Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts
Abstract
:1. Introduction
2. Questionable Boundaries between Biological Disciplines
2.1. Multidisciplinary or Interdisciplinary?
2.2. Hybrid Disciplines—The Case of Evolutionary Developmental Biology
2.3. Beyond Hierarchies and Facile Interdisciplinary Transfers
3. Moving Ahead—Nomadic Concepts or Nomadic Disciplines?
3.1. Anchor Concept 1—Nomadic Disciplines in the Study of the Life Cycle
3.2. Anchor Concept 2—Organizational Module
3.3. Anchor Concept 3—Species as Unit of Representation of Biological Diversity
4. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fusco, G.; Minelli, A. The Biology of Reproduction; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Harper, J.L.; White, J. The demography of plants. Ann. Rev. Ecol. Syst. 1974, 5, 419–463. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.B.; Rourke, B.C.; Caiozzo, V.J.; Bennett, A.F.; Hiàcks, J.W. Postprandial cardiac hypertrophy in pythons. Nature 2005, 434, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Andrew, A.L.; Card, D.C.; Ruggiero, R.P.; Schield, D.R.; Adams, R.H.; Pollock, D.D.; Secor, S.M.; Todd, A.; Castoe, T.A. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Physiol. Genom. 2015, 47, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Sassone-Corsi, P. When metabolism and epigenetics converge. Science 2013, 339, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Von Dassow, G.; Munro, E. Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. J. Exp. Zool. B Mol. Dev. Evol. 1999, 285, 307–325. [Google Scholar] [CrossRef]
- Nagaraj, R.; Sharpley, M.S.; Chi, F.; Braas, D.; Zhou, Y.; Kim, R.; Clark, A.T.; Banerjee, U. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell 2017, 168, 210–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Shvartsman, S.Y. Chemical embryology redux: Metabolic control of development. Trends Genet. 2020, 36, 577–586. [Google Scholar] [CrossRef]
- Brigandt, I. How are biology concepts used and transformed? In Philosophy of Science for Biologists; Kampourakis, K., Uller, T., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 79–101. [Google Scholar]
- Østreng, W. Crossing scientific boundaries by way of disciplines. In Complexity. Interdisciplinary Communications 2006/2007; Østreng, W., Ed.; Centre for Advanced Study: Oslo, Norway, 2008; pp. 11–13. [Google Scholar]
- Gerson, E.M. Integration of specialties: An institutional and organizational view. Stud. Hist. Philos. Sci. 2013, 44, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Müller, E. Interdisciplinary concepts and their political significance. Contrib. Hist. Concepts 2011, 6, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Zachos, F.E. Species Concepts in Biology. Historical Development, Theoretical Foundations and Practical Relevance; Springer: Basel, Switzerland, 2016; ISBN 978-3-3194-4966-1. [Google Scholar]
- Minelli, A.; Fusco, G. Homology. In The Philosophy of Biology: A Companion for Educators; Kampourakis, K., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 289–322. [Google Scholar] [CrossRef]
- Wagner, G.P. Homology, Genes, and Evolutionary Innovation; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2014; ISBN 9780691156460. [Google Scholar]
- Portin, P.; Wilkins, A. The evolving definition of the term “gene”. Genetics 2017, 205, 1353–1364. [Google Scholar] [CrossRef]
- Snyder, M.; Gerstein, M. Defining genes in the genomics era. Science 2003, 300, 258–260. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.E.; Stotz, K. Genes in the postgenomic era. Theor. Med. Bioeth. 2006, 27, 499–521. [Google Scholar] [CrossRef] [PubMed]
- Müller-Wille, S.; Rheinberger, H.-J. Das Gen im Zeitalter der Postgenomik. Eine Wissenschaftshistorische Bestandsaufnahme; Suhrkamp: Frankfurt am Main, Germany, 2009; ISBN 9783518260258. [Google Scholar]
