Reduced Numbers of Returning Atlantic Salmon (Salmo salar) and Thiamine Deficiency Are Both Associated with the Consumption of High-Lipid Prey Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Salmon Data
2.2. Clupeid Data
2.3. Calculations and Statistics
3. Results
3.1. The Number of Returning Salmon Depended Inversely on the Numbers of 0-Year-Old Herring and Youngish Sprat
3.2. A High Lipid Content of Available Prey Fish Was Reflected as a Low Number of Returning Salmon
3.3. A High Lipid Content of Available Prey Fish Was Reflected as a Low THIAM Concentration in the Eggs of Salmon
3.4. The Fatness of Prey Fish Was Associated with Both Low Numbers of Returning Salmon and Thiamine Deficiency
3.5. A High Number of 0-Year-Old Herring and Sprat Coincided
4. Discussion
4.1. The Number of Salmon Returning to Spawn Depends on the Survival of Post-Smolts
4.2. Prey Fish of Post-Smolts Should Be 0-Year-Old Herring Instead of Youngish Sprat in the Baltic Proper
4.3. Sprat Benefits from the Warming of the Environment and the Reduction in Cod
4.4. Poor Survival of Post-Smolts and Reduced Growth Are Related to an Excessively Fatty Fish Diet
4.5. Fatty Prey Fish Predispose Salmon to Thiamine Deficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICES. Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Sci. Rep. 2024, 6, 425. [Google Scholar] [CrossRef]
- Salminen, M. Relationships between smolt size, postsmolt growth and sea age at maturity in Atlantic salmon ranched in the Baltic Sea. J. Appl. Ichthyol. 1997, 13, 121–130. [Google Scholar] [CrossRef]
- Ikonen, E. The Role of the Feeding Migration and Diet of Atlantic Salmon (Salmo salar L.) in Yolk-Sac Fry Mortality (M74) in the Baltic Sea. Ph.D. Thesis, Department of Biological and Environmental Sciences, Faculty of Biosciences, University of Helsinki, Finland and Finnish Game and Fisheries Research Institute, Helsinki, Finland, 2006. [Google Scholar]
- Aro, E. A review of fish migration patterns in the Baltic. Rap. Proc.-Verb. Re. Cons. Int. Explor. Mer 1989, 190, 72–96. [Google Scholar]
- Luke. Tornionjoen Nousulohiseuranta. Available online: https://kalahavainnot.luke.fi/fi/seurannat/tornionjoen-nousulohiseuranta/ (accessed on 24 March 2024).
- ICES. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST), 24–31 March 2009, Oulu, Finland; ICES CM 2009/ACOM:05; ICES: Copenhagen, Denmark, 2009; 280p. [Google Scholar]
- Keinänen, M.; Iivari, J.; Juntunen, E.-P.; Kannel, R.; Heinimaa, P.; Nikonen, S.; Pakarinen, T.; Romakkaniemi, A.; Vuorinen, P.J. Thiamine Deficiency M74 of Salmon Can Be Prevented; Riista-ja kalatalous—Tutkimuksia ja selvityksiä 14/2014; Helsinki, Finland, 2014. 41p. Available online: http://jukuri.luke.fi/bitstream/handle/10024/519813/rkts2014_14.pdf?sequence=1 (accessed on 16 September 2024). (In Finnish with Abstract in English).
- Vuorinen, P.J.; Rokka, M.; Nikonen, S.; Juntunen, E.-P.; Ritvanen, T.; Heinimaa, P.; Keinänen, M. Model for estimating thiamine deficiency-related mortality of Atlantic salmon (Salmo salar) offspring and variation in the Baltic salmon M74 syndrome. Mar. Freshw. Behav. Physiol. 2021, 54, 97–131. [Google Scholar] [CrossRef]
- Balon, E.K. Terminology of intervals in fish development. J. Fish. Res. Board Can. 1975, 32, 1663–1670. [Google Scholar] [CrossRef]
- Keinänen, M.; Käkelä, R.; Ritvanen, T.; Pönni, J.; Harjunpää, H.; Myllylä, T.; Vuorinen, P.J. Fatty acid signatures connect thiamine deficiency with the diet of the Atlantic salmon (Salmo salar) feeding in the Baltic Sea. Mar. Biol. 2018, 165, 161. [Google Scholar] [CrossRef]
- Vuorinen, P.J.; Käkelä, R.; Pakarinen, T.; Heinimaa, P.; Ritvanen, T.; Nikonen, S.; Rokka, M.; Keinänen, M. Thiamine deficiency M74 developed in salmon (Salmo salar) stocks in two Baltic Sea areas after the hatching of large year-classes of two clupeid species—Detected by fatty acid signature analysis. Fishes 2024, 9, 58. [Google Scholar] [CrossRef]
- Keinänen, M.; Nikonen, S.; Käkelä, R.; Ritvanen, T.; Rokka, M.; Myllylä, T.; Pönni, J.; Vuorinen, P.J. High lipid content of prey fish and n-3 PUFA peroxidation impair the thiamine status of feeding-migrating Atlantic salmon (Salmo salar) and is reflected in hepatic biochemical indices. Biomolecules 2022, 12, 526. [Google Scholar] [CrossRef]
- Keinänen, M.; Uddström, A.; Mikkonen, J.; Casini, M.; Pönni, J.; Myllylä, T.; Aro, E.; Vuorinen, P.J. The thiamine deficiency syndrome M74, a reproductive disorder of Atlantic salmon (Salmo salar) feeding in the Baltic Sea, is related to the fat and thiamine content of prey fish. ICES J. Mar. Sci. 2012, 69, 516–528. [Google Scholar] [CrossRef]
- Amcoff, P.; Börjeson, H.; Landergren, P.; Vallin, L.; Norrgren, L. Thiamine (vitamin B1) concentrations in salmon (Salmo salar), brown trout (Salmo trutta) and cod (Gadus morhua) from the Baltic sea. Ambio 1999, 28, 48–54. Available online: https://www.jstor.org/stable/4314848 (accessed on 16 September 2024).
