Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Multispectral Imaging
3.2. DinoLite Portable Digital Microscope
3.3. Raman Spectroscopy
3.4. SEM/EDS
3.5. FT-IR ATR Spectroscopy
4. Discussion
5. Conclusions
- Canvas fabric, presumably made of cotton fibers.
- Preparation layer, presumably consisting of calcium sulfate (gypsum) mixed with Zinc White particles or lithopone.
- Primer layer made with linseed oil (currently, in an advanced oxidized state), Lead White and probably Zinc White with traces of lithopone deriving from the underlying layer.
- Blueish paint layer, consisting of linseed oil (currently, in an advanced oxidized state), Zinc White, Lead White, and pigments responsible for the blue-green hue (presumably, Green Earth, either Chromium Oxide Green, Viridian, or Chrome Yellow, mixed with Prussian Blue, Ultramarine Blue, copper-based pigments, and silica-based pigments).
- Varnish layer, made of an acrylic resin commonly used as a retouching and finishing varnish.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruno, G. Plinio Nomellini; Stringa Editore: Genova, Italy, 1985. [Google Scholar]
- Bruno, G. Nomellini a Genova. In Arti, Quaderni del Museo Accademia Linguistica di Belle; Erga Edizioni: Genova, Italy, 1994; pp. 3–5. [Google Scholar]
- Nomellini, B. Plinio Nomellini. I Colori del Sogno; Umberto Allemandi Editore: Livorno, Italy, 1998. [Google Scholar]
- Scotti Tosini, A. Dal verosimile al vero, dall’immaginario alla retorica. Pittura di storia nella Raccolta Giannoni. In Induno Fattori Nomellini Viani. Pittura di Storia Nella Galleria Nazionale d’Arte Moderna di Novara; Silvana Editoriale: Cinisello Balsamo, Italy, 2005; pp. 17–37. [Google Scholar]
- Radelet, T.; Laquale, G. Analisi non invasive su opere di Nomellini e Pellizza: Risultati e prospettive di ricercar. In I Colori dei Divisionisti. Tecnica e Teoria, Analisi e Prospettive di Ricerca; Ass Pellizza Da Volpedo: Volpedo, Italy, 2005. [Google Scholar]
- Radelet, T.; Laquale, G. Analisi tecniche non invasive su “Sole sulla brina” (1908–1910) e “L’imbarco dei Mille a Quarto” (1910–1911). In Induno Fattori Nomellini Viani. Pittura di Storia Nella Galleria d’Arte Moderna di Novara; Silvana Editoriale: Cinisello Balsamo, Italy, 2005; pp. 123–134. [Google Scholar]
- Radelet, T.; Laquale, G. Lo studio applicativo su due opere di Nomellini della Galleria d’Arte Moderna di Novara. In Induno Fattori Nomellini Viani. Pittura di Storia Nella Galleria d’Arte Moderna di Novara; Silvana Editoriale: Cinisello Balsamo, Italy, 2005; pp. 135–136. [Google Scholar]
- Bevilacqua, N.; Borgioli, L.; Garcia, I.A. I Pigmenti Nell’arte Dalla Preistoria Alla Rivoluzione Industriale; Saonara: Il Prato, Italy, 2010. [Google Scholar]
- Macchia, A.; Aureli, H.; Colasanti, I.A.; Rivaroli, L.; Tarquini, O.; Sabatini, M.; Dattanasio, M.; Munoz, L.P.; Colapietro, M.; La Russa, M.F. In Situ Diagnostic Analysis of the Second Half of the XVIII Century “Morte di Sant’Orsola” Panel Painting Coming from Chiesa Dei Santi Leonardo e Erasmo Roccacorga (LT, Italy). Int. J. Conserv. Sci. 2021, 12, 1377–1390. [Google Scholar]
- Macchia, A.; Biribicchi, C.; Carnazza, P.; Montorsi, S.; Sangiorgi, N.; Demasi, G.; Prestileo, F.; Cerafogli, E.; Colasanti, I.A.; Aureli, H.; et al. Multi-Analytical Investigation of the Oil Painting “Il Venditore di Cerini” by Antonio Mancini and Definition of the Best Green Cleaning Treatment. Sustainability 2022, 14, 3972. [Google Scholar] [CrossRef]
- Crupi, V.; Fazio, B.; Fiocco, G.; Galli, G.; La Russa, M.F.; Licchelli, M.; Majolino, D.; Malagodi, M.; Ricca, M.; Ruffolo, S.A.; et al. Multi-analytical study of Roman frescoes from Villa dei Quintili (Rome, Italy). J. Archaeol. Sci. Rep. 2018, 21, 422–432. [Google Scholar] [CrossRef]
- Hegemann, P.; Oesterhelt, D.; Bamberg, E. The transport activity of the light-driven chloride pump halorhodopsin isregulated by green and blue light. Biochim. Biophys. Acta 1985, 819, 195–205. [Google Scholar] [CrossRef]
- Database of ATR-FT-IR Spectra of Various Materials. 2019. Available online: https://spectra.chem.ut.ee/ (accessed on 3 March 2022).