- Santelices, B. How many kinds of individual are there? Trends Ecol. Evol. 1999, 14, 152–155. [Google Scholar] [CrossRef]
- Wilson, J. Biological Individuality: The Identity and Persistence of Living Entities; Cambridge University Press: Cambridge, UK, 1999; ISBN 0521624258. [Google Scholar]
- Godfrey-Smith, P. Darwinian Populations and Natural Selection; Oxford University Press: New York, NY, USA, 2009; ISBN 9780199552047. [Google Scholar]
- Bouchard, F.; Huneman, P. (Eds.) From Groups to Individuals. Evolution and Emerging Individuality; MIT Press: Cambridge, MA, USA, 2013; ISBN 9780262018722. [Google Scholar]
- Pradeu, T. Organisms or biological individuals? Combining physiological and evolutionary individuality. Biol. Philos. 2016, 31, 797–817. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Are planaria individuals? What regenerative biology is telling us about the nature of multicellularity. Evol. Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Stengers, I. (Ed.) D’une Science a L’autre: Des Concepts Nomads; Seuil: Paris, France, 1987; ISBN 8877570180. [Google Scholar]
- Surman, J.; Stráner, K.; Haslinger, P. Nomadic concepts—Biological concepts and their careers beyond biology. Contr. Hist. Concepts 2014, 9, 1–17. [Google Scholar] [CrossRef]
- Bal, M. Travelling Concepts in the Humanities: A Rough Guide; University of Toronto Press: Toronto, ON, Canada, 2002; ISBN 0802035299. [Google Scholar]
- Wolfe, C.T. The organism as ontological go-between Hybridity, boundaries and degrees of reality in its conceptual history. Stud. Hist. Philos. Biol. Biomed. Sci. 2014, 48, 151–161. [Google Scholar] [CrossRef]
- Surman, J.; Stráner, K.; Haslinger, P. Nomadic concepts in the history of biology. Stud. Hist. Philos. Biol. Biomed. Sci. 2014, 48, 127–129. [Google Scholar] [CrossRef]
- Suárez-Diaz, E. Molecular evolution: Concepts and the origin of disciplines. Stud. Hist. Philos. Biol. Biomed. Sci. 2009, 40, 43–53. [Google Scholar] [CrossRef]
- Laubichler, M.D. Evolutionary developmental biology offers a significant challenge to the neo-Darwinian paradigm. In Contemporary Debates in the Philosophy of Biology; Ayala, F., Arp, R., Eds.; Wiley-Blackwell: Malden, MS, USA, 2010; pp. 199–212. [Google Scholar] [CrossRef]
- Jenner, R.A. Unburdening evo-devo: Ancestral attractions, model organisms, and basal baloney. Dev. Genes Evol. 2006, 216, 385–394. [Google Scholar] [CrossRef]
- Minelli, A.; Baedke, J. Model organisms in evo-devo: Promises and pitfalls of the comparative approach. Hist. Philos. Life Sci. 2014, 36, 42–59. [Google Scholar] [CrossRef]
- Raff, R.A.; Kaufman, T.C. Embryos, Genes, and Evolution; Macmillan: New York, NY, USA, 1983; ISBN 0253206421. [Google Scholar]
- Hall, B.K. Evolutionary Developmental Biology; Chapman & Hall: London, UK, 1992. [Google Scholar] [CrossRef]
- Love, A.; Raff, R.A. Knowing your ancestors: Themes in the history of evo-devo. Evol. Dev. 2003, 5, 327–330. [Google Scholar] [CrossRef]
- Horder, T.J. A history of evo-devo in Britain. Ann. Hist. Philos. Biol. 2008, 13, 101–174. [Google Scholar]
- Gilbert, S.F.; Burian, R.M. Development, evolution, and evolutionary developmental biology. In Keywords and Concepts in Evolutionary Developmental Biology; Hall, B.K., Olson, W., Eds.; Harvard University Press: Cambridge, MA, USA, 2003; pp. 61–68. [Google Scholar]
- Baedke, J.; Gilbert, S.F. Evolution and development. In The Stanford Encyclopedia of Philosophy; Fall 2020 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab., Stanford University: Sanford, CA, USA, 2020; Available online: https://plato.stanford.edu/archives/fall2020/entries/evolution-development/ (accessed on 7 August 2020).
