The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Data Extraction
2.5. Reconstruction of Individual Patient Data (IPD)
2.6. Statistical Analysis
2.7. Non-Inferiority Analysis
3. Results
3.1. Systematic Review
3.2. Reconstruction of IPD
3.3. Non-Inferiority Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Zhou, Y.; Lee, J.J. IPDfromKM: Reconstruct individual patient data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2021, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Messori, A. Reconstruction of individual-patient data from the analysis of Kaplan-Meier curves: This method is widely used in oncology and cardiology—List of 53 studies in oncology and 61 in cardiology (preprint). Open Sci. Framew. 2024. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Cheng, Y. The efficacy and safety of immunotherapy as first-line treatment for extensive-stage small cell lung cancer: Evaluating based on reconstructed individual patient data. Front. Oncol. 2024, 14, 1371313. [Google Scholar] [CrossRef]
- Wang, B.C.; Fu, C.; Lin, G.H. The efficacy of adebrelimab compared with durvalumab and atezolizumab in untreated extensive-stage small-cell lung cancer: A survival analysis of reconstructed patient-level data. Front. Immunol. 2023, 14, 1185577. [Google Scholar] [CrossRef]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Royston, P. Reconstructing time-to-event data from published Kaplan-Meier curves. Stata J. 2017, 17, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Rogula, B.; Lozano-Ortega, G.; Johnston, K.M. A Method for Reconstructing Individual Patient Data From Kaplan-Meier Survival Curves That Incorporate Marked Censoring Times. MDM Policy Pract. 2022, 7, 23814683221077643. [Google Scholar] [CrossRef] [PubMed]
- Piragine, E.; Veneziano, S.; Trippoli, S.; Messori, A.; Calderone, V. Efficacy and Safety of Cardioband in Patients with Tricuspid Regurgitation: Systematic Review and Meta-Analysis of Single-Arm Trials and Observational Studies. J. Clin. Med. 2024, 13, 6393. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Gasperoni, L.; Del Bono, L.; Messori, A.; Damuzzo, V. Efficacy of Immune Checkpoint Inhibitors vs. Tyrosine Kinase Inhibitors/Everolimus in Adjuvant Renal Cell Carcinoma: Indirect Comparison of Disease-Free Survival. Cancers 2024, 16, 557. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.R.; Wu, T.W.; Yi, T.Y.; Wu, A.J. Comparative Efficacy of Adagrasib and Sotorasib in KRAS G12C-Mutant NSCLC: Insights from Pivotal Trials. Cancers 2024, 16, 3676. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.P.; Van den Eynde, J.; Jacquemyn, X.; Tasoudis, P.; Erten, O.; Dokollari, A.; Torregrossa, G.; Sicouri, S.; Ramlawi, B. Late outcomes of transcatheter aortic valve implantation in bicuspid versus tricuspid valves: Meta-analysis of reconstructed time-to-event data. Trends Cardiovasc. Med. 2023, 33, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Wach, J.; Vychopen, M.; Güresir, A.; Guranda, A.; Nestler, U.; Güresir, E. A Long-Term Comparative Analysis of Endovascular Coiling and Clipping for Ruptured Cerebral Aneurysms: An Individual Patient-Level Meta-Analysis Assessing Rerupture Rates. J. Clin. Med. 2024, 13, 1778. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Ritz, C. Individual participant data (IPD)-level meta-analysis of randomised controlled trials among dark-skinned populations to estimate the dietary requirement for vitamin D. Syst. Rev. 2019, 8, 128. [Google Scholar] [CrossRef]
- Oliva, A.; Ioppolo, A.M.; Chiarito, M.; Cremonesi, A.; Azzano, A.; Micciche, E.; Mangiameli, A.; Ariano, F.; Ferrante, G.; Reimers, B.; et al. Left Atrial Appendage Closure Compared with Oral Anticoagulants for Patients with Atrial Fibrillation: A Systematic Review and Network Meta-Analysis. J. Am. Heart Assoc. 2024, 13, e034815. [Google Scholar] [CrossRef]
- Saleh, A.; Haldar, S. Atrial fibrillation: A contemporary update. Clin. Med. 2023, 23, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, S.; Hill, A.; Irving, G.; Lip, G.Y.H.; Abdul-Rahim, A.H. Atrial fibrillation and stroke: State-of-the-art and future directions. Curr. Probl. Cardiol. 2024, 49 Pt C, 102181. [Google Scholar] [CrossRef]
- Essa, H.; Hill, A.M.; Lip, G.Y.H. Atrial Fibrillation and Stroke. Card. Electrophysiol. Clin. 2021, 13, 243–255. [Google Scholar] [CrossRef]