- Landergren, P.; Vallin, L.; Westin, L.; Amcoff, P.; Börjeson, H.; Ragnarsson, B. Reproductive failure in Baltic sea trout (Salmo trutta) compared with the M74 syndrome in Baltic salmon (Salmo salar). Ambio 1999, 28, 87–91. Available online: https://www.jstor.org/stable/4314853 (accessed on 16 September 2024).
- Vuorinen, P.J.; Juntunen, E.-P.; Iivari, J.; Koski, P.; Nikonen, S.; Rokka, M.; Ritvanen, T.; Pakkala, J.; Heinimaa, P.; Keinänen, M. Lipid-related thiamine deficiency cause mortality of river lampreys (Lampetra fluviatilis) during pre-spawning fasting. Reg. Stud. Mar. Sci. 2023, 62, 14. [Google Scholar] [CrossRef]
- Futia, M.H.; Connerton, M.J.; Weidel, B.C.; Rinchard, J. Diet predictions of Lake Ontario salmonines based on fatty acids and correlations between their fat content and thiamine concentrations. J. Great Lakes Res. 2019, 45, 934–948. [Google Scholar] [CrossRef]
- Futia, M.H.; Rinchard, J. Evaluation of adult and offspring thiamine deficiency in salmonine species from Lake Ontario. J. Great Lakes Res. 2019, 45, 811–820. [Google Scholar] [CrossRef]
- Fisher, J.P.; Spitsbergen, J.M.; Iamonte, T.; Little, E.E.; DeLonay, A. Pathological and behavioral manifestations of the “Cayuga syndrome”, a thiamine deficiency in larval landlocked Atlantic salmon. J. Aquat. Anim. Health 1995, 7, 269–283. [Google Scholar] [CrossRef]
- Mantua, N.; Johnson, R.; Field, J.; Lindley, S.; Williams, T.; Todgham, A.; Fangue, N.; Jeffres, C.; Bell, H.; Cocherell, D.; et al. Mechanisms, Impacts, and Mitigation for Thiamine Deficiency and Early Life Stage Mortality in California’s Central Valley Chinook Salmon; Techninal Report 17; North Pacific Anadromous Fish Commission: Vancouver, BC, Canada, 2021; pp. 92–93. [Google Scholar]
- Crozier, L.G.; Siegel, J.E. A comprehensive review of the impacts of climate change on salmon: Strengths and weaknesses of the Literature by life stage. Fishes 2023, 8, 319. [Google Scholar] [CrossRef]
- Ludwig, J.M. Assessing Diets of California Salmonines Using Fatty Acid Signatures and Its Impact on Observed Thiamine Deficiency. Master’s Thesis, Department of Environmental Science and Ecology, SUNY Brockport, Brockport, NY, USA, 2024. [Google Scholar]
- Woodward, B. Dietary vitamin requirements of cultured young fish, with emphasis on quantitative estimates for salmonids. Aquaculture 1994, 124, 133–168. [Google Scholar] [CrossRef]
- Lonsdale, D.; Marrs, C. Thiamine Deficiency Disease, Dysautonomia, and High Calorie Malnutrition; Academic Press: London, UK; San Diego, CA, USA, 2019. [Google Scholar]
- Casteels, M.; Sniekers, M.; Fraccascia, P.; Mannaerts, G.P.; VanVeldhoven, P.P. The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem. Soc. Trans. 2007, 35, 876–880. [Google Scholar] [CrossRef]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef]
- Behbodi, Z.; Bahram, S.; Bahrekazemi, M.; Javadian, S.R.; Bozorgnia, A.; Abdel-Tawwab, M. Effects of dietary thiamin (vitamin B1) on the growth performance, serum biochemical factors, immune response, and antioxidant activity of great sturgeon (Huso huso) juveniles. Vet. Res. Commun. 2024, 48, 485–496. [Google Scholar] [CrossRef]
- Grisdale-Helland, B.; Gatlin, D.M.; Helland, S.J. Optimization of dietary macronutrients for Atlantic salmon post-smolts using increasing ration levels. Aquaculture 2013, 408, 88–94. [Google Scholar] [CrossRef]
- Spector, A.A. Lipid metabolism: Essential fatty acids. In Biochemical and Physiological Aspects of Human Nutrition; Stipanuk, M.H., Ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2000; pp. 365–383. [Google Scholar]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Vuorinen, P.J.; Rokka, M.; Ritvanen, T.; Käkelä, R.; Nikonen, S.; Pakarinen, T.; Keinänen, M. Changes in thiamine concentrations, fatty acid composition, and some other lipid-related biochemical indices in Baltic Sea Atlantic salmon (Salmo salar) during the spawning run and pre-spawning fasting. Helgol. Mar. Res. 2020, 74, 10. [Google Scholar] [CrossRef]
- Combs, G.F., Jr.; McClung, J.P. Thiamin. In The Vitamins, Fundamental Aspects in Nutrition and Health, 5th ed.; Academic Press: London, UK; San Diego, CA, USA; Cambridge, UK; Oxford, UK, 2017; pp. 297–314. [Google Scholar]
- Lukienko, P.I.; Mel’nichenko, N.G.; Zverinskii, I.V.; Zabrodskaya, S.V. Antioxidant properties of thiamine. Bull. Exp. Biol. Med. 2000, 130, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.E.; Zhang, H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem. Int. 2002, 40, 493–504. [Google Scholar] [CrossRef]