- Winther, R.G. Evo-devo as a trading zone. In Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development; Love, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 459–482. [Google Scholar] [CrossRef]
- Galison, P. Image and Logic: A Material Culture of Microphysics; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar] [CrossRef]
- Love, A.C. Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philos. Trans. R. Soc. Lond. Biol. Sci. 2010, 365, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Abzhanov, A.; Protas, M.; Grant, B.R.; Grant, P.R.; Tabin, C.J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 2004, 305, 1462–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abzhanov, A.; Kuo, W.P.; Hartmann, C.; Grant, B.R.; Grant, P.R.; Tabin, C.J. The Calmodulin Pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 2006, 442, 563–567. [Google Scholar] [CrossRef]
- Gilbert, S. Evo-devo, devo-evo and devgen-popgen. Biol. Philos. 2003, 18, 347–352. [Google Scholar] [CrossRef]
- Pigliucci, M.; Müller, G.B. (Eds.) Evolution: The Extended Synthesis; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Laland, K.N.; Uller, T.; Feldman, M.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jabonka, E.; Odling-Smee, J. Does evolutionary theory need a rethink? Yes, urgently. Nature 2014, 514, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Laland, K.N.; Uller, T.; Feldman, M.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jabonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. Lond. B 2015, 282, 20151019. [Google Scholar] [CrossRef] [PubMed]
- Eronen, M.I.; Brooks, D.S. Levels of organization in biology. In The Stanford Encyclopedia of Philosophy, Spring 2018 ed.; Zalta, E.N., Ed.; Available online: https://plato.stanford.edu/archives/spr2018/entries/levels-org-biology/ (accessed on 9 August 2020).
- Brooks, D.S.; DiFrisco, J.; Wimsatt, W.C. (Eds.) Introduction. In Levels of Organization in the Biological Sciences; MIT Press: Cambridge, MA, USA, forthcoming.
- Oppenheim, P.; Putnam, H. Unity of science as a working hypothesis. In Minnesota Studies in the Philosophy of Science; Feigl, H., Maxwell, G., Scriven, M., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 1958; pp. 3–36. [Google Scholar]
- Brigandt, I. Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis 2010, 73, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Wimsatt, W.C. Reductionism, levels of organization, and the mind-body problem. In Consciousness and the Brain. A Scientific and Philosophical Enquiry; Globus, G.G., Maxwell, G., Savodnik, I., Eds.; Plenum: New York, NY, USA, 1976; pp. 205–267. [Google Scholar] [CrossRef]
- Eronen, M.I. Levels of organization: A deflationary account. Biol. Philos. 2015, 30, 39–58. [Google Scholar] [CrossRef]
- Eronen, M.I. No levels, no problems: Downward causation in neuroscience. Philos. Sci. 2013, 80, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Potochnik, A.; McGill, B. The limitations of hierarchical organization. Philos. Sci. 2012, 79, 120–140. [Google Scholar] [CrossRef] [Green Version]
- Thalos, M. Without Hierarchy: The Scale Freedom of the Universe; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Brooks, D.S.; Eronen, M.I. The significance of levels of organization for scientific research: A heuristic approach. Stud. Hist. Philos. Biol. Biomed. Sci. 2018, 68–69, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.S. A new look at ‘levels of organization’ in biology. Erkenntnis 2019. [Google Scholar] [CrossRef]
- Brooks, D.S. In defense of levels: Layer cakes and guilt by association. Biol. Theory 2017, 12, 142–156. [Google Scholar] [CrossRef]
- DiFrisco, J. Time scales and levels of organization. Erkenntnis 2017, 82, 795–818. [Google Scholar] [CrossRef]
- DiFrisco, J. Integrating composition and process in levels of developmental evolution. In Levels of Organization in the Biological Sciences; Brooks, D.S., DiFrisco, J., Wimsatt, W.C., Eds.; MIT Press: Cambridge, MA, USA, forthcoming.
- Baedke, J. The origin of new levels of organization. In Levels of Organization in the Biological Sciences; Brooks, D., DiFrisco, J., Wimsatt, W., Eds.; MIT Press: Cambridge, MA, USA, forthcoming.
- Wimsatt, W.C. Re-Engineering Philosophy for Limited Beings: Piecewise Approximations to Reality; Harvard University Press: Cambridge, MA, USA, 2007; ISBN 9780674015456. [Google Scholar]
- Gaertner, J. De Fructibus et Seminibus Plantarum; Typis Academiae Carolinae: Stutgardia, Germany, 1788. [Google Scholar] [CrossRef]
- Minelli, A. Understanding Development; Cambridge University Press: Cambridge, UK, forthcoming.
