Newborn Screening by Genomic Sequencing: Opportunities and Challenges
Abstract
:1. Introduction
1.1. Newborn Screening Practice Today
1.2. Genomic Technology in Newborn Screening
1.3. Choosing Conditions, Genes, and Variants for Screening
2. Choosing Conditions in Light of Wilson and Jungner Principles
2.1. The Condition Sought Should Be an Important Health Problem
2.2. The Natural History of the Condition, including Development from Latent to Declared Disease, Should Be Adequately Understood
2.3. There Should Be a Recognizable Latent or Early Symptomatic Stage
2.4. There Should Be a Suitable Test or Examination
2.5. The Test Should Be Acceptable to the Population
2.6. There Should Be an Agreed Policy on Whom to Treat as Patients
2.7. There Should Be an Accepted Treatment for Patients with Recognized Disease
2.8. Facilities for Diagnosis and Treatment Should Be Available
2.9. The Cost of Case-Finding (Including Diagnosis and Treatment of Patients Diagnosed) Should Be Economically Balanced in Relation to Possible Expenditure on Medical Care as a Whole
2.10. Case-Finding Should Be a Continuing Process and Not a “Once and For All” Project
3. Ethical, Communication, Data Management and Sharing, Legal, and Social Implications
3.1. Ethics
3.2. Communication and Transparency
3.3. Data Management
4. The Future of Screening
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woerner, A.C.; Gallagher, R.C.; Vockley, J.; Adhikari, A.N. The Use of Whole Genome and Exome Sequencing for Newborn Screening: Challenges and Opportunities for Population Health. Front. Pediatrics 2021, 9, 663752. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.C.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodian, D.L.; Klein, E.; Iyer, R.K.; Wong, W.S.; Kothiyal, P.; Stauffer, D.; Huddleston, K.C.; Gaither, A.D.; Remsburg, I.; Khromykh, A.; et al. Utility of whole-genome sequencing for detection of newborn screening disorders in a population cohort of 1696 neonates. Genet. Med. 2016, 18, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceyhan-Birsoy, O.; Machini, K.; Lebo, M.S.; Yu, T.W.; Agrawal, P.B.; Parad, R.B.; Holm, I.A.; McGuire, A.; Green, R.C.; Beggs, A.H.; et al. A curated gene list for reporting results of newborn genomic sequencing. Genet. Med. 2017, 19, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcik, M.H.; Zhang, T.; Ceyhan-Birsoy, O.; Genetti, C.A.; Lebo, M.S.; Yu, T.W.; Parad, R.B.; Holm, I.A.; Rehm, H.L.; Beggs, A.H.; et al. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq Project. Genet. Med. 2021, 23, 1372–1375. [Google Scholar] [CrossRef]
- Ceyhan-Birsoy, O.; Murry, J.B.; Machini, K.; Lebo, M.S.; Yu, T.W.; Fayer, S.; Genetti, C.A.; Schwartz, T.S.; Agrawal, P.B.; Parad, R.B.; et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 2019, 104, 76–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, I.A.; Agrawal, P.B.; Ceyhan-Birsoy, O.; Christensen, K.D.; Fayer, S.; Frankel, L.A.; Genetti, C.A.; Krier, J.B.; LaMay, R.C.; Levy, H.L.; et al. The BabySeq project: Implementing genomic sequencing in newborns. BMC Pediatrics 2018, 18, 225. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.N.; Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef]
- Furnier, S.M.; Durkin, M.S.; Baker, M.W. Translating Molecular Technologies into Routine Newborn Screening Practice. Int. J. Neonatal Screen. 2020, 6, 80. [Google Scholar] [CrossRef]
- Veldman, A.; Kiewiet, M.B.G.; Heiner-Fokkema, M.R.; Nelen, M.R.; Sinke, R.J.; Sikkema-Raddatz, B.; Voorhoeve, E.; Westra, D.; Dollé, M.E.T.; Schielen, P.C.J.I.; et al. Towards Next-Generation Sequencing (NGS)-Based Newborn Screening: A Technical Study to Prepare for the Challenges Ahead. Int. J. Neonatal Screen. 2022, 8, 17. [Google Scholar] [CrossRef]
- Rady Children’s Institute for Genomic Medicine. RCIGM Launches Program to Advance Newborn Screening for Treatable Genetic Diseases. Available online: https://radygenomics.org/2022/rcigm-launches-program-to-advance-newborn-screening-for-treatable-genetic-diseases/ (accessed on 19 June 2022).