- Kallio-Nyberg, I.; Romakkaniemi, A.; Jokikokko, E.; Saloniemi, I.; Jutila, E. Differences between wild and reared Salmo salar stocks of two northern Baltic Sea rivers. Fish. Res. 2015, 165, 85–95. [Google Scholar] [CrossRef]
- Pardo, S.A.; Bolstad, G.H.; Dempson, J.B.; April, J.; Jones, R.A.; Raab, D.; Hutchings, J.A. Trends in marine survival of Atlantic salmon populations in eastern Canada. ICES J. Mar. Sci. 2021, 78, 2460–2473. [Google Scholar] [CrossRef]
- Kallio-Nyberg, I.; Saloniemi, I.; Jutila, E.; Jokikokko, E. Effect of hatchery rearing and environmental factors on the survival, growth and migration of Atlantic salmon in the Baltic Sea. Fish. Res. 2011, 109, 285–294. [Google Scholar] [CrossRef]
- Mikkonen, J.; Keinänen, M.; Casini, M.; Pönni, J.; Vuorinen, P.J. Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar). ICES J. Mar. Sci. 2011, 68, 2134–2144. [Google Scholar] [CrossRef]
- Casini, M.; Hjelm, J.; Molinero, J.C.; Lovgren, J.; Cardinale, M.; Bartolino, V.; Belgrano, A.; Kornilovs, G. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 197–202. [Google Scholar] [CrossRef]
- Bagge, O.; Thurow, F.; Steffensen, E.; Bay, J. The Baltic cod. Dana 1994, 10, 1–28. [Google Scholar]
- ICES. Baltic Fisheries Assessment Working Group (WGBFAS). ICES Sci. Rep. 2024, 6, 584. [Google Scholar] [CrossRef]
- Bryhn, A.C.; Bergek, S.; Bergström, U.; Casini, M.; Dahlgren, E.; Ek, C.; Hjelm, J.; Königson, S.; Ljungberg, P.; Lundström, K.; et al. Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea, Kattegat and Skagerrak? Ocean Coast. Manag. 2022, 223, 106154. [Google Scholar] [CrossRef]
- Keinänen, M.; Käkelä, R.; Ritvanen, T.; Myllylä, T.; Pönni, J.; Vuorinen, P.J. Fatty acid composition of sprat (Sprattus sprattus) and herring (Clupea harengus) in the Baltic Sea as potential prey for salmon (Salmo salar). Helgol. Mar. Res. 2017, 71, 4. [Google Scholar] [CrossRef]
- Røjbek, M.C.; Tomkiewicz, J.; Jacobsen, C.; Støttrup, J.G. Forage fish quality: Seasonal lipid dynamics of herring (Clupea harengus L.) and sprat (Sprattus sprattus L.) in the Baltic Sea. ICES J. Mar. Sci. 2014, 71, 56–71. [Google Scholar] [CrossRef]
- Vuorinen, P.J.; Parmanne, R.; Vartiainen, T.; Keinänen, M.; Kiviranta, H.; Kotovuori, O.; Halling, F. PCDD, PCDF, PCB and thiamine in Baltic herring (Clupea harengus L.) and sprat [Sprattus sprattus (L.)] as a background to the M74 syndrome of Baltic salmon (Salmo salar L.). ICES J. Mar. Sci. 2002, 59, 480–496. [Google Scholar] [CrossRef]
- Salminen, M.; Kuikka, S.; Erkamo, E. Divergence in feeding migration of Baltic salmon (Salmo salar L.); the significance of smolt size. Nord. J. Freshw. Res. 1994, 69, 32–42. [Google Scholar]
- Jutila, E.; Jokikokko, E.; Kallio-Nyberg, I.; Saloniemi, I.; Pasanen, P. Differences in sea migration between wild and reared Atlantic salmon (Salmo salar L.) in the Baltic Sea. Fish. Res. 2003, 60, 333–343. [Google Scholar] [CrossRef]
- Thurow, F. On Food, Behaviour and Population Mechanism of Baltic Salmon; Report 4; Swedish Salmon Research Institute: Älvkarleby, Sweden, 1968; pp. 1–16. [Google Scholar]
- Salminen, M.; Erkamo, E.; Salmi, J. Diet of post-smolt and one-sea-winter Atlantic salmon in the Bothnian Sea, northern Baltic. J. Fish Biol. 2001, 58, 16–35. [Google Scholar] [CrossRef]
- Karlsson, L.; Karlström, Ö. The Baltic salmon (Salmo salar L.): Its history, present situation and future. Dana 1994, 10, 61–85. [Google Scholar]
- Vuorinen, P.J.; Kiviranta, H.; Koistinen, J.; Pöyhönen, O.; Ikonen, E.; Keinänen, M. Organohalogen concentrations and feeding status in Atlantic salmon (Salmo salar L.) of the Baltic Sea during the spawning run. Sci. Total Environ. 2014, 468–469, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Hansson, S.; Karlsson, L.; Ikonen, E.; Christensen, O.; Mitans, A.; Uzars, D.; Petersson, E.; Ragnarsson, B. Stomach analyses of Baltic salmon from 1959-1962 and 1994-1997: Possible relations between diet and yolk-sac-fry mortality (M74). J. Fish Biol. 2001, 58, 1730–1745. [Google Scholar] [CrossRef]
- Karlsson, L.; Ikonen, E.; Mitans, A.; Hansson, S. The diet of salmon (Salmo salar) in the Baltic sea and connections with the M74 syndrome. Ambio 1999, 28, 37–42. Available online: https://www.jstor.org/stable/4314846 (accessed on 16 September 2024).