- Hendrikse, J.L.; Parsons, T.E.; Hallgrímsson, B. Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 2007, 9, 393–401. [Google Scholar] [CrossRef]
- Minelli, A. Evolvability and its evolvability. In Challenges to Evolutionary Theory: Development, Inheritance and Adaptation; Huneman, P., Walsh, D., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 211–238. [Google Scholar] [CrossRef]
- Schlosser, G.; Wagner, G.P. Introduction: The modularity concept in developmental and evolutionary biology. In Modularity in Development and Evolution; Schlosser, G., Wagner, G.P., Eds.; University of Chicago Press: Chicago, IL, USA, 2004; pp. 1–11. [Google Scholar]
- Müller, G.B.; Wagner, G.P. Innovation. In Keywords and Concepts in Evolutionary Developmental Biology; Hall, B.K., Olson, W., Eds.; Harvard University Press: Cambridge, MA, USA, 2003; pp. 218–227. [Google Scholar]
- Müller, G.B.; Newman, S.A. The innovation triad: An EvoDevo agenda. J. Exp. Zool. B Mol. Dev. Evol. 2005, 304, 487–503. [Google Scholar] [CrossRef]
- Peterson, T.; Müller, G.B. What is evolutionary novelty? Process versus character based definitions. J. Exp. Zool. B Mol. Dev. Evol. 2013, 320B, 345–350. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Scale-free biology: Integrating evolutionary and developmental thinking. BioEssays 2020, 1900228. [Google Scholar] [CrossRef]
- Kupiec, J.-J. The Origins of Individuals; World Scientific: Singapore, 2009. [Google Scholar] [CrossRef]
- Griffiths, P.; Stotz, K. Developmental systems theory as a process theory. In Everything Flows: Towards a Processual Philosophy of Biology; Nicholson, D.J., Dupré, J., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 225–245. [Google Scholar] [CrossRef] [Green Version]
- Griesemer, J. The units of evolutionary transition. Selection 2000, 1, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 1973, 35, 125–129. [Google Scholar] [CrossRef]
- Griesemer, J.R. Tools for talking: Human nature, Weismannism and the interpretation of genetic information. In Are Genes Us? The Social Consequences of the New Genetics; Cranor, C., Ed.; Rutgers University Press: New Brunswick, NJ, USA, 1994; pp. 69–88. [Google Scholar]
- Griesemer, J.R. Individuation of developmental systems: A reproducer perspective. In Individuation, Process, and Scientific Practices; Bueno, O., Chen, R.-L., Fagan, M.B., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 137–164. [Google Scholar] [CrossRef]
- Minelli, A. Development, an open-ended segment of life. Biol. Theory 2011, 6, 4–15. [Google Scholar] [CrossRef]
- Minelli, A.; Pradeu, T. (Eds.) Towards a Theory of Development; Oxford University Press: Oxford, UK, 2014; ISBN 9780191781117. [Google Scholar]
- Pradeu, T.; Laplane, L.; Prévot, K.; Hoquet, T.; Reynaud, V.; Fusco, G.; Minelli, A.; Orgogozo, V.; Vervoort, M. Defining “development”. Curr. Top. Dev. Biol. 2016, 117, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonduriansky, R.; Day, T. Nongenetic inheritance and its evolutionary implications. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 103–125. [Google Scholar] [CrossRef] [Green Version]
- Bošković, A.; Rando, O.J. Transgenerational epigenetic inheritance. Ann. Rev. Genet. 2018, 52, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.J. Inherited epigenetic variation - Revisiting soft inheritance. Nat. Rev. Genet. 2006, 7, 395–401. [Google Scholar] [CrossRef]
- Jablonka, E. Epigenetic inheritance and plasticity: The responsive germline. Prog. Biophys. Mol. Biol. 2013, 111, 99–107. [Google Scholar] [CrossRef]
- Jablonka, E. The evolutionary implications of epigenetic inheritance. Interface Focus 2017, 7, 20160135. [Google Scholar] [CrossRef]
- Jablonka, E.; Raz, G. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Quart. Rev. Biol. 2009, 84, 131–176. [Google Scholar] [CrossRef] [Green Version]
- Jablonka, E.; Lamb, M.J. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life; MIT Press: Cambridge, MA, USA, 2005; ISBN 0262101076. [Google Scholar]
