Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines
Abstract
:1. Introduction
2. Learning about the World through Agency
3. Learning in the Computing Nature
Learning in the Evolutionary Perspective
4. Learning as Computation in Networks of Agents
5. Info-Computational Learning by Morphological Computation
6. Learning to Learn from Raw Data and up—Agency from System 1 to System 2
7. Conclusions and Future Work
Funding
Acknowledgments
Conflicts of Interest
References
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, G.; Kari, L. The Many Facets of Natural Computing. Commun. ACM 2008, 51, 72–83. [Google Scholar]
- Dodig-Crnkovic, G. Nature as a network of morphological infocomputational processes for cognitive agents. Eur. Phys. J. Spec. Top. 2017. [Google Scholar] [CrossRef] [Green Version]
- Dodig-Crnkovic, G. Cognition as Embodied Morphological Computation. In Philosophy and Theory of Artificial Intelligence; Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2018; Volume 44, pp. 19–23. [Google Scholar]
- Bengio, Y. From System 1 Deep Learning to System 2 Deep Learning (NeurIPS 2019). Available online: https://www.youtube.com/watch?v=T3sxeTgT4qc (accessed on 24 June 2020).
- Bengio, Y. Scaling up deep learning. In Proceedings of the KDD ’14: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2014; p. 1966. [Google Scholar]
- Bengio, Y. The Consciousness Prior. arXiv 2019, arXiv:1709.08568v2. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; ISBN 9780374275631. [Google Scholar]
- Clark, A. Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1989; ISBN 978-0262530958. [Google Scholar]
- Scellier, B.; Bengio, Y. Towards a Biologically Plausible Backprop. arXiv 2016, arXiv:1602.05179, 1–17. [Google Scholar]
- Minsky, M. Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy. In Artificial Intelligence at MIT, Expanding Frontiers; Winston, P.H., Ed.; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Dinsmore, J. The Symbolic and Connectionist Paradigms; Psychology Press: New York, NY, USA; London, UK, 2014; ISBN 978-0805810806. [Google Scholar]
- Wang, J. Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence. Available online: http://wangjieshu.com/2017/12/23/symbol-vs-connectionism-a-closing-gap-in-artificial-intelligence/ (accessed on 28 June 2020).
- Garcez, A.D.A.; Besold, T.R.; De Raedt, L.; Foldiak, P.; Hitzler, P.; Icard, T.; Kiihnberger, K.U.; Lamb, L.C.; Miikkulainen, R.; Silver, D.L. Neural-symbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI Spring Symposium-Technical Report, Stanford, CA, USA, 23–25 March 2015; Dagstuhl Seminar 14381. Dagstuhl Publishing: Dagstuhl, Germany, 2015. [Google Scholar]
- Floridi, L. Informational realism. In Proceedings of the Selected Papers from Conference on Computers and Philosophy-Volume 37 (CRPIT ’03); Weckert, J., Al-Saggaf, Y., Eds.; Australian Computer Society, Inc.: Darlinghurst, Australia, 2003; pp. 7–12. [Google Scholar]
- Dodig-Crnkovic, G. Dynamics of Information as Natural Computation. Information 2011, 2, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Dodig-Crnkovic, G. Information, Computation, Cognition. Agency-Based Hierarchies of Levels. In Fundamental Issues of Artificial Intelligence. Synthese Library, (Studies in Epistemology, Logic, Methodology, and Philosophy of Science); Müller, V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 141–159. ISBN 9783319264851. Volume 376. [Google Scholar]
- Dodig-Crnkovic, G.; Giovagnoli, R. COMPUTING NATURE. Turing Centenary Perspective; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7, ISBN 978-3-642-37224-7. [Google Scholar]
- Dodig-Crnkovic, G. Physical computation as dynamics of form that glues everything together. Information 2012, 3, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Froese, T.; Ziemke, T. Enactive Artificial Intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 466–500. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993; ISBN 978-0195079517. [Google Scholar]
- Deacon, T. Incomplete Nature. How Mind Emerged from Matter; W. W. Norton & Company: New York, NY, USA, 2011; ISBN 978-0-393-04991-6. [Google Scholar]