- Jacobson, P.; Gårdmark, A.; Östergren, J.; Casini, M.; Huss, M. Size-dependent prey availability affects diet and performance of predatory fish at sea: A case study of Atlantic salmon. Ecosphere 2018, 9, e02081. [Google Scholar] [CrossRef]
- Jacobson, P. Size-Dependent Predator-Prey Interactions, Distribution and Mortality in Salmon: Effects on Individuals and Populations. Ph.D. Thesis, Swedish University of Agricultural Sciences, SLU, Öregrund, Sweden, 2020. [Google Scholar]
- ICES. Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Sci. Rep. 2023, 5, 465. [Google Scholar] [CrossRef]
- Isometsä, K.; Orell, P.; Romakkaniemi, A.; Vähä, V.; Lilja, J. Tornionjoen Nousulohien Kaikuluotausseurannat Vuosina 2009–2020; Luonnonvara-ja Biotalouden Tutkimus 9; Luonnonvarakeskus (Luke): Helsinki, Finland, 2021; 32p. (In Finnish) [Google Scholar]
- ICES. Baltic fisheries assessment working group (WGBFAS). ICES Sci. Rep. 2020, 2, 643. [Google Scholar] [CrossRef]
- Pönni, J. Silakka. In Kalakantojen Tila Vuonna 2021 Sekä Ennuste Vuosille 2022 ja 2023; Raitaniemi, J., Sairanen, S., Eds.; Luonnonvara-ja Biotalouden Tutkimus 72; Luonnonvarakeskus: Helsinki, Finland, 2022; pp. 9–23. (In Finnish) [Google Scholar]
- ICES. Baltic Fisheries Assessment Working Group (WGBFAS). ICES Sci. Rep. 2022, 4, 659. [Google Scholar] [CrossRef]
- ISO 1735:2004/IDF 5:2004; Cheese and Processed Cheese Products–Determination of Fat Content–Gravimetric Method (Reference Method). ISO: Geneva, Switzerland, 2004; 16p.
- Vuorinen, P.J.; Myllylä, T.; Ritvanen, T.; Keinänen, M. Lipid and fatty acid contents in three prey species of Baltic salmon (Salmo salar) from three areas of the Baltic Sea. Manuscript for a journal article in preparation.
- Pönni, J. Kilohaili. In Kalakantojen Tila Vuonna 2021 Sekä Ennuste Vuosille 2022 ja 2023; Raitaniemi, J., Sairanen, S., Eds.; Luonnonvara-ja Biotalouden Tutkimus 72; Luonnonvarakeskus: Helsinki, Finland, 2022; pp. 24–28. (In Finnish) [Google Scholar]
- Ketola, H.G.; Chiotti, T.L.; Rathman, R.S.; Fitzsimons, J.D.; Honeyfield, D.C.; Van Dusen, P.J.; Lewis, G.E. Thiamine status of Cayuga Lake rainbow trout and its influence on spawning migration. N. Am. J. Fish. Manag. 2005, 25, 1281–1287. [Google Scholar] [CrossRef]
- Mäntyniemi, S.; Romakkaniemi, A.; Dannewitz, J.; Palm, S.; Pakarinen, T.; Pulkkinen, H.; Gårdmark, A.; Karlsson, O. Both predation and feeding opportunities may explain changes in survival of Baltic salmon post-smolts. ICES J. Mar. Sci. 2012, 69, 1574–1579. [Google Scholar] [CrossRef]
- Säterberg, T.; Jacobson, P.; Ovegård, M.; Rask, J.; Östergren, J.; Jepsen, N.; Florin, A.-B. Species- and origin-specific susceptibility to bird predation among juvenile salmonids. Ecosphere 2023, 14, e4724. [Google Scholar] [CrossRef]
- Heikinheimo, O.; Marjomäki, T.J.; Olin, M.; Rusanen, P. Cormorant predation mortality of perch (Perca fluviatilis) in coastal and archipelago areas, northern Baltic Sea. ICES J. Mar. Sci. 2022, 79, 337–349. [Google Scholar] [CrossRef]
- Koli, L. Suomen Kalat; Werner Söderström Osakeyhtiö: Porvoo, Finland, 1990. (In Finnish) [Google Scholar]
- Salminen, M. Marine Survival of Atlantic Salmon in the Baltic Sea; Technical Report No. 4; North Pacific Anadromous Fish Commission: Vancouver, BC, Canada, 2002; pp. 27–29. [Google Scholar]
- Arrhenius, F.; Hansson, S. Growth of Baltic Sea young-of-the-year herring Clupea harengus is resource limited. Mar. Ecol.-Prog. Ser. 1999, 191, 295–299. [Google Scholar] [CrossRef]