- Salmasi, S.; Loewen, P.S.; Tandun, R.; Andrade, J.G.; De Vera, M.A. Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies. BMJ Open 2020, 10, e034778. [Google Scholar] [CrossRef]
- Spruit, J.R.; de Vries, T.A.C.; Hemels, M.E.W.; Pisters, R.; de Groot, J.R.; Jansen, R.W.M.M. Direct Oral Anticoagulants in Older and Frail Patients with Atrial Fibrillation: A Decade of Experience. Drugs Aging 2024, 41, 725–740. [Google Scholar] [CrossRef]
- Xu, K.; Chan, N.C.; Eikelboom, J.W. Strategies for the prevention and treatment of bleeding in patients treated with dabigatran: An update. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1091–1102. [Google Scholar] [CrossRef]
- Silverio, A.; Di Maio, M.; Prota, C.; De Angelis, E.; Radano, I.; Citro, R.; Carrizzo, A.; Ciccarelli, M.; Vecchione, C.; Capodanno, D.; et al. Safety and efficacy of non-vitamin K antagonist oral anticoagulants in elderly patients with atrial fibrillation: Systematic review and meta-analysis of 22 studies and 440 281 patients. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, f20–f29. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Romagnoli, E.; Arioli, D.; Coluccio, V.; Marrazzo, A.; Athanasiou, A.; Di Girolamo, M.; Cappi, C.; Marietta, M.; Capitelli, M. Risk and Management of Bleeding Complications with Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Venous Thromboembolism: A Narrative Review. Adv. Ther. 2023, 40, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Bing, S.; Chen, R.R. Clinical efficacy and safety comparison of Watchman device versus ACP/Amulet device for percutaneous left atrial appendage closure in patients with nonvalvular atrial fibrillation: A study-level meta-analysis of clinical trials. Clin. Cardiol. 2023, 46, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Imamura, T.; Tanaka, S.; Fukuda, N.; Kinugawa, K. Left atrial appendage closure for stroke prevention in nonvalvular atrial fibrillation: A current overview. J. Cardiol. 2023, 81, 420–428. [Google Scholar] [CrossRef]
- Damuzzo, V.; Agnoletto, L.; Leonardi, L.; Chiumente, M.; Mengato, D.; Messori, A. Analysis of Survival Curves: Statistical Methods Accounting for the Presence of Long-Term Survivors. Front. Oncol. 2019, 9, 453. [Google Scholar] [CrossRef]
- Walker, E.; Nowacki, A.S. Understanding equivalence and noninferiority testing. J. Gen. Intern. Med. 2011, 26, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Galea, R.; Meneveau, N.; De Marco, F.; Aminian, A.; Heg, D.; Chalkou, K.; Grani, C.; Anselme, F.; Franzone, A.; Vranckx, P.; et al. One-Year Outcomes After Amulet or Watchman Device for Percutaneous Left Atrial Appendage Closure: A Prespecified Analysis of the SWISS-APERO Randomized Clinical Trial. Circulation 2024, 149, 484–486. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Lakkireddy, D.; Thaler, D.; Ellis, C.R.; Swarup, V.; Gambhir, A.; Hermiller, J.; Nielsen-Kudsk, J.E.; Worthley, S.; Nair, D.; Schmidt, B.; et al. 3-Year Outcomes From the Amplatzer Amulet Left Atrial Appendage Occluder Randomized Controlled Trial (Amulet IDE). JACC Cardiovasc. Interv. 2023, 16, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.J.; Harnay, E.; Al Ayouby, A.; Mansourati, V.; Jobic, Y.; Gilard, M.; Le Ven, F.; Mansourati, J. One year outcome and analysis of peri-device leak of left atrial appendage occlusion devices. J. Interv. Card. Electrophysiol. 2022, 64, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Doshi, S.K.; Sievert, H.; Buchbinder, M.; Neuzil, P.; Huber, K.; Halperin, J.L.; Holmes, D.; Investigators, P.A. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation 2013, 127, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Messori, A.; Trippoli, S.; Fadda, V. Transcatheter Versus Surgical Aortic Valve Replacement in Patients at Low Risk: Long-Term Outcomes From the Three Pivotal Randomised Trials Determined by Reconstruction of Individual Patient Data From Kaplan-Meier Curves. Heart Lung Circ. 2024, 33, e38–e40. [Google Scholar] [CrossRef] [PubMed]
- Panikker, S.; Lord, J.; Jarman, J.W.; Armstrong, S.; Jones, D.G.; Haldar, S.; Butcher, C.; Khan, H.; Mantziari, L.; Nicol, E.; et al. Outcomes and costs of left atrial appendage closure from randomized controlled trial and real-world experience relative to oral anticoagulation. Eur. Heart J. 2016, 37, 3470–3482. [Google Scholar] [CrossRef] [PubMed]