- Bateson, G. Steps to an Ecology of Mind; University of Chicago Press: Chicago, IL, USA, 1973; ISBN 9780226039053. [Google Scholar]
- Floridi, L. A defense of informational structural realism. Synthese 2008, 161, 219–253. [Google Scholar] [CrossRef] [Green Version]
- Chaitin, G. Building the World Out of Information and Computation: Is God a Programmer, Not a Mathematician? In Exploring the Foundations of Science, Thought and Reality; Wuppuluri, S., Doria, F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Dodig-Crnkovic, G. Shifting the Paradigm of Philosophy of Science: Philosophy of Information and a New Renaissance. Minds Mach. 2003. [Google Scholar] [CrossRef]
- Maturana, H. Biology of Cognition; Defense Technical Information Center: Urbana, IL, USA, 1970. [Google Scholar]
- Maturana, H.; Varela, F. Autopoiesis and cognition: The Realization of the Living; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1980; ISBN 9789027710154. [Google Scholar]
- Stewart, J. Cognition = life: Implications for higher-level cognition. Behav. Process. 1996, 35, 311–326. [Google Scholar] [CrossRef]
- Ben-Jacob, E. Bacterial Complexity: More Is Different on All Levels. In Systems Biology-The Challenge of Complexity; Nakanishi, S., Kageyama, R., Watanabe, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–35. [Google Scholar]
- Ben-Jacob, E. Learning from Bacteria about Natural Information Processing. Ann. N. Y. Acad. Sci. 2009, 1178, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P. The cognitive cell: Bacterial behavior reconsidered. Front. Microbiol. 2015, 6, 264. [Google Scholar] [CrossRef] [PubMed]
- Marijuán, P.C.; Navarro, J.; del Moral, R. On prokaryotic intelligence: Strategies for sensing the environment. BioSystems 2010. [Google Scholar] [CrossRef]
- Popper, K. All Life Is Problem Solving; Routledge: London, UK, 1999; ISBN 978-0415249928. [Google Scholar]
- Baars, B.J. Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Prog. Brain Res. 2005, 150, 45–53. [Google Scholar] [CrossRef]
- Van Duijn, M.; Keijzer, F.; Franken, D. Principles of Minimal Cognition: Casting Cognition as Sensorimotor Coordination. Adapt. Behav. 2006, 14, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Århem, P.; Liljenström, H. On the coevolution of cognition and consciousness. J. Theor. Biol. 1997. [Google Scholar] [CrossRef]
- Liljenström, H.; Århem, P. Consciousness Transitions: Phylogenetic, Ontogenetic and Physiological Aspects; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-444-52977-0. [Google Scholar]
- Dodig-Crnkovic, G.; von Haugwitz, R. Reality Construction in Cognitive Agents through Processes of Info-Computation. In Representation and Reality in Humans, Other Living Organisms and Intelligent Machines; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 211–235. ISBN 978-3-319-43782-8. [Google Scholar]
- Putnam, H. Mathematics, Matter and Method; Cambridge University Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Dodig-Crnkovic, G.; Schroeder, M. Contemporary Natural Philosophy and Philosophies. Philosophies 2018, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Dodig-Crnkovic, G.; Schroeder, M. Contemporary Natural Philosophy and Philosophies-Part 1; MDPI AG: Basel, Switzerland, 2019; ISBN 978-3-03897-822-0. [Google Scholar]
- Edmonds, B.; Gershenson, C. Learning, Social Intelligence and the Turing Test. In How the World Computes. CiE 2012. Lecture Notes in Computer Science; Cooper, S.B., Dawar, A., Löwe, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7318. [Google Scholar]
- Minsky, M. The Society of Mind; Simon and Schuster: New York, NY, USA, 1986; ISBN 0-671-60740-5. [Google Scholar]
- Dennett, D. From Bacteria to Bach and Back: The Evolution of Minds; W. W. Norton & Company: New York City, NY, USA, 2017; ISBN 978-0-393-24207-2. [Google Scholar]
- Dodig-Crnkovic, G. Investigations into Information Semantics and Ethics of Computing; Mälardalen University Press: Västerås, Sweden, 2006; ISBN 91-85485-23-3. [Google Scholar]
- Dodig-Crnkovic, G.; Müller, V. A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic. In Information and Computation; Dodig Crnkovic, G., Burgin, M., Eds.; World Scientific Pub Co Inc: Singapore, 2009; pp. 149–184. ISBN 978-981-4295-47-5. [Google Scholar]