- Peck, M.A.; Baumann, H.; Bernreuther, M.; Clemmesen, C.; Herrmann, J.-P.; Haslob, H.; Huwer, B.; Kanstinger, P.; Köster, F.W.; Petereit, C.; et al. The ecophysiology of Sprattus sprattus in the Baltic and North Seas. Prog. Oceanogr. 2012, 103, 42–57. [Google Scholar] [CrossRef]
- Jacobson, P.; Gådmark, A.; Huss, M. Population and size-specific distribution of Atlantic salmon Salmo salar in the Baltic Sea over five decades. J. Fish Biol. 2020, 96, 408–417. [Google Scholar] [CrossRef]
- ICES. Working Group on Baltic International Fish Survey (WGBIFS; outputs from 2022 meeting). ICES Sci. Rep. 2023, 05, 529. [Google Scholar] [CrossRef]
- ICES. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST), Uppsala, Sweden, 15–23 March 2012; ICES CM 2012/ACOM:08353p; ICES: Copenhagen, Denmark, 2012; 08353p. [Google Scholar]
- Friedland, K.D.; Dannewitz, J.; Romakkaniemi, A.; Palm, S.; Pulkkinen, H.; Pakarinen, T.; Oeberst, R. Post-smolt survival of Baltic salmon in context to changing environmental conditions and predators. ICES J. Mar. Sci. 2017, 74, 1344–1355. [Google Scholar] [CrossRef]
- Olin, A.B.; Olsson, J.; Eklöf, J.S.; Eriksson, B.K.; Kaljuste, O.; Briekmane, L.; Bergström, U. Increases of opportunistic species in response to ecosystem change: The case of the Baltic Sea three-spined stickleback. ICES J. Mar. Sci. 2022, 79, 1419–1434. [Google Scholar] [CrossRef]
- Airaksinen, R.; Jestoi, M.; Keinänen, M.; Kiviranta, H.; Koponen, J.; Mannio, J.; Myllylä, T.; Nieminen, J.; Raitaniemi, J.; Rantakokko, P.; et al. Changes in the Levels of Environmental Contaminants of Finnish Wild Caught Fish. Publications of the Government’s Analysis, Assessment and Research Activities 51. 2018. 71p. Available online: http://urn.fi/URN:ISBN:978-952-287-600-3 (accessed on 16 September 2024). (In Finnish with Abstract in English).
- Frisk, C.; Andersen, K.H.; Temming, A.; Herrmann, J.P.; Madsen, K.S.; Kraus, G. Environmental effects on sprat (Sprattus sprattus) physiology and growth at the distribution frontier: A bioenergetic modelling approach. Ecol. Model. 2015, 299, 130–139. [Google Scholar] [CrossRef]
- Moyano, M.; Illing, B.; Akimova, A.; Alter, K.; Bartolino, V.; Börner, G.; Clemmesen, C.; Finke, A.; Gröhsler, T.; Kotterba, P.; et al. Caught in the middle: Bottom-up and top-down processes impacting recruitment in a small pelagic fish. Rev. Fish Biol. Fisher. 2023, 33, 55–84. [Google Scholar] [CrossRef]
- Pönni, J. Silakka. In Kalakantojen Tila Vuonna 2020 Sekä Ennuste Vuosille 2021 ja 2022; Raitaniemi, J., Sairanen, S., Eds.; Luonnonvara-ja Biotalouden Tutkimus 61; Luonnonvarakeskus: Helsinki, Finland, 2021; pp. 9–23. (In Finnish) [Google Scholar]
- Burbank, J.; DeJong, R.A.; Turcotte, F.; Rolland, N. Understanding factors influencing Atlantic herring (Clupea harengus) recruitment: From egg deposition to juveniles. Fish. Oceanogr. 2023, 32, 147–159. [Google Scholar] [CrossRef]
- Pönni, J. Silakka. In Kalakantojen Tila Vuonna 2018 Sekä Ennuste Vuosille 2019 ja 2020; Sairanen, S., Raitaniemi, J., Eds.; Luonnonvara-ja Biotalouden Tutkimus 48; Luonnonvarakeskus: Helsinki, Finland, 2019; pp. 6–16. (In Finnish) [Google Scholar]
- Bengtsson, B.-E.; Hill, C.; Bergman, Å.; Brandt, I.; Johansson, N.; Magnhagen, C.; Södergren, A.; Thulin, J. Reproductive disturbances in Baltic fish: A synopsis of the FiRe project. Ambio 1999, 28, 2–8. Available online: https://www.jstor.org/stable/4314841 (accessed on 16 September 2024).