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extende region of 4000–80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- Harley, R.D. Artists’ Pigments c.1600–1835: A Study in English Documentary Sources; Elsevier Pub. Co.: New York, NY, USA, 1970. [Google Scholar]
- Picollo, M.; Bacci, M.; Magrini, D.; Radicati, B.; Trumpy, G.; Tsukada, M.; Kunzelman, D. Modern White Pigments: Their Identification by Means of Noninvasive Ultraviolet, Visible, and Infrared Fiber Optic Reflectance Spectroscopy. In Modern Paints Uncovered; Getty Conservation Institute: Los Angeles, CA, USA, 2006. [Google Scholar]
- Coccato, A.; Caggiani, M.C.; Occhipinti, R.; Mazzoleni, P.; D’Alessio, A.; Russo, A.; Barone, G. The Irreplaceable Contribution of Cross Sections Investigation: Painted Plasters from the Sphinx Room (Domus Aurea, Rome). Minerals 2021, 11, 4. [Google Scholar] [CrossRef]
- Desnica, V.; Furic, K.; Hochleitner, B.; Mantler, M. A comparative analysis of five chrome green pigments based on different spectroscopic techniques. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 681–687. [Google Scholar] [CrossRef]
- Darwish, S.S. Scientific Investigation of the Materials and Techniques Used in a 19th Century Egyptian Cemetery Wall Painting (Hawsh Al-Basha). Int. J. Conserv. Sci. 2013, 4, 145–152. [Google Scholar]
- Costa, T.C.; Richter, F.A.; Castro, E.T.; Gonçalves, S.; Spudeit, D.A.; Micke, G.A. Elemental identification of blue paintings traces present in historic cemeteries in the São Martinho region, southern Brazil. J. Mol. Struct. 2018, 1155, 434–442. [Google Scholar] [CrossRef]
- Li, J.; Mai, B.; Teri, G.; Li, Y.; Cao, J.; Li, Y.; Wang, J. Multi-Analytical Research on the Caisson Painting of Dayu Temple in Hancheng, Shaanxi, China. Coatings 2021, 11, 1372. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Peng, F.; Bian, J.; Yuan, T.; Xu, F.; Sun, R. Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst. Molecules 2009, 14, 3551–3566. [Google Scholar] [CrossRef] [PubMed]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2018, 52, 487–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; He, H.; Zhu, H.; Cheng, M.; Li, M.; Wang, S. Thermo-Responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation. Polymers 2018, 10, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karunakaran, C.; Christensen, C.R.; Gaillard, C.; Lahlali, R.; Blair, L.M.; Perumal, V.; Miller, S.S.; Hitchcock, A.P. Introduction of Soft X-ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research. PLoS ONE 2015, 10, e0122959. [Google Scholar] [CrossRef] [Green Version]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Refectance FT-IR spectroscopy as a viable option for textile fber identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Morgan, S.; Townsend, J.H.; Hackney, S.; Perry, R. Canvas and its Preparation in Early Twentieth-Century British Paintings. In The Camden Town Group in Context; Tate Research Publication: London, UK, 2012. [Google Scholar]
- Shendrik, R.; Kaneva, E.; Radomskaya, T.; Sharygin, I.; Marfin, A. Relationships between the Structural, Vibrational, and Optical Properties of Microporous Cancrinite. Crystals 2021, 11, 280. [Google Scholar] [CrossRef]
- Jozanikohan, G.; Abarghooei, M.N. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Pet. Explor. Prod. Technol. 2022. Available online: https://link.springer.com/article/10.1007/s13202-021-01449-y (accessed on 18 March 2022).
