A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Diet
2.2. M. Salmoides Culture Conditions
2.3. Sample Collection
2.4. Laboratory Trial Analysis
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Whole-Body Composition
3.3. Plasma Biochemical Indices
3.4. Plasma Antioxidant Indices
3.5. Hepatic Antioxidant Gene Expression
3.6. Hepatic Immune-Related Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; El-Hack, M.E.A. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Bjorndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tyeteras, R. A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Ceballos-Concha, A.; Love, D.C.; Osmundsen, T.C.; Pincinato, R.B.M. Aquaculture: The missing contributor in the food security agenda. Glob. Food Secur. Agric. Policy Econ. Environ. 2022, 32, 100620. [Google Scholar] [CrossRef]
- Golden, C.D.; Koehn, J.Z.; Shepon, A.; Passarelli, S.; Free, C.M.; Viana, D.F.; Matthey, H.; Eurich, J.G.; Gephart, J.A.; Fluet-Chouinard, E.; et al. Aquatic foods to nourish nations. Nature 2021, 598, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture of the People’s Republic of China. Chinese Fishery Statistical Yearbook 2022; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2022.
- Cretu, M.; Dediu, L.; Cristea, V.; Zugravu, A.; Rahoveanu, M.M.T.; Bandi, A.-C.; Rahoveanu, A.T.; Mocuta, D.N. Environmental Impact of Aquaculture: A Literature Review. In Proceedings of the 27th International Business Information Management Association Conference, Milan, Italy, 4–5 May 2016. [Google Scholar]
- Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 2019, 652, 851–861. [Google Scholar] [CrossRef]
- Julia, P. Aquaculture and the Environment: The Risks and Rewards. J. Agric. Food Inf. 2003, 5, 43–50. [Google Scholar]
- Shao, Y.T.; Wang, Y.P.; Yuan, Y.W.; Xie, Y.J. A Systematic Review on Antibiotics Misuse in Livestock and Aquaculture and Regulation Implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Limbu, S.M.; Chen, L.Q.; Zhang, M.L.; Du, Z.Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Angeles Esteban, M. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, Y.; Li, H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front. Immunol. 2019, 10, 00145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liang, M.; Wei, J.; Wang, S. Effects of Dietary Yeast Polysaccharides on the Immune Responses of Apostichopus japonicus to a Sudden Drop in Temperature. J. World Aquac. Soc. 2017, 48, 656–665. [Google Scholar] [CrossRef]
- Zheng, Y.D.; Hou, C.H.; Yan, Z.; Chen, J.; Wang, H.M.; Tan, B.P.; Zhang, S. Effects of Dietary Zymosan-A on the Growth Performance and Intestinal Morphology, Digestive Capacity, and Microbial Community in Litopenaeus vannamei. Front. Mar. Sci. 2022, 9, 877865. [Google Scholar] [CrossRef]
- Li, H.X.; Wu, M.J.; Li, Z.H.; Zhang, Q.; Zhang, X.H.; Zhang, Y.Y.; Zhao, D.; Wang, L.; Hou, Y.Q.; Wu, T. Effect of supplementation with yeast polysaccharides on intestinal function in piglets infected with porcine epidemic diarrhea virus. Front. Microbiol. 2024, 15, 1378070. [Google Scholar] [CrossRef]
- Zhu, H.L.; Liu, H.Y.; Yan, J.; Wang, R.; Liu, L.H. Effect of yeast polysaccharide on some hematologic parameter and gut morphology in channel catfish (Ictalurus punctatus). Fish Physiol. Biochem. 2012, 38, 1441–1447. [Google Scholar] [CrossRef]
- Trevisi, P.; Priori, D.; Gandolfi, G.; Colombo, M.; Coloretti, F.; Goossens, T.; Bosi, P. In vitro test on the ability of a yeast cell wall based product to inhibit the Escherichia coli F4ac adhesion on the brush border of porcine intestinal villi. J. Anim. Sci. 2012, 90, 275–277. [Google Scholar] [CrossRef]
- Yang, G.; Tian, X.L.; Dong, S.L.; Peng, M.; Wang, D.D.; Zhang, K. Effects of dietary rhubarb, Bacillus cereus, yeast polysaccharide, and florfenicol supplementation on growth, intestinal morphology, and immune responses of sea cucumber (Apostichopus japonicus). Aquac. Int. 2016, 24, 675–690. [Google Scholar] [CrossRef]