- Stockmayer, V.; Lehmann, A. Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020. Oceanologia 2023, 65, 466–483. [Google Scholar] [CrossRef]
- Casini, M.; Cardinale, M.; Arrhenius, F. Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES J. Mar. Sci. 2004, 61, 1267–1277. [Google Scholar] [CrossRef]
- Möllmann, C.; Kornilovs, G.; Fetter, M.; Köster, F.W. Feeding ecology of central Baltic Sea herring and sprat. J. Fish Biol. 2004, 65, 1563–1581. [Google Scholar] [CrossRef]
- Vuorinen, P.J.; Keinänen, M.; Kiviranta, H.; Koistinen, J.; Kiljunen, M.; Myllylä, T.; Pönni, J.; Peltonen, H.; Verta, M.; Karjalainen, J. Biomagnification of organohalogens in Atlantic salmon (Salmo salar) from its main prey species in three areas of the Baltic Sea. Sci. Total Environ. 2012, 421–422, 129–143. [Google Scholar] [CrossRef]
- Jacobsen, J.A.; Hansen, L.P. Feeding habits of wild and escaped farmed Atlantic salmon, Salmo salar L., in the Northeast Atlantic. ICES J. Mar. Sci. 2001, 58, 916–933. [Google Scholar] [CrossRef]
- Hyvönen, L.; Koivistoinen, P. Fatty acid analysis, TAG equivalents as net fat value, and nutritional attributes of fish and fish products. J. Food Compos. Anal. 1994, 7, 44–58. [Google Scholar] [CrossRef]
- Kouts, M.; Maljutenko, I.; Elken, J.; Liu, Y.; Hansson, M.; Viktorsson, L.; Raudsepp, U. Recent regime of persistent hypoxia in the Baltic Sea. Environm. Res. Commun. 2021, 3, 075004. [Google Scholar] [CrossRef]
- Arrhenius, F.; Hansson, S. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol.-Prog. Ser. 1993, 96, 125–137. [Google Scholar] [CrossRef]
- ICES. Report of the Baltic Fisheries Assessment Working Group (WGBFAS), 18–27 April 2006, Rostock, Germany; ICES CM 2006/ACFM:24; ICES: Copenhagen, Denmark, 2006; 669p. [Google Scholar]
- Ryberg, M.P.; Skov, P.V.; Vendramin, N.; Buchmann, K.; Nielsen, A.; Behrens, J.W. Physiological condition of Eastern Baltic cod, Gadus morhua, infected with the parasitic nematode Contracaecum osculatum. Conserv. Physiol. 2020, 8, 14. [Google Scholar] [CrossRef]
- Marnis, H.; Kania, P.W.; Syahputra, K.; Zuo, S.; Dirks, R.P.; Buchmann, K. Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response. Fish Shellfish Immun. 2019, 93, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Neuenfeldt, S.; Bartolino, V.; Orio, A.; Andersen, K.H.; Andersen, N.G.; Niiranen, S.; Bergström, U.; Ustups, D.; Kulatska, N.; Casini, M. Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES J. Mar. Sci. 2019, 77, 624–632. [Google Scholar] [CrossRef]
- Köster, F.W.; Möllmann, C.; Hinrichsen, H.-H.; Wieland, K.; Tomkiewicz, J.; Kraus, G.; Voss, R.; Makarchouk, A.; Mackenzie, B.R.; St John, M.A.; et al. Baltic cod recruitment—The impact of climate variability on key processes. ICES J. Mar. Sci. 2005, 62, 1408–1425. [Google Scholar] [CrossRef]
- Dessen, J.E.; Weihe, R.N.; Hatlen, B.; Thomassen, M.S.; Rorvik, K.A. Different growth performance, lipid deposition, and nutrient utilization in in-season (S1) Atlantic salmon post-smolt fed isoenergetic diets differing in protein-to-lipid ratio. Aquaculture 2017, 473, 345–354. [Google Scholar] [CrossRef]
- Gélineau, A.; Corraze, G.; Boujard, T.; Larroquet, L.; Kaushik, S. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout. Reprod. Nutr. Dev. 2001, 41, 487–503. [Google Scholar] [CrossRef]
- Salminen, T. Kilohaili- ja Silakkaperäisen Ravinnon Vaikutus Itämeren Lohen (Salmo salar) Kasvuun ja Rasvahappokoostumukseen Sekä Yhteydet M74-Oireyhtymään. Master’s Thesis, Helsingin Yliospisto, Biotieteellinen Tiedekunta, Bio-ja Ympäristötieteiden Laitos, Helsinki, Finland, 2018. (In Finnish). [Google Scholar]
- Power, M.; Thorstad, E.B.; Forseth, T.; Fiske, P. Temporal shifts in the marine feeding of individual Atlantic salmon inferred from scale isotope ratios. Ecol. Evol. 2023, 13, e10656. [Google Scholar] [CrossRef]
- Mikkonen, J. Itämeren Kalakantamuutokset ja Lohen M74-Oireyhtymä. Master’s Thesis, Helsingin Yliopisto, Biotieteellinen Tiedekunta, Bio-Ja Ympäristötieteiden Laitos, Akvaattiset Tieteet/Kalataloustiede, Helsinki, Finland, 2008. (In Finnish). [Google Scholar]