- Dodig-Crnkovic, G. The info-computational nature of morphological computing. In Philosophy and Theory of Artificial Intelligence. Studies in Applied Philosophy, Epistemology and Rational Ethics; Müller, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 5, ISBN 00935301. [Google Scholar]
- Pfeifer, R.; Bongard, J. How the Body Shapes the Way We Think–A New View of Intelligence; MIT Press: Cambridge, MA, USA, 2006; ISBN 9780262162395. [Google Scholar]
- Witzany, G. Memory and Learning as Key Competences of Living Organisms. In Memory and Learning in Plants. Signaling and Communication in Plants; Baluska, F., Gagliano, M., Witzany, G., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Witzany, G. Introduction: Key Levels of Biocommunication of Bacteria. In Biocommunication in Soil Microorganisms; Witzany, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Witzany, G. Viruses: Essential Agents of Life; Springer Netherlands: Dodrecht, Netherlands, 2012; ISBN 9789400748996. [Google Scholar]
- Villarreal, L.P.; Witzany, G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010. [Google Scholar] [CrossRef] [Green Version]
- Leyton, M. Shape as Memory Storage. In Ambient Intelligence for Scientific Discovery. Lecture Notes in Computer Science; Yang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3345. [Google Scholar]
- Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell 2014. [Google Scholar] [CrossRef] [Green Version]
- Fields, C.; Levin, M. Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeleton-membrane system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, N.V.; Carew, T.J. Memory Takes Time. Neuron 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzany, G. Biocommunication of Archaea; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319655369. [Google Scholar]
- Witzany, G. Bio-communication of Plants. Nat. Preced. 2007. [Google Scholar] [CrossRef]
- Pombo, O.; Torres, J.M.; Rahman, S. Special Sciences and the Unity of Science; Logic, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-9213-5. [Google Scholar]
- Rosen, R. Anticipatory Systems; Springer: New York, NY, USA, 1985; ISBN 978-1-4614-1268-7. [Google Scholar]
- Popper, K. Objective Knowledge: An Evolutionary Approach; Oxford University Press: Oxford, UK, 1972. [Google Scholar]
- Campbell, D.T. Evolutionary epistemology. In The Philosophy of Karl Popper; Schilpp, P.A., Ed.; Open Court Publ.: La Salle, IL, USA, 1974; Volume 1, pp. 413–463. [Google Scholar]
- Vanberg, V. Cultural Evolution, Collective Learning, and Constitutional Design. In Economic Thought and Political Theory; Reisman, D., Ed.; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Thagard, P. Against Evolutionary Epistemology. PSA Proc. Bienn. Meet. Philos. Sci. Assoc. 1980. [Google Scholar] [CrossRef]
- Kronfeldner, M.E. Darwinian “blind” hypothesis formation revisited. Synthese 2010. [Google Scholar] [CrossRef] [Green Version]
- Jablonka, E.; Lamb, M.J.; Anna, Z. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life; MIT Press: Cambridge, MA, USA, 2014; ISBN 9780262322676. [Google Scholar]
- Laland, K.N.; Uller, T.; Feldman, M.W.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B Biol. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. The Music of Life: Biology Beyond the Genome. Lavoisierfr 2006. [Google Scholar] [CrossRef]
- Watson, R.A.; Szathmáry, E. How Can Evolution Learn? Trends Ecol Evol. 2016, 31, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Turing, A.M. Computing machinery and intelligence. In Machine Intelligence: Perspectives on the Computational Model; Routledge: New York, NY, USA, 2012; ISBN 0815327684. [Google Scholar]
- Chaitin, G. Epistemology as Information Theory: From Leibniz to Ω. In Computation, Information, Cognition–The Nexus and The Liminal; Dodig Crnkovic, G., Ed.; Cambridge Scholars Pub.: Newcastle, UK, 2007; pp. 2–17. ISBN 978-1-4438-0040-2. [Google Scholar]
- Neil Gershenfeld Morphogenesis for the Design of Design A Talk by. Available online: https://www.edge.org/conversation/neil_gershenfeld-morphogenesis-for-the-design-of-design (accessed on 28 June 2020).