- Genomics England. Newborn Genomes Programme. Available online: https://www.genomicsengland.co.uk/initiatives/newborns (accessed on 19 June 2022).
- Screen4Care. What Is Screen4Care? Available online: https://screen4care.eu/the-project/screen4care (accessed on 19 June 2022).
- GeneReviews, Educational Materials—Genetic Testing: Current Approaches. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279899/ (accessed on 19 June 2022).
- Huang, X.; Wu, D.; Zhu, L.; Wang, W.; Yang, R.; Yang, J.; He, Q.; Zhu, B.; You, Y.; Xiao, R.; et al. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Orphanet. J. Rare Dis. 2022, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Remec, Z.I.; Trebusak Podkrajsek, K.; Repic Lampret, B.; Kovac, J.; Groselj, U.; Tesovnik, T.; Battelino, T.; Debeljak, M. Next-Generation Sequencing in Newborn Screening: A Review of Current State. Front. Genet. 2021, 12, 662254. [Google Scholar] [CrossRef] [PubMed]
- Bick, D.; Jones, M.; Taylor, S.L.; Taft, R.J.; Belmont, J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. J. Med. Genet. 2019, 56, 783–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantere, T.; Kersten, S.; Hoischen, A. Long-Read Sequencing Emerging in Medical Genetics. Front. Genet. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacopuzzi, E.; Popitsch, N.; Taylor, J.C. GREEN-DB: A framework for the annotation and prioritization of non-coding regulatory variants from whole-genome sequencing data. Nucleic Acids Res. 2022, 50, 2522–2535. [Google Scholar] [CrossRef]
- Chen, X.; Sanchis-Juan, A.; French, C.E.; Connell, A.J.; Delon, I.; Kingsbury, Z.; Chawla, A.; Halpern, A.L.; Taft, R.J.; Bentley, D.R.; et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 2020, 22, 945–953. [Google Scholar] [CrossRef] [Green Version]
- McCormick, E.M.; Lott, M.T.; Dulik, M.C.; Shen, L.; Attimonelli, M.; Vitale, O.; Karaa, A.; Bai, R.; Pineda-Alvarez, D.E.; Singh, L.N.; et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 2020, 41, 2028–2057. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- De la Vega, F.M.; Chowdhury, S.; Moore, B.; Frise, E.; McCarthy, J.; Hernandez, E.J.; Wong, T.; James, K.; Guidugli, L.; Agrawal, P.B.; et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021, 13, 153. [Google Scholar] [CrossRef]
- Bick, D.; Bick, S.L.; Dimmock, D.P.; Fowler, T.A.; Caulfield, M.J.; Scott, R.H. An online compendium of treatable genetic disorders. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 48–54. [Google Scholar] [CrossRef] [PubMed]
- A Compendium of Treatments for Genetic Conditions. Available online: https://www.rx-genes.com/ (accessed on 19 June 2022).
- Wilson, J.M.; Jungner, G. Principles and Practice of Screening for Disease; Public Health Papers; World Health Organization: Geneva, Switzerland, 1968; Volume 34. [Google Scholar]
- Dobrow, M.J.; Hagens, V.; Chafe, R.; Sullivan, T.; Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. CMAJ 2018, 190, E422–E429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downie, L.; Halliday, J.; Lewis, S.; Amor, D.J. Principles of Genomic Newborn Screening Programs: A Systematic Review. JAMA Netw. Open 2021, 4, e2114336. [Google Scholar] [CrossRef] [PubMed]
- UK National Screening Committee. Criteria for a Population Screening Programme. Available online: https://www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes/criteria-for-appraising-the-viability-effectiveness-and-appropriateness-of-a-screening-programme (accessed on 19 June 2022).