- Cristache, R.A.; Sandu, I.; Vasilache, V.; Cristache, O. Study of Archeometric Characteristics of a Panel Painted Icon from XIXth Century. Acta Chem. Iasi 2013, 21, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Deju, R.; Mazilu, C.; Stanculescu, I.; Tuca, C. Fourier Transform Infrared Spectroscopic Characterization of Thermal Treated Kaolin. Rom. Rep. Phys. 2020, 72, 806. [Google Scholar]
- Possenti, E.; Colombo, C.; Realini, M.; Song, C.L.; Kazarian, S.G. Insight into the effects of moisture and layer build-up on the formation of lead soaps using micro-ATR-FTIR spectroscopic imaging of complex painted stratigraphies. Anal. Bioanal. Chem. 2021, 413, 455–467. [Google Scholar] [CrossRef]
- Rampazzi, L.; Corti, C.; Brunello, V. Non-invasive techniques for revealing the palette of the Romantic painter Francesco Hayez. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 142–154. [Google Scholar] [CrossRef]
- Rampazzi, L.; Corti, C. Are commercial pigments realiable references for the analysis of paintings? Int. J. Conserv. Sci. 2019, 10, 207–220. [Google Scholar]
- Gomez, M.; Reggio, D.; Lazzari, M. Linseed oil as a model system for surface enhanced Raman spectroscopy detection of degradation products in artworks. J. Raman Spectrosc. 2018, 50, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Osmond, G.; Boon, J.J.; Puskar, L.; Drennan, J. Metal Stearate Distributions in Modern Artists’ Oil Paints: Surface and Cross-Sectionale Investigation of Reference Paint FIlms Using Conventional and Synchroton Infrared Microspectroscopy. Appl. Spectrosc. 2012, 66, 1136–1144. [Google Scholar] [CrossRef]
- Izzo, F.C.; Kratter, M.; Nevin, A.; Zendri, E. A Critical Review on the Analysis of Metal Soaps in Oil Paintings. Chem. Open 2021, 10, 904–921. [Google Scholar] [CrossRef]
- Hermans, J.J.; Keune, K.; Van Loon, A.; Stols-Witlox, M.J.N.; Corkery, R.W.; Iedema, P.D. The synthesis of new types of lead and zinc soaps: A source of information for the study of oil paint degradation. In Proceedings of the ICOM-CC 17th Triennal Conference, Melbourne, Australia, 17–19 September 2014. [Google Scholar]
- Romano, C.; Lam, T.; Newsome, G.A.; Taillon, J.A.; Little, N.; Tsang, J. Characterization of Zinc Carboxylates in an Oil Paint Test Panel. Stud. Conserv. 2019, 65, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Cotte, M.; Checroun, E.; de Nolf, W.; Taniguchi, Y.; de Viguerie, L.; Burghammer, M.; Walter, P.; Rivard, C.; Salomé, M.; Janssens, K.; et al. Lead soaps in paintings: Friends or foes? Stud. Conserv. 2016, 62, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Cocca, M.; D’Orazio, L.; D’Arienzo, L.; Gentile, G. Polyacrylates for conservation. Chemico-physical properties and durability of different commercial products. Polym. Test. 2004, 23, 333–342. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Pinton, F.; Zendri, E. A preliminary study of the composition of commercial oil, acrylic and vinyl paints and their behaviour after accelerated ageing conditions. Conserv. Sci. Cult. Herit. 2014, 14, 353–369. [Google Scholar]
- Noble, P. A Brief History of Metal Soaps in Paintings from a Conservation Perspective. In Metal Soaps in Art Conservation and Research; Springer: Cham, Germany, 2019; pp. 1–22. [Google Scholar]
- Rogala, D.; Lake, S.F.; Mains, C.; Mecklenburg, M. Condition Problems Related to Zinc Oxide Underlayers: Examination of Selected Abstract Expressionist Paintings from the Collection of the Hirshhorn Museum and Sculpture Garden, Smithsonian Institution. J. Am. Inst. Conserv. 2010, 49, 96–113. [Google Scholar] [CrossRef]