- Sloman, A. Meta-Morphogenesis: Evolution and Development of Information-Processing Machinery. In Alan Turing: His Work and Impact; Cooper, S.B., van Leeuwen, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; p. 849. ISBN 978-0-12-386980-7. [Google Scholar]
- Nature Gene Regulation. Available online: https://www.nature.com/subjects/gene-regulation (accessed on 28 June 2020).
- Hewitt, C. What is computation? Actor Model versus Turing’s Model. In A Computable Universe, Understanding Computation & Exploring Nature As Computation; Zenil, H., Ed.; World Scientific Publishing Company: Singapore, 2012. [Google Scholar]
- Rozenberg, G.; Bäck, T.; Kok, J.N. (Eds.) Handbook of Natural Computing; Springer: Berlin, Germany, 2012; ISBN 978-3-540-92911-6. [Google Scholar]
- Denning, P. Computing is a natural science. Commun. ACM 2007, 50, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Denning, P.; Rosenbloom, P. The fourth great domain of science. ACM Commun. 2009, 52, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. On Abstract Intelligence: Toward a Unifying Theory of Natural, Artificial, Machinable, and Computational Intelligence. Int. J. Softw. Sci. Comput. Intell. 2009, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Crutchfield, J.P.; Ditto, William, L.; Sinha, S. Introduction to Focus Issue: Intrinsic and Designed Computation: Information Processing in Dynamical Systems-Beyond the Digital Hegemony. Chaos 2010, 20, 037101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutchfield, J.P.; Wiesner, K. Intrinsic Quantum Computation. Phys. Lett. A 2008, 374, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Collier, J. Information, Causation and Computation. In Information and Computation; Dodig-Crnkovic, G., Burgin, M., Eds.; World Scientific: Singapore, 2011; pp. 89–105. [Google Scholar]
- Zenil, H. A Computable Universe. Understanding Computation & Exploring Nature as Computation; World Scientific: Singapore, 2012; ISBN 978-9814374293. [Google Scholar]
- Piccinini, G. Computation in Physical Systems. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; 2017; Available online: https://plato.stanford.edu/archives/sum2017/entries/computation-physicalsystems/ (accessed on 28 June 2020).
- Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsman, D.; Kendon, V.; Stepney, S. The natural science of computing. Commun. ACM 2017, 60. [Google Scholar] [CrossRef]
- Horsman, D.; Kendon, V.; Stepney, S.; Young, J.P.W. Abstraction and representation in living organisms: When does a biological system compute? In Representation and Reality in Humans, Animals, and Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2017; Volume 28, pp. 91–116. [Google Scholar]
- Brooks, R.A. Intelligence without representation. Artif. Intell. 1991. [Google Scholar] [CrossRef]
- Hauser, H.; Füchslin, R.M.; Pfeifer, R. Opinions and Outlooks on Morphological Computation; e-book; 2014; ISBN 978-3-033-04515-6. Available online: https://www.morphologicalcomputation.org/e-book (accessed on 28 June 2020).