- Backman, J. Itämeren Hydrologisten Vaihteluiden Sekä Biologisten Tekijöiden Yhteys Lohen M74-Oireyhtymään. Master’s Thesis, Helsingin Yliopisto, Bio-ja ympäristötieteiden laitos, Akvaattiset Tieteet/Hydrobiologia, Helsinki, Finland, 2004. (In Finnish). [Google Scholar]
- Lee, B.J.; Jaroszewska, M.; Dabrowski, K.; Czesny, S.; Rinchard, J. Effects of dietary vitamin B-1 (thiamine) and magnesium on the survival, growth and histological indicators in lake trout (Salvelinus namaycush) juveniles. Comp. Biochem. Phys. A 2012, 162, 219–226. [Google Scholar] [CrossRef]
- Vuorinen, P.J.; Keinänen, M.; Heinimaa, P.; Iivari, J.; Juntunen, E.-P.; Kannel, R.; Pakarinen, T.; Romakkaniemi, A. M74-Oireyhtymän Seuranta Itämeren Lohikannoissa; RKTL:n työraportteja 41; Riista-ja Kalatalouden Tutkimuslaitos: Helsinki, Finland, 2014; 24p. (In Finnish) [Google Scholar]
- Keinänen, M.; Tolonen, T.; Ikonen, E.; Parmanne, R.; Tigerstedt, C.; Rytilahti, J.; Soivio, A.; Vuorinen, P.J. Reproduction Disorder of Baltic Salmon–M74; Kalatutkimuksia–Fiskundersökningar, No 165; Riista-ja Kalatalouden Tutkimuslaitos: Helsinki, Finland, 2000; 38p, Available online: http://urn.fi/URN:ISBN:951-776-255-0 (accessed on 16 September 2024). (In Finnish)
- Paspatis, M.; Boujard, T. A comparative study of automatic feeding and self-feeding in juvenile Atlantic salmon (Salmo salar) fed diets of different energy levels. Aquaculture 1996, 145, 245–257. [Google Scholar] [CrossRef]
- Kriketos, A.D.; Peters, J.C.; Hill, J.O. Cellular and whole-animal energetics. In Biochemical and Physiological Aspects of Human Nutrition; Stipanuk, M.H., Ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2000; pp. 411–424. [Google Scholar]
- Tacon, A.G.J. Lipid nutritional pathology in farmed fish. Arch. Anim. Nutr. 1996, 49, 33–39. [Google Scholar] [CrossRef]
- Kjær, M.; Todorcevic, M.; Torstensen, B.; Vegusdal, A.; Ruyter, B. Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids 2008, 43, 813–827. [Google Scholar] [CrossRef]
- Hallikainen, A.; Airaksinen, R.; Rantakokko, P.; Koponen, J.; Mannio, J.; Vuorinen, P.J.; Jääskeläinen, T.; Kiviranta, H. Environmental Pollutants in Baltic Fish and Other Domestic Fish: PCDD/F, PCB, PBDE, PFC and OT Compounds; Eviran tutkimuksia, 2. Elintarviketurvallisuusvirasto Evira: Helsinki, Finland, 2011. 106p. Available online: https://urn.fi/URN:ISBN:978-952-225-083-4 (accessed on 16 September 2024). (In Finnish).
- Vuorinen, P.J.; Paasivirta, J.; Piilola, T.; Surma-Aho, K.; Tarhanen, J. Organochlorine compounds in Baltic salmon and trout. I. Chlorinated hydrocarbons and chlorophenols 1982. Chemosphere 1985, 14, 1729–1740. [Google Scholar] [CrossRef]
- Kumar, E.; Koponen, J.; Rantakokko, P.; Airaksinen, R.; Ruokojärvi, P.; Kiviranta, H.; Vuorinen, P.J.; Myllylä, T.; Keinänen, M.; Raitaniemi, J.; et al. Distribution of perfluoroalkyl acids in fish species from the Baltic Sea and freshwaters in Finland. Chemosphere 2022, 291, 132688. [Google Scholar] [CrossRef] [PubMed]
- Isosaari, P.; Hallikainen, A.; Kiviranta, H.; Vuorinen, P.J.; Parmanne, R.; Koistinen, J.; Vartiainen, T. Polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes and polybrominated diphenyl ethers in the edible fish caught from the Baltic Sea and lakes in Finland. Environ. Pollut. 2006, 141, 213–225. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.M.; Ylitalo, G.M.; West, J.E. Energy content of Pacific salmon as prey of northern and southern resident killer whales. Endanger. Species Res. 2014, 25, 265–281. [Google Scholar] [CrossRef]
- Lerner, J.E.; Hunt, B.P.V. Seasonal variation in the lipid content of Fraser River Chinook Salmon (Oncorhynchus tshawytscha) and its implications for Southern Resident Killer Whale (Orcinus orca) prey quality. Sci. Rep. UK 2023, 13, 2675. [Google Scholar] [CrossRef]
- Honeyfield, D.C.; Peters, A.K.; Jones, M.L. Thiamine and Lipid Utilization in Fasting Chinook Salmon. In Bulletin Number 6: Pacific Salmon and Steelhead Production in a Changing Climate: Past, Present, and Future; North Pacific Anadromous Fish Commission: Vancouver, BC, Canada, 2016; pp. 13–19. [Google Scholar] [CrossRef]