- Milko, L.V.; O’Daniel, J.M.; DeCristo, D.M.; Crowley, S.B.; Foreman, A.K.M.; Wallace, K.E.; Mollison, L.F.; Strande, N.T.; Girnary, Z.S.; Boshe, L.J.; et al. An Age-Based Framework for Evaluating Genome-Scale Sequencing Results in Newborn Screening. J. Pediatrics 2019, 209, 68–76. [Google Scholar] [CrossRef]
- Boardman, F.K.; Clark, C.C. What is a ‘serious’ genetic condition? The perceptions of people living with genetic conditions. Eur. J. Hum. Genet. 2022, 30, 160–169. [Google Scholar] [CrossRef]
- Ross, S.A.; Kimberlin, D. Clinical outcome and the role of antivirals in congenital cytomegalovirus infection. Antivir. Res. 2021, 191, 105083. [Google Scholar] [CrossRef]
- Implications of Whole Genome Sequencing for Newborn Screening, Hopkins Van Mil. Available online: https://s3.eu-west-2.amazonaws.com/ge-production-s3/documents/public-dialogue-wgs-for-nbs-final-report.pdf (accessed on 19 June 2022).
- Sawada, T.; Kido, J.; Nakamura, K. Newborn Screening for Pompe Disease. Int. J. Neonatal. Screen. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Office for Health Improvement & Disparities. NHS Screening Programmes in England: 2019 to 2020. Available online: https://www.gov.uk/government/publications/nhs-screening-programmes-annual-report/nhs-screening-programmes-in-england-2019-to-2020#nhs-newborn-blood-spot-nbs-screening-programme (accessed on 19 June 2022).
- Barkovich, E.; Gropman, A.L. Late Onset Ornithine Transcarbamylase Deficiency Triggered by an Acute Increase in Protein Intake: A Review of 10 Cases Reported in the Literature. Case Rep. Genet. 2020, 2020, 7024735. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Neely, D. The UK National Screening Committee’s position on child-parent screening for familial hypercholesterolaemia. J. Med. Screen. 2021, 28, 217–220. [Google Scholar] [CrossRef]
- Hagenkord, J.; Funke, B.; Qian, E.; Hegde, M.; Jacobs, K.B.; Ferber, M.; Lebo, M.; Buchanan, A.; Bick, D. Design and Reporting Considerations for Genetic Screening Tests. J. Mol. Diagn. 2020, 22, 599–609. [Google Scholar] [CrossRef]
- Estimating Diagnostic Noise in Panel-Based Genomic Analysis. Available online: https://www.medrxiv.org/content/10.1101/2022.03.18.22272595v1 (accessed on 19 June 2022).
- NewSTEPs Annual Report 2020. Available online: https://www.aphl.org/aboutAPHL/publications/Documents/NewSTEPs_Annual_Report_9_22_21.pdf (accessed on 19 June 2022).