- Copeland, J.; Dresner, E.; Proudfoot, D.; Shagrir, O. Time to reinspect the foundations? Commun. ACM 2016, 59, 34–36. [Google Scholar] [CrossRef]
- Turing, A.M. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. London 1952, 237, 37–72. [Google Scholar]
- Kampis, G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity; Pergamon Press: Amsterdam, The Netherlands, 1991; ISBN 9780080369792. [Google Scholar]
- Valiant, L. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World; Basic Books: New York, NY, USA, 2013; ISBN 978-0465032716. [Google Scholar]
- Simon, H.A. Rational choice and the structure of the environment. Psychol. Rev. 1956, 63, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Sloman, A.; Chrisley, R. Virtual machines and consciousness. J. Conscious. Stud. 2003, 10, 113–172. [Google Scholar]
- Grossberg, G.A.; Carpenter, S. ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 1987, 26, 4919–4930. [Google Scholar]
- Mermin, N.D. Making better sense of quantum mechanics. Reports Prog. Phys. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.P. Law without law: From observer states to physics via algorithmic information theory. Quantum 2020. [Google Scholar] [CrossRef]
- Vedral, V. Information and physics. Information 2012, 3, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P. Information physics-towards a new conception of physical reality. Information 2012, 3, 567–594. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Information and energy/matter. Information 2012, 4, 751. [Google Scholar] [CrossRef]
- Fields, C. If physics is an information science, what is an observer? Information 2012, 3, 92–123. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of Information; Zurek, W., Ed.; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Weizcsäcker, C.F. The Unity of Nature. In Physical Sciences and History of Physics; Boston Studies in the Philosophy of Science; Cohen, R.S., Wartofsky, M.W., Eds.; Springer: Dordrecht, The Netherlands, 1984; Volume 82. [Google Scholar]
- Ehresmann, A.C. MENS, an Info-Computational Model for (Neuro-)cognitive Systems Capable of Creativity. Entropy 2012, 14, 1703–1716. [Google Scholar] [CrossRef]
- Ghosh, S.; Aswani, K.; Singh, S.; Sahu, S.; Fujita, D.; Bandyopadhyay, A. Design and Construction of a Brain-Like Computer: A New Class of Frequency-Fractal Computing Using Wireless Communication in a Supramolecular Organic, Inorganic System. Information 2014, 5, 28–100. [Google Scholar] [CrossRef] [Green Version]
- Zenil, H.; Kiani, N.A.; Zea, A.A.; Tegnér, J. Causal deconvolution by algorithmic generative models. Nat. Mach. Intell. 2019. [Google Scholar] [CrossRef]
- Cardelli, L. Artificial Biochemistry. In Algorithmic Bioprocesses; Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E., Eds.; Springer: Heidelberg, Germany, 2009; pp. 429–462. [Google Scholar]
- Cardelli, L.; Zavattaro, G. On the computational power of biochemistry. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H., Eds.; LNCS; Springer: Heidelberg, Germany, 2008; Volume 5147, pp. 65–80. [Google Scholar]
- Cardelli, L. Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Cardelli, L.; Tribastone, M.; Tschaikowski, M. From electric circuits to chemical networks. Nat. Comput. 2020. [Google Scholar] [CrossRef] [Green Version]
- Fresco, N. Physical Computation and Cognitive Science; Springer: Berlin, Germany, 2014; ISBN 978-3-642-41374-2. [Google Scholar]
- Devon Hjelm, R.; Grewal, K.; Bachman, P.; Fedorov, A.; Trischler, A.; Lavoie-Marchildon, S.; Bengio, Y. Learning deep representations by mutual information estimation and maximization. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodig-Crnkovic, G. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies 2020, 5, 17. https://doi.org/10.3390/philosophies5030017
Dodig-Crnkovic G. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies. 2020; 5(3):17. https://doi.org/10.3390/philosophies5030017
Chicago/Turabian StyleDodig-Crnkovic, Gordana. 2020. "Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines" Philosophies 5, no. 3: 17. https://doi.org/10.3390/philosophies5030017
APA StyleDodig-Crnkovic, G. (2020). Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies, 5(3), 17. https://doi.org/10.3390/philosophies5030017