- Helwig, K.P.; Corbeil, M.C.; Moffat, E.; Duguay, D. Conservation issues in several twentieth-century Canadian oil paintings: The role of zinc carboxylate reaction products. In Issues in Contemporary Oil Paint; Springer Nature: Cham, Switzerland, 2014; pp. 167–184. [Google Scholar]
- Beerse, M.; Keune, K.; Iedema, P.; Woutersen, S.; Hermans, J. Evolution of Zinc Carboxylate Species in Oil Paint Ionomers. ACS Appl. Polym. Mater. 2020, 2, 5674–5685. [Google Scholar] [CrossRef]
Spectrum | C | O | Na | Si | S | Ca | Fe | Zn | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 27.8 | 26.2 | 2.0 | 3.6 | 10.0 | 13.0 | 11.4 | 6.0 | ||
Spectrum 2 | 45.0 | 35.3 | 2.3 | 17.4 | ||||||
Spectrum 3 | 55.0 | 45.0 | ||||||||
Spectrum 4 | 53.6 | 46.0 | 0.4 | |||||||
Spectrum 5 | 48.4 | 50.4 | 0.5 | 0.2 | 0.3 | 0.2 |
Spectrum | Mg | Al | Si | S | K | Ca | Cr | Fe | Zn | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 8.2 | 7.8 | 17.8 | 5.6 | 1.4 | 3.2 | 2.8 | 8.0 | 12.0 | 9.2 | 24.0 |
Spectrum 2 | 6.8 | 15.3 | 8.0 | 2.4 | 1.4 | 19.3 | 7.8 | 19.0 | 20.0 | ||
Spectrum 3 | 14.4 | 6.0 | 21.6 | 1.6 | 0.9 | 4.0 | 11.0 | 3.0 | 37.5 | ||
Spectrum 4 | 4.9 | 7.8 | 12.3 | 1.3 | 2.6 | 2.6 | 14 | 54.5 | |||
Spectrum 5 | 9.8 | 12.3 | 1.6 | 0.2 | 2.2 | 2.8 | 71.3 |
Spectrum | Mg | Al | Si | Ca | Fe | Zn | As |
---|---|---|---|---|---|---|---|
Spectrum 1 | 11.2 | 0.8 | 12.4 | 4.1 | 0.4 | 0.6 | 0.3 |
Spectrum | Mg | Al | Si | S | Ca | Cr | Fe | Zn | Br | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 8.6 | 15.7 | 19.6 | 5.8 | 19.0 | 7.7 | 23.6 | 0.00 | |||
Spectrum 2 | 5.2 | 11.2 | 8.2 | 3.0 | 21.6 | 17.2 | trac | 19.4 | 14.2 | ||
Spectrum 3 | 8.6 | 8.7 | 19.6 | 11.2 | 4.7 | 2.6 | 13.3 | 22.0 | 9.3 | 0.00 |
Spectrum | C | O | Na | Al | Si | S | Ca | Fe | Zn | Pb |
---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 54.0 | 10.5 | 7.6 | 8.0 | 0.8 | 2.4 | 16.7 | |||
Spectrum 2 | 58.0 | 28.7 | 0.8 | 1.2 | 0.7 | 0.7 | 2.6 | 7.3 | ||
Spectrum 3 | 41.4 | 48.3 | 0.2 | 5.2 | 4.9 | |||||
Spectrum 4 | 55.3 | 37.2 | 0.9 | 2.0 | 3.0 | 1.7 | ||||
Spectrum 5 | 44.4 | 2.4 | 1.7 | 1.4 | 50.0 |
Spectrum | Al | Si | S | Cl | K | Ca | Ti | Fe | Cu | Zn | As | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 7.8 | 14.8 | 2.8 | 1.0 | 3.2 | 1.2 | 1.4 | 4.6 | 14.6 | 44.8 | 3.8 | |
Spectrum 2 | 4.7 | 11.2 | 1.6 | 5.0 | 4.4 | 2.8 | 21.0 | 49.3 | ||||
Spectrum 3 | 1.7 | 38.7 | 43.4 | 4.0 | 7.0 | 5.2 | ||||||
Spectrum 4 | 3.3 | 41.3 | 52.2 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchia, A.; Biribicchi, C.; Rivaroli, L.; Aureli, H.; Cerafogli, E.; Colasanti, I.A.; Carnazza, P.; Demasi, G.; La Russa, M.F. Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini. Methods Protoc. 2022, 5, 52. https://doi.org/10.3390/mps5030052
Macchia A, Biribicchi C, Rivaroli L, Aureli H, Cerafogli E, Colasanti IA, Carnazza P, Demasi G, La Russa MF. Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini. Methods and Protocols. 2022; 5(3):52. https://doi.org/10.3390/mps5030052
Chicago/Turabian StyleMacchia, Andrea, Chiara Biribicchi, Laura Rivaroli, Hélène Aureli, Eleonora Cerafogli, Irene Angela Colasanti, Paola Carnazza, Giuseppe Demasi, and Mauro Francesco La Russa. 2022. "Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini" Methods and Protocols 5, no. 3: 52. https://doi.org/10.3390/mps5030052
APA StyleMacchia, A., Biribicchi, C., Rivaroli, L., Aureli, H., Cerafogli, E., Colasanti, I. A., Carnazza, P., Demasi, G., & La Russa, M. F. (2022). Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini. Methods and Protocols, 5(3), 52. https://doi.org/10.3390/mps5030052