- Shapira, S.K.; Hinton, C.F.; Held, P.K.; Jones, E.; Hannon, W.H.; Ojodu, J. Single newborn screen or routine second screening for primary congenital hypothyroidism. Mol. Genet. Metab. 2015, 116, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Tang, Y.; Cowan, T.M.; Zhao, H.; Scharfe, C. Timing of Newborn Blood Collection Alters Metabolic Disease Screening Performance. Front. Pediatrics 2020, 8, 623184. [Google Scholar] [CrossRef] [PubMed]
- Doerr, M.; Moore, S.; Barone, V.; Sutherland, S.; Bot, B.M.; Suver, C.; Wilbanks, J. Assessment of the All of Us research program’s informed consent process. AJOB Empir. Bioeth. 2021, 12, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Ulph, F.; Dharni, N.; Bennett, R.; Lavender, T. Consent for newborn screening: Screening professionals’ and parents’ views. Public Health 2020, 178, 151–158. [Google Scholar] [CrossRef]
- Newcomb, P.; True, B.; Walsh, J.; Dyson, M.; Lockwood, S.; Douglas, B. Maternal attitudes and knowledge about newborn screening. MCN Am. J. Matern. Child Nurs. 2022, 38, 289–294, quiz 295–296. [Google Scholar] [CrossRef]
- Fang, C.-B.; Wu, H.-T.; Zhang, M.-L.; Liu, J.; Zhang, G.-J. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front. Cell Dev. Biol. 2020, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Bower, A.; Imbard, A.; Benoist, J.-F.; Pichard, S.; Rigal, O.; Baud, O.; Schiff, M. Diagnostic contribution of metabolic workup for neonatal inherited metabolic disorders in the absence of expanded newborn screening. Sci. Rep. 2019, 9, 14098. [Google Scholar] [CrossRef] [PubMed]
- Newborn Screening Technical Assistance and Evaluation Program, Case Definitions. Available online: https://www.newsteps.org/data-resources/case-definitions (accessed on 19 June 2022).
- Sontag, M.K.; Sarkar, D.; Comeau, A.M.; Hassell, K.; Botto, L.D.; Parad, R.; Rose, S.R.; Wintergerst, K.A.; Smith-Whitley, K.; Singh, S.; et al. Case Definitions for Conditions Identified by Newborn Screening Public Health Surveillance. Int. J. Neonatal Screen. 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Harmonized Terminology Database, Newborn Screening Glossary. Available online: https://htd.clsi.org/listalltermsNewborn.asp (accessed on 19 June 2022).
- Barben, J.; Castellani, C.; Munck, A.; Davies, J.C.; de Winter-de Groot, K.M.; Gartner, S.; Kashirskaya, N.; Linnane, B.; Mayell, S.J.; McColley, S.; et al. Updated guidance on the management of children with cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID). J. Cyst. Fibros. 2021, 20, 810–819. [Google Scholar] [CrossRef]
- Blom, M.; Zetterström, R.H.; Stray-Pedersen, A.; Gilmour, K.; Gennery, A.R.; Puck, J.M.; van der Burg, M. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 2022, 149, 1428–1436. [Google Scholar] [CrossRef]
- Prior, T.W.; Leach, M.E.; Finanger, E. Spinal Muscular Atrophy. In GeneReviews® [Internet]; 2000 Feb 24 [Updated 2020 Dec 3]; University of Washington, Seattle, WA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1352/ (accessed on 19 June 2022).
- Leung, A.K.; Barankin, B.; Lam, J.M.; Leong, K.F.; Hon, K.L. Xeroderma pigmentosum: An updated review. In Drugs Context; 2022; 11. Available online: https://www-ncbi-nlm-nih-gov.ezproxy3.lhl.uab.edu/pmc/articles/PMC9045481/ (accessed on 19 June 2022). [CrossRef]
- Grünert, S.C.; Derks, T.G.J.; Adrian, K.; Al-Thihli, K.; Ballhausen, D.; Bidiuk, J.; Bordugo, A.; Boyer, M.; Bratkovic, D.; Brunner-Krainz, M.; et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: Data from an international questionnaire. In Genet. Med.; 2022. Available online: https://pubmed-ncbi-nlm-nih-gov.ezproxy3.lhl.uab.edu/35503103/ (accessed on 19 June 2022). [CrossRef]
- U.S. National Library of Medicine. Database of Privately and Publicly Funded Clinical Studies Conducted around the World. Available online: https://clinicaltrials.gov/ (accessed on 19 June 2022).
- EURORDIS. Key Principles for Newborn Screening. Available online: https://download2.eurordis.org/documents/pdf/eurordis_nbs_position_paper.pdf (accessed on 19 June 2022).