- Fusco, G. Evo-devo beyond development: The evolution of life cycles. In Perspectives on Evolutionary and Developmental Biology; Fusco, G., Ed.; Padova University Press: Padova, Italy, 2019; pp. 309–318. [Google Scholar]
- Oyama, S. The Ontogeny of Information: Developmental Systems and Evolution; Cambridge University Press: Cambridge, UK, 1985; ISBN 0521320984. [Google Scholar]
- Oyama, S.; Griffiths, P.E.; Gray, R.D. (Eds.) Cycles of Contingency: Developmental Systems and Evolution; MIT Press: Cambridge, MA, USA, 2001; ISBN 0262150530. [Google Scholar]
- Gorelick, R. Mitosis circumscribes individuals; sex creates new individuals. Biol. Philos. 2012, 27, 871–890. [Google Scholar] [CrossRef]
- Minelli, A. Developmental disparity. In Towards a Theory of Development; Minelli, A., Pradeu, T., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 227–245. [Google Scholar] [CrossRef]
- Dupré, J. The polygenomic organism. Sociol. Rev. 2010, 58 (Suppl. 1), 19–31. [Google Scholar] [CrossRef]
- Bosch, T.C.G.; McFall-Ngai, M.J. Metaorganisms as the new frontier. Zoology 2011, 114, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.F.; Sapp, J.; Tauber, A.I. A symbiotic view of life: We have never been individuals. Quart. Rev. Biol. 2012, 87, 325–341. [Google Scholar] [CrossRef] [Green Version]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.F.; Epel, D. Ecological Developmental Biology: The Environmental Regulation of Development, Health, and Evolution; Sinauer: Sunderland, MA, USA, 2015; ISBN 9781605353449. [Google Scholar]
- Wagner, G.P. The biological homology concept. Annu. Rev. Ecol. Syst. 1989, 20, 51–69. [Google Scholar] [CrossRef]
- Wagner, G.P. Homologues, natural kinds and the evolution of modularity. Am. Zool. 1996, 36, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Altava, B. Challenges in identifying and interpreting organizational modules in morphology. J. Morphol. 2017, 278, 960–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callebaut, W.; Rasskin-Gutman, D. (Eds.) Modularity: Understanding the Development and Evolution of Natural Complex Systems; The MIT Press: Cambridge, MA, USA, 2005; ISBN 9780262513265. [Google Scholar]
- Wagner, G.P.; Pavlicev, M.; Cheverud, J.M. The road to modularity. Nature Rev. Genet. 2007, 8, 921–931. [Google Scholar] [CrossRef]
- Eble, G.J. Morphological modularity and macroevolution. In Modularity: Understanding the Development and Evolution of Natural Complex Systems; Callebaut, W., Rasskin-Gutman, D., Eds.; The MIT Press: Cambridge, MA, USA, 2005; pp. 221–238. [Google Scholar]
- Wagner, G.P.; Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 1996, 50, 967–976. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P. Evolution and development of shape: Integrating quantitative approaches. Nat. Rev. Genet. 2010, 11, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Studying morphological integration and modularity at multiple levels: Concepts and analysis. Philos. Trans. R. Soc. B 2014, 369, 20130249. [Google Scholar] [CrossRef]
- Dover, G.; Coen, E. Springcleaning ribosomal DNA: A model for multigene evolution? Nature 1981, 290, 731–732. [Google Scholar] [CrossRef]
- Dover, G. A molecular drive through evolution. BioScience 1982, 32, 526–533. [Google Scholar] [CrossRef]
- Dover, G. Molecular drive: A cohesive mode of species evolution. Nature 1982, 299, 111–117. [Google Scholar] [CrossRef]
- Minelli, A.; Fusco, G. Body segmentation and segment differentiation: The scope for heterochronic change. In Evolutionary Change and Heterochrony; McNamara, K.J., Ed.; Wiley: London, UK, 1995; pp. 49–63. [Google Scholar]
- Minelli, A. Perspectives in Animal Phylogeny and Evolution; Oxford University Press: Oxford, UK, 2009; ISBN 9780198566205. [Google Scholar]
- Minelli, A. Tracing homologies in an ever-changing world. Riv. Estet. N.S. 2016, 56, 40–55. [Google Scholar] [CrossRef]
- Minelli, A. Plant Evolutionary Developmental Biology. The Evolvability of the Phenotype; Cambridge University Press: Cambridge, UK, 2018; ISBN 1139542362. [Google Scholar]
