J.; Boneh, A. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: A cohort study. Lancet 2007, 369, 37–42. [Google Scholar] [CrossRef]
- Smon, A.; Groselj, U.; Debeljak, M.; Zerjav Tansek, M.; Bertok, S.; Avbelj Stefanija, M.; Trebusak Podkrajsek, K.; Battelino, T.; Repic Lampret, B. Medium-chain acyl-CoA dehydrogenase deficiency: Two novel ACADM mutations identified in a retrospective screening. J. Int. Med. Res. 2018, 46, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Sikonja, J.; Groselj, U.; Scarpa, M.; la Marca, G.; Cheillan, D.; Kölker, S.; Zetterström, R.H.; Kožich, V.; Le Cam, Y.; Gumus, G.; et al. Towards achieving equity and innovation in newborn screening across Europe. Int. J. Neonatal Screen. 2022, 8, 31. [Google Scholar] [CrossRef]
- Taylor-Phillips, S.; Stinton, C.; di Ruffano, L.F.; Seedat, F.; Clarke, A.; Deeks, J.J. Association between use of systematic reviews and national policy recommendations on screening newborn babies for rare diseases: Systematic review and meta-analysis. BMJ 2018, 361, k1612. [Google Scholar] [CrossRef] [PubMed]
- Waisbren, S.E.; Albers, S.; Amato, S.; Ampola, M.; Brewster, T.G.; Demmer, L.; Eaton, R.B.; Greenstein, R.; Korson, M.; Larson, C.; et al. Effect of Expanded Newborn Screening for Biochemical Genetic Disorders on Child Outcomes and Parental Stress. JAMA 2003, 290, 2564–2572. [Google Scholar] [CrossRef]
- Matern, D.; Tortorelli, S.; Oglesbee, D.; Gavrilov, D.; Rinaldo, P. Reduction of the false-positive rate in newborn screening by im-plementation of MS/MS based second-tier tests: The Mayo Clinic experience (2004–2007). J. Inherit. Metab. Dis. 2007, 30, 585–592. [Google Scholar] [CrossRef]
- Mlinaric, M.; Bonham, J.R.; Kožich, V.; Kölker, S.; Majek, O.; Battelino, T.; Torkar, A.D.; Koracin, V.; Perko, D.; Remec, Z.I.; et al. Newborn Screening in a Pandemic—Lessons Learned. Int. J. Neonatal Screen. 2023, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Koracin, V.; Mlinaric, M.; Baric, I.; Brincat, I.; Djordjevic, M.; Torkar, A.D.; Fumic, K.; Kocova, M.; Milenkovic, T.; Moldovanu, F.; et al. Current Status of Newborn Screening in Southeastern Europe. Front. Pediatr. 2021, 9, 648939. [Google Scholar] [CrossRef] [PubMed]
- Loeber, J.G.; Platis, D.; Zetterström, R.H.; Almashanu, S.; Boemer, F.; Bonham, J.R.; Borde, P.; Brincat, I.; Cheillan, D.; Dekkers, E.; et al. Neonatal screening in Europe revisited: An ISNS perspective on the current state and developments since 2010. Int. J. Neonatal Screen. 2021, 7, 15. [Google Scholar] [CrossRef]
FAOD Type | NBS Results at Time of Presentation | No. of Cases Described | Median Age at Presentation (Range) | Median Age at Death (Range) | References |
---|---|---|---|---|---|
MCADD | R not available | 14 | 48 h (12–120 h) | 3 d (2–6 d) | [11,12,13,14,15,16,17,18] |
No NBS | >5 | 46 h (24–70 h) | 3 d (2.5–4 d) | [12,19,20,21,22] | |
MTPD/LCHADD | R not available | 5 | 2 d (1–3 d) | 5 d (3–10 d) | [23,24,25] |
R available | 1 | 7 d | 7 d | [26] | |
No NBS | >26 | 3 d (0.5–13 d) | 5 d (0.5–14 d) | [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] | |
VLCADD | R not available | 4 | 30 h (24–40 h) | 38 h (32–48 h) | [46,47,48,49] |
No NBS | >5 | 41 h (1–3 d) | 2 d (1–3 d) | [50,51,52] | |
CUD | R not available | — | |||
No NBS | 1 | 1 d | 5 d | [53] | |
CPT1D | R not available | — | |||
No NBS | 1 | 34 h | 34 h | [54] | |
CPT2D | R not available | 6 | 20 h (17–240 h) | 3 d (1.5–13 d) | [55,56,57,58,59,60,61] |
R available | 2 | 10 d | 13.5 d (13–14 d) | [55,60] | |
No NBS | 10 | 36 h (12–72 h) | 5 d (1.5–12 d) | [57,62,63,64,65,66,67,68] | |
CACT | R not available | >20 | 24 h (0.5–52 h) | 3 d (1.5–8 d) | [61,69,70,71,72,73,74,75,76,77] |
No NBS | >12 | 30 h (24–48 h) | 1.5 d (1–10 d) | [78,79,80,81,82,83,84,85,86,87,88,89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drole Torkar, A.; Klinc, A.; Remec, Z.I.; Rankovic, B.; Bartolj, K.; Bertok, S.; Colja, S.; Cuk, V.; Debeljak, M.; Kozjek, E.; et al. Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders. Int. J. Neonatal Screen. 2025, 11, 9. https://doi.org/10.3390/ijns11010009
Drole Torkar A, Klinc A, Remec ZI, Rankovic B, Bartolj K, Bertok S, Colja S, Cuk V, Debeljak M, Kozjek E, et al. Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders. International Journal of Neonatal Screening. 2025; 11(1):9. https://doi.org/10.3390/ijns11010009
Chicago/Turabian StyleDrole Torkar, Ana, Ana Klinc, Ziga Iztok Remec, Branislava Rankovic, Klara Bartolj, Sara Bertok, Sara Colja, Vanja Cuk, Marusa Debeljak, Eva Kozjek, and et al. 2025. "Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders" International Journal of Neonatal Screening 11, no. 1: 9. https://doi.org/10.3390/ijns11010009
APA StyleDrole Torkar, A., Klinc, A., Remec, Z. I., Rankovic, B., Bartolj, K., Bertok, S., Colja, S., Cuk, V., Debeljak, M., Kozjek, E., Repic Lampret, B., Mlinaric, M., Mohar Hajnsek, T., Perko, D., Stajer, K., Tesovnik, T., Trampuz, D., Ulaga, B., Kovac, J., ... Groselj, U. (2025). Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders. International Journal of Neonatal Screening, 11(1), 9. https://doi.org/10.3390/ijns11010009