- Pereira, S.; Robinson, J.O.; Gutierrez, A.M.; Petersen, D.K.; Hsu, R.L.; Lee, C.H.; Schwartz, T.S.; Holm, I.A.; Beggs, A.H.; Green, R.C.; et al. Perceived Benefits, Risks, and Utility of Newborn Genomic Sequencing in the BabySeq Project. Pediatrics 2019, 143 (Suppl. S1), S6–S13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, M.; Schoenaker, M.H.D.; Hulst, M.; de Vries, M.C.; Weemaes, C.M.R.; Willemsen, M.A.A.P.; Henneman, L.; van der Burg, M. Dilemma of Reporting Incidental Findings in Newborn Screening Programs for SCID: Parents’ Perspective on Ataxia Telangiectasia. Front. Immunol. 2019, 10, 2438. [Google Scholar] [CrossRef] [Green Version]
- Chudleigh, J.; Holder, P.; Moody, L.; Simpson, A.; Southern, K.; Morris, S.; Fusco, F.; Ulph, F.; Bryon, M.; Bonham, J.R.; et al. Process evaluation of co-designed interventions to improve communication of positive newborn bloodspot screening results. BMJ Open 2021, 11, e050773. [Google Scholar] [CrossRef]
- Johnson, K.; Saylor, K.W.; Guynn, I.; Hicklin, K.; Berg, J.S.; Lich, K.H. A systematic review of the methodological quality of economic evaluations in genetic screening and testing for monogenic disorders. Genet. Med. 2022, 24, 262–288. [Google Scholar] [CrossRef] [PubMed]
- Bessey, A.; Chilcott, J.; Pandor, A.; Paisley, S. The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism. Int. J. Neonatal Screen. 2020, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- van der Ploeg, C.P.B.; Blom, M.; Bredius, R.G.M.; van der Burg, M.; Schielen, P.C.J.I.; Verkerk, P.H.; Van den Akker-van Marle, M.E. Cost-effectiveness of newborn screening for severe combined immunodeficiency. Eur. J. Pediatrics 2019, 178, 721–729. [Google Scholar] [CrossRef]
- Lavelle, T.A.; Weidner, S. Cost-effectiveness of exome and genome sequencing for children with rare and undiagnosed conditions. Genet. Med. 2022, 24, 1349–1361. [Google Scholar] [CrossRef]
- Lu, C.Y.; McMahon, P.M.; Wu, A.C. Modeling Genomic Screening in Newborns. JAMA Pediatrics 2022, 176, 344–346. [Google Scholar] [CrossRef]
- Neumann, K.; Mathmann, P.; Chadha, S.; Euler, H.A.; White, K.R. Newborn Hearing Screening Benefits Children, but Global Disparities Persist. J. Clin. Med. 2022, 11, 271. [Google Scholar] [CrossRef]
- Wiley, V.; Webster, D.; Loeber, G. Screening Pathways through China, the Asia Pacific Region, the World. Int. J. Neonatal Screen. 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- National Conference of State Legislatures, Early Detection. Diagnosis and Treatment through Newborn Screening. Available online: https://www.ncsl.org/research/health/early-detection-diagnosis-and-treatment-through-newborn-screening.aspx#:~:text=State%20newborn%20screening%20programs%20reach,the%20Children’s%20Health%20Insurance%20Program (accessed on 19 June 2022).