- Zhao, W.; Liang, M.; Zhang, P. Effect of yeast polysaccharide on the immune function of juvenile sea cucumber, Apostichopus japonicus Selenka under pH stress. Aquac. Int. 2010, 18, 777–786. [Google Scholar] [CrossRef]
- Zhao, W.; Liang, M.; Liu, Q.; Yin, X.W.; Wei, J. The effect of yeast polysaccharide (YSP) on the immune function of Apostichopus japonicus Selenka under salinity stress. Aquac. Int. 2014, 22, 1753–1766. [Google Scholar] [CrossRef]
- Hayati, R.L.; Prihanto, A.A. Effects of polysaccharides-crude extract from Candida sp. OCL1 on hematological parameters of Aeromonas hydrophila-infected catfish (Pangasius pangasius). In Proceedings of the 1st International Conference on Sustainable Aquatic Resources (ICoSAR)—Increasing Ocean Health Index (OHI) Through Sustainable Aquatic-Food Resources Utilization, Malang, Indonesia, 27–28 August 2019. [Google Scholar]
- Refstie, S.; Baeverfjord, G.; Seim, R.R.; Elvebo, O. Effects of dietary yeast cell wall β-glucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal. Aquaculture 2010, 305, 109–116. [Google Scholar] [CrossRef]
- Wang, P.; Yan, X.F.; Zhang, X.T.; Zhu, Z.L.; Xu, Q.L.; Hou, J.J.; Chen, J.; Gisbert, E.; Zhou, J.S. Increasing levels of fishmeal replacement by defatted black soldier fly larvae meal reduced growth performance without affecting fillet quality in largemouth bass (Micropterus salmoides). Fish Physiol. Biochem. 2024, 50, 2255–2274. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.H.; Sun, Z.Z.; Liu, Q.Y.; Ye, H.Q.; Zou, C.Y.; Ye, C.X.; Wang, A.L.; Lin, H.Z. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets. Fish Shellfish. Immunol. 2018, 72, 399–409. [Google Scholar] [PubMed]
- Wei, G.B.; Tan, H.M.; Ma, S.H.; Sun, G.R.; Zhang, Y.L.; Wu, Y.Z.; Cai, S.H.; Huang, Y.C.; Jian, J.C. Protective effects of β-glucan as adjuvant combined inactivated Vibrio harveyi vaccine in pearl gentian grouper. Fish Shellfish. Immunol. 2020, 106, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Cheng, Y.; Qian, S.C.; Zhang, W.; Huang, M.M.; Yang, S.; Fei, H. An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass (Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota. Animals 2023, 13, 459. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liu, W.S.; Li, X.Y.; Xin, Y.X.; Tang, Y.Q.; Xiao, H.H.; Guo, X.Z.; Li, S.M. Effects of dietary lentinan on growth performance, nonspecific immunity and disease resistance to Aeromonas hydrophila in largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 32, 101696. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Deng, Y.Y.; Yang, Z.X.; Kong, Q.; Liu, P.Q.; Liao, H.P.; Tang, H.J. Effects of partial replacement of fishmeal with Spirulina platensis powder and addition of Spirulina platensis polysaccharide on growth, nutrition, antioxidant capacity and gut microbiota of Micropterus salmoides. Aquaculture 2024, 586, 740802. [Google Scholar] [CrossRef]
- Dong, B.; Wu, L.Y.; Chen, Q.Z.; Xu, W.J.; Li, D.G.; Han, D.; Zhu, X.M.; Liu, H.K.; Yang, Y.X.; Xie, S.Q.; et al. Tolerance Assessment of Atractylodes macrocephala Polysaccharide in the Diet of Largemouth Bass (Micropterus salmoides). Antioxidants 2022, 11, 1581. [Google Scholar] [CrossRef]
- Zhao, F.X.; Huo, X.C.; Wang, P.X.; Liu, Q.; Yang, C.R.; Su, J.G. The Combination of β-Glucan and Astragalus Polysaccharide Effectively Resists Nocardia seriolae Infection in Largemouth Bass (Micropterus salmoides). Microorganisms 2023, 11, 2529. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 1995. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.Q.; Chi, S.Y.; Mai, K.S.; Song, F.; Wang, L. Effects of dietary lysine on regulating GH-IGF system, intermediate metabolism and immune response in largemouth bass (Micropterus salmoides). Aquac. Rep. 2020, 17, 100323. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Huang, D.Y.; Zhang, L.; Chen, X.R.; Wang, Y.L.; Zhang, L.; Ren, M.C.; Liang, H.L. Dietary arginine levels affect growth performance, intestinal antioxidant capacity and immune responses in largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 32, 101703. [Google Scholar] [CrossRef]