- Robson, G.C. The Species Problem. An Introduction to the Study of Evolutionary Divergence in Natural Populations; Oliver and Boyd: Edinburgh, UK, 1928. [Google Scholar]
- Bernard, H.M. The species problem in corals. Nature 1902, 65, 560. [Google Scholar] [CrossRef]
- Bessey, C.E. The taxonomic aspect of the species question. Am. Nat. 1908, 42, 218–222. [Google Scholar] [CrossRef]
- Cowles, H.C. An ecological aspect of the conception of species. Am. Nat. 1908, 42, 265–271. [Google Scholar] [CrossRef]
- Calman, W.T. The taxonomic outlook in zoology. Science 1930, 72, 279–284. [Google Scholar] [CrossRef]
- Bakloushinskaya, I.Y. Darwin’s heritage: Endless evolution of a species concept. Russ. J. Dev. Biol. 2019, 50, 287–289. [Google Scholar] [CrossRef]
- Mallet, J. Species, concepts of. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 6, pp. 679–691. [Google Scholar]
- O’Hara, R. Systematic generalization, historical fate, and the species problem. Syst. Biol. 1993, 42, 231–246. [Google Scholar] [CrossRef]
- Grubb, P.; Groves, C.P.; Dudley, J.P.; Shoshani, J. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2000, 2, 1–4. [Google Scholar] [CrossRef]
- International Commission on Zoological Nomenclature. International Code of Zoological Nomenclature, 4th ed.; The International Trust for Zoological Nomenclature: London, UK, 1999. [Google Scholar]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.-H.; Li, D.-Z.; Marhold, K.; et al. (Eds.) International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017; Koeltz Botanical Books: Glashütten, Germany, 2018; ISBN 978-3-946583-16-5. [Google Scholar] [CrossRef]
- Berendsohn, W.G. The concept of “potential taxa” in databases. Taxon 1995, 44, 207–212. [Google Scholar] [CrossRef]
- Blanc, J. Loxodonta Africana. The IUCN Red List of Threatened Species 2008; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2008. [Google Scholar] [CrossRef]
- Minelli, A. Taxonomy needs pluralism, but a controlled and manageable one. Megataxa 2020, 1, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Minelli, A. The galaxy of the non-Linnaean nomenclature. Hist. Philos. Life Sci. 2019, 41, 31. [Google Scholar] [CrossRef]
- Lepage, D.; Vaidya, G.; Guralnick, R. Avibase—A database system for managing and organizing taxonomic concepts. ZooKeys 2014, 420, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Lepage, D. Avibase—The World Bird Database. 2019. Available online: http://avibase.bsc-eoc.org (accessed on 30 July 2019).
- Mishler, B.; Donoghue, M. Species concepts: A case for pluralism. Syst. Zool. 1982, 31, 491–503. [Google Scholar] [CrossRef]
- Kitcher, P. Species. Philos. Sci. 1984, 51, 308–333. [Google Scholar] [CrossRef]
- Ereshefsky, M. Eliminative pluralism. Philos. Sci. 1992, 59, 671–690. [Google Scholar] [CrossRef]
- Ereshefsky, M. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Ghiselin, M.T. Species concepts, individuality, and objectivity. Biol. Philos. 1987, 2, 127–143. [Google Scholar] [CrossRef]
- Hull, D.L. Genealogical actors in ecological roles. Biol. Philos. 1987, 2, 168–184. [Google Scholar] [CrossRef]
- Conix, S. Radical pluralism, classificatory norms and the legitimacy of species classifications. Stud. Hist. Philos. Biol. Biomed. Sci. 2019, 73, 27–34. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minelli, A. Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts. Philosophies 2020, 5, 34. https://doi.org/10.3390/philosophies5040034
Minelli A. Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts. Philosophies. 2020; 5(4):34. https://doi.org/10.3390/philosophies5040034
Chicago/Turabian StyleMinelli, Alessandro. 2020. "Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts" Philosophies 5, no. 4: 34. https://doi.org/10.3390/philosophies5040034
APA StyleMinelli, A. (2020). Disciplinary Fields in the Life Sciences: Evolving Divides and Anchor Concepts. Philosophies, 5(4), 34. https://doi.org/10.3390/philosophies5040034