- Johnston, J.; Lantos, J.D.; Goldenberg, A.; Chen, F.; Parens, E.; Koenig, B.A. Sequencing Newborns: A Call for Nuanced Use of Genomic Technologies. Hastings Cent. Rep. 2018, 48 (Suppl. S2), S2–S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, A.J.; Ponsaran, R.; Gaviglio, A.; Simancek, D.; Tarini, B.A. Genomics and Newborn Screening: Perspectives of Public Health Programs. Int. J. Neonatal Screen. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Sen, K.; Harmon, J.; Gropman, A.L. Select Ethical Aspects of Next-Generation Sequencing Tests for Newborn Screening and Diagnostic Evaluation of Critically Ill Newborns. Int. J. Neonatal Screen. 2021, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Newson, A.J. The promise of public health ethics for precision medicine: The case of newborn preventive genomic sequencing. Hum. Genet. 2022, 141, 1035–1043. [Google Scholar] [CrossRef]
- Esquerda, M.; Palau, F.; Lorenzo, D.; Cambra, F.J.; Bofarull, M.; Cusi, V. Ethical questions concerning newborn genetic screening. Clin. Genet. 2021, 99, 93–98. [Google Scholar] [CrossRef]
- Goldenberg, A.J.; Sharp, R.R. The ethical hazards and programmatic challenges of genomic newborn screening. JAMA 2012, 307, 461–462. [Google Scholar] [CrossRef] [Green Version]
- Alcantara, M.; Mezei, M.M.; Baker, S.K.; Breiner, A.; Dhawan, P.; Fiander, A.; Fine, N.M.; Hahn, C.; Katzberg, H.D.; Khayambashi, S.; et al. Canadian Guidelines for Hereditary Transthyretin Amyloidosis Polyneuropathy Management. Can. J. Neurol. Sci. 2022, 49, 7–18. [Google Scholar] [CrossRef]
- Wang, H.; Page, R.; Lopez, D.; Arkatkar, S.; Young, C.; Martinez, D.; Robbins-Furman, P.; Montalvo-Liendo, N.; Chen, L.S. Pregnant Latinas’ views of adopting exome sequencing into newborn screening: A qualitative study. Genet. Med. 2022. Available online: https://pubmed-ncbi-nlm-nih-gov.ezproxy3.lhl.uab.edu/35579624/ (accessed on 19 June 2022). [CrossRef]
- Global Alliance for Genomics and Health. Available online: https://www.ga4gh.org/ (accessed on 19 June 2022).
|
|
|
|
|
|
|
|
|
|
Newborn GS Process: |
Sample collection (heel stick, saliva, or cord blood) and transport to laboratory |
Sample accessioning in newborn GS screening laboratory |
DNA extraction, quantitation, quality assessment, and plating for use in sequencing |
Sequencing library preparation and quality assessment |
Pooling of sequencing samples for flowcell loading and genome sequencing * |
Transfer of sequence data to data analysis center |
Secondary analysis at data center (mapping of reads, variant calling) |
Tertiary analysis at data center (identification of variants for reporting) |
Manual variant review (where necessary) and screening report generation |
Transmission of final report to the physician |
Physician in contact the newborn’s family |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bick, D.; Ahmed, A.; Deen, D.; Ferlini, A.; Garnier, N.; Kasperaviciute, D.; Leblond, M.; Pichini, A.; Rendon, A.; Satija, A.; et al. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. Int. J. Neonatal Screen. 2022, 8, 40. https://doi.org/10.3390/ijns8030040
Bick D, Ahmed A, Deen D, Ferlini A, Garnier N, Kasperaviciute D, Leblond M, Pichini A, Rendon A, Satija A, et al. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. International Journal of Neonatal Screening. 2022; 8(3):40. https://doi.org/10.3390/ijns8030040
Chicago/Turabian StyleBick, David, Arzoo Ahmed, Dasha Deen, Alessandra Ferlini, Nicolas Garnier, Dalia Kasperaviciute, Mathilde Leblond, Amanda Pichini, Augusto Rendon, Aditi Satija, and et al. 2022. "Newborn Screening by Genomic Sequencing: Opportunities and Challenges" International Journal of Neonatal Screening 8, no. 3: 40. https://doi.org/10.3390/ijns8030040
APA StyleBick, D., Ahmed, A., Deen, D., Ferlini, A., Garnier, N., Kasperaviciute, D., Leblond, M., Pichini, A., Rendon, A., Satija, A., Tuff-Lacey, A., & Scott, R. H. (2022). Newborn Screening by Genomic Sequencing: Opportunities and Challenges. International Journal of Neonatal Screening, 8(3), 40. https://doi.org/10.3390/ijns8030040