- Pasternack, M.; Salminen, M.; Heinimaa, P. Physiological Condition and Migratory Readiness of Hatchery-Reared Neva Stock Salmon Smolts in 2007–2009; Riista-ja Kalatalous Selvityksiä 16; Finnish Game and Fisheries Research Institute: Helsinki, Finland, 2010; 33p, Available online: http://urn.fi/URN:ISBN:978-951-776-788-0 (accessed on 16 September 2024). (In Finnish)
- Corraze, G.; Kaushik, S. Lipids from marine and freshwater fish, Les lipides des poissons marins et d’eau douce. OCL 1999, 6, 111–115. [Google Scholar]
- Madenjian, C.P.; Elliott, R.F.; DeSorcie, T.J.; Stedman, R.M.; O’Connor, D.V.; Rottiers, D.V. Lipid concentrations in Lake Michigan fishes: Seasonal, spatial, ontogenetic, and long-term trends. J. Great Lakes Res. 2000, 26, 427–444. [Google Scholar] [CrossRef]
- Fisher, J.P.; Fitzsimons, J.D.; Combs, G.F., Jr.; Spitsbergen, J.M. Naturally occurring thiamine deficiency causing reproductive failure in Finger Lakes Atlantic salmon and Great Lakes lake trout. Trans. Am. Fish. Soc. 1996, 125, 167–178. [Google Scholar] [CrossRef]
- Ketola, H.G.; Rinchard, J.; O’Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake Ontario, 2003 to 2006. J. Freshw. Ecol. 2009, 24, 247–254. [Google Scholar] [CrossRef]
- Brandt, S.B. Food of trout and salmon in Lake Ontario. J. Great Lakes Res. 1986, 12, 200–205. [Google Scholar] [CrossRef]
- Jude, D.J.; Tesar, F.J.; DeBoe, S.F.; Miller, T.J. Diet and selection of major prey species by Lake Michigan Salmonines, 1973–1982. T. Am. Fish. Soc. 1987, 116, 677–691. [Google Scholar] [CrossRef]
- Happel, A.; Pattridge, R.; Walsh, M.; Rinchard, J. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes. J. Great Lakes Res. 2017, 43, 838–845. [Google Scholar] [CrossRef]
- Todisco, V.; Fridolfsson, E.; Axén, C.; Dahlgren, E.; Ejsmond, M.J.; Hauber, M.M.; Hindar, K.; Tibblin, P.; Zöttl, M.; Söderberg, L.; et al. Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar). J. Fish Biol. 2024, 104, 807–824. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, D.J.; Higgs, D.A.; Dosanjh, B.S.; Deacon, G.; Randall, D.J. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater. Fish Physiol. Biochem. 1998, 19, 111–122. [Google Scholar] [CrossRef]
- Brown, S.B.; Honeyfield, D.C.; Hnath, J.G.; Wolgamood, M.; Marcquenski, S.V.; Fitzsimons, J.D.; Tillitt, D.E. Thiamine status in adult salmonines in the Great Lakes. J. Aquat. Anim. Health 2005, 17, 59–64. [Google Scholar] [CrossRef]
- Futia, M.H.; Hallenbeck, S.; Noyes, A.D.; Honeyfield, D.C.; Eckerlin, G.E.; Rinchard, J. Thiamine deficiency and the effectiveness of thiamine treatments through broodstock injections and egg immersion on Lake Ontario steelhead trout. J. Great Lakes Res. 2017, 43, 352–358. [Google Scholar] [CrossRef]
- Koski, P.; Soivio, A.; Hartikainen, K.; Hirvi, T.; Myllylä, T. M74 syndrome and thiamine in salmon broodfish and offspring. Boreal Environ. Res. 2001, 6, 79–92. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keinänen, M.; Raitaniemi, J.; Pönni, J.; Ritvanen, T.; Myllylä, T.; Vuorinen, P.J. Reduced Numbers of Returning Atlantic Salmon (Salmo salar) and Thiamine Deficiency Are Both Associated with the Consumption of High-Lipid Prey Fish. Fishes 2025, 10, 16. https://doi.org/10.3390/fishes10010016
Keinänen M, Raitaniemi J, Pönni J, Ritvanen T, Myllylä T, Vuorinen PJ. Reduced Numbers of Returning Atlantic Salmon (Salmo salar) and Thiamine Deficiency Are Both Associated with the Consumption of High-Lipid Prey Fish. Fishes. 2025; 10(1):16. https://doi.org/10.3390/fishes10010016
Chicago/Turabian StyleKeinänen, Marja, Jari Raitaniemi, Jukka Pönni, Tiina Ritvanen, Timo Myllylä, and Pekka J. Vuorinen. 2025. "Reduced Numbers of Returning Atlantic Salmon (Salmo salar) and Thiamine Deficiency Are Both Associated with the Consumption of High-Lipid Prey Fish" Fishes 10, no. 1: 16. https://doi.org/10.3390/fishes10010016
APA StyleKeinänen, M., Raitaniemi, J., Pönni, J., Ritvanen, T., Myllylä, T., & Vuorinen, P. J. (2025). Reduced Numbers of Returning Atlantic Salmon (Salmo salar) and Thiamine Deficiency Are Both Associated with the Consumption of High-Lipid Prey Fish. Fishes, 10(1), 16. https://doi.org/10.3390/fishes10010016