- Price, M.J.; Reddy, V.Y.; Valderrabano, M.; Halperin, J.L.; Gibson, D.N.; Gordon, N.; Huber, K.C.; Holmes, D.R., Jr. Bleeding Outcomes After Left Atrial Appendage Closure Compared with Long-Term Warfarin: A Pooled, Patient-Level Analysis of the WATCHMAN Randomized Trial Experience. JACC Cardiovasc. Interv. 2015, 8, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Korsholm, K.; Damgaard, D.; Valentin, J.B.; Packer, E.J.S.; Odenstedt, J.; Sinisalo, J.; Putaala, J.; Naess, H.; Al-Jazi, M.A.; Karlsson, J.E.; et al. Left atrial appendage occlusion vs novel oral anticoagulation for stroke prevention in atrial fibrillation: Rationale and design of the multicenter randomized occlusion-AF trial. Am. Heart J. 2022, 243, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. 4-Year Outcomes After Left Atrial Appendage Closure Versus Nonwarfarin Oral Anticoagulation for Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Boersma, L.; Healey, J.S.; Mansour, M.; Tondo, C.; Phillips, K.; Doshi, R.; Jaber, W.; Hynes, E.; Allocco, D.J.; et al. Comparison of anticoagulation with left atrial appendage closure after atrial fibrillation ablation: Rationale and design of the OPTION randomized trial. Am. Heart J. 2022, 251, 35–42. [Google Scholar] [CrossRef]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. Left Atrial Appendage Closure Versus Direct Oral Anticoagulants in High-Risk Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 75, 3122–3135. [Google Scholar] [CrossRef] [PubMed]
First Author, Reference | Patient Characteristics | Comparators | No. of Patients (A) | No. of Patients (B) | Age, Years ± SD (A) | Age, Years ± SD (B) | Men, % (A) | Men, % (B) |
---|---|---|---|---|---|---|---|---|
Galea [27] | High-risk AF patients with clinical indication to atrial appendage occlusion devices | Amlet (A) vs. Watchman (B) | 111 | 110 | 76.5 ± 7.1 | 77.3 ± 8.4 | 71.2 | 70.0 |
Lakkireddy [29] | Adult patients with paroxysmal, persistent, or permanent NVAF and at high risk of stroke or systemic embolism (CHADS2 score ≥ 2 or CHA2DS2-VASc score ≥ 3) | Amlet (A) vs. Watchman (B) | 917 | 916 | 75.0 ± 7.6 | 75.2 ± 7.6 | 58.6 | 61.4 |
Mansour [30] | Patients with a mean CHA2DS2-VASc score 3.94 ± 1.2 underwent left atrial appendage occlusion | Amlet (A) vs. Watchman (B) | 26 | 25 | 75 ± 7.4 | 76 ± 6.9 | 76.0 | 76.0 |
Holmes [28] | Patients with NVAF (paroxysmal, persistent, or permanent) with CHADS2 score ≥ 2 or 1 and another risk factor | Watchman (A) vs. warfarin (B) | 269 | 138 | 74.0 ± 7.4 | 74.9 ± 7.2 | 74.6 | 67.7 |
Reddy [31] | Adult patients with a history of paroxysmal, persistent, or permanent NVAF plus at least 1 additional stroke risk factor, eligible for warfarin therapy | Watchman (A) vs. warfarin (B) | 463 | 244 | - | - | - | - |
First Author, Reference | Comparators | No. of Events/Total No. of Patients | Published HR (95% CI) | ||
---|---|---|---|---|---|
Amlet | Watchman | Warfarin | |||
Galea [27] | Amlet vs. Watchman | 10/111 | 11/110 | - | 0.91 (0.39 to 2.14) |
Lakkireddy [29] | Amlet vs. Watchman | 95/917 | 105/916 | - | 0.87 (0.66 to 1.14) |
Mansour [30] | Amlet vs. Watchman | 0/26 | 6/25 | - | Not reported; p = 0.008 |
Holmes [28] | Watchman vs. warfarin | - | 14/269 | 4/138 | 1.07 (0.57 to 1.89) |
Reddy [31] | Watchman vs. warfarin | - | 31/463 | 24/244 | 0.71 (0.44 to 1.30) |
Intervention | RMST (Months) | 95% CI |
---|---|---|
Watchman | 28.146 | 27.826 to 28.466 |
Amlet | 28.443 | 28.049 to 28.838 |
Warfarin | 28.579 | 27.983 to 29.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piragine, E.; Trippoli, S.; Veneziano, S.; Messori, A.; Calderone, V. The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods Protoc. 2025, 8, 13. https://doi.org/10.3390/mps8010013
Piragine E, Trippoli S, Veneziano S, Messori A, Calderone V. The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods and Protocols. 2025; 8(1):13. https://doi.org/10.3390/mps8010013
Chicago/Turabian StylePiragine, Eugenia, Sabrina Trippoli, Sara Veneziano, Andrea Messori, and Vincenzo Calderone. 2025. "The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application" Methods and Protocols 8, no. 1: 13. https://doi.org/10.3390/mps8010013
APA StylePiragine, E., Trippoli, S., Veneziano, S., Messori, A., & Calderone, V. (2025). The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods and Protocols, 8(1), 13. https://doi.org/10.3390/mps8010013