- Gu, J.Z.; Liang, H.L.; Ge, X.P.; Xia, D.; Pan, L.K.; Mi, H.F.; Ren, M.C. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 120, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiao, J.X.; Hua, Y.; Xiang, X.W.; Zhou, Y.F.; Ye, L.; Shao, Q.J. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture 2019, 503, 389–395. [Google Scholar] [CrossRef]
- Sealey, W.M.; Barrows, F.T.; Hang, A.; Johansen, K.A.; Overturf, K.; LaPatra, S.E.; Hardy, R.W. Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim. Feed Sci. Technol. 2008, 141, 115–128. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Cao, S.P.; Zou, T.; Han, D.; Liu, H.K.; Jin, J.Y.; Yang, Y.X.; Zhu, X.M.; Xie, S.Q.; Zhou, W.H. Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS III). Fish Shellfish Immunol. 2018, 82, 400–407. [Google Scholar] [CrossRef]
- Hou, X.Y.; Sun, L.J.; Li, Z.Q.; Deng, X.Y.; Guan, H.K.; Luo, C.Z.; Shi, Y.; Zhou, W.H.; Liang, T.Y.; Yang, Y.H.; et al. An Evaluation of Yeast Culture Supplementation in the Diet of Pseudobagrus ussuriensis: Growth, Antioxidant Activity, Nonspecific Immunity, and Disease Resistance to Aeromonas hydrophila. Aquac. Nutr. 2022, 2022, 9739586. [Google Scholar] [CrossRef]
- Neuls, L.; de Souza, V.J.; Romao, S.; Bitencourt, T.B.; Raupp Ramos, C.J.; Garcia Parra, J.E.; Cazarolli, L.H. Immunomodulatory effects of Yarrowia lipolytica as a food additive in the diet of Nile tilapia. Fish Shellfish Immunol. 2021, 119, 272–279. [Google Scholar] [CrossRef]
- Ozorio, R.O.A.; Portz, L.; Borghesi, R.; Cyrino, J.E.P. Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus). Animals 2012, 2, 16–24. [Google Scholar] [CrossRef]
- Chen, F.Y.; Li, X.X.; Wu, Y.J.; Huang, D.; Guo, Y.L.; Zhang, Y.J.; Zhang, W.B.; Mai, K.S. Influences of dietary antimicrobial peptide APSH-07 on the growth performance, immune response and vibriosis resistance of abalone Haliotis discus hannai Ino. Aquac. Nutr. 2020, 26, 1736–1747. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.K.; Zhou, Q.C.; Huang, X.L.; Huang, Z.; Li, T.; Wu, Q.E.; Zhou, C.P.; Ma, Z.H.; Lin, H.Z. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer. Int. J. Biol. Macromol. 2022, 207, 850–858. [Google Scholar] [CrossRef]
- Sheikh, Z.A.; Ahmed, I. Impact of environmental changes on plasma biochemistry and hematological parameters of Himalayan snow trout, Schizothorax plagiostomus. Comp. Clin. Pathol. 2019, 28, 793–804. [Google Scholar] [CrossRef]
- Huang, D.Y.; Zhu, J.; Zhang, L.; Ge, X.P.; Ren, M.C.; Liang, H.L. Dietary Supplementation with Eucommia ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT.; Oreochromis niloticus). Antioxidants 2022, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Anoopraj, R.; Hemalatha, S.; Balachandran, C. A preliminary study on serum liver function indices of Diethylnitrosamine induced hepatocarcinogenesis and chemoprotective potential of Eclipta alba in male Wistar rats. Vet. World 2014, 7, 439–442. [Google Scholar] [CrossRef]
- Yu, W.; Lin, H.Z.; Yang, Y.K.; Zhou, Q.C.; Chen, H.M.; Huang, X.L.; Zhou, C.P.; Huang, Z.; Li, T. Effects of supplemental dietary Haematococcus pluvialis on growth performance, antioxidant capacity, immune responses and resistance to Vibrio harveyi challenge of spotted sea bass Lateolabrax maculatus. Aquac. Nutr. 2021, 27, 355–365. [Google Scholar] [CrossRef]
- Onyenibe, N.S.; Fowokemi, K.T.; Emmanuel, O.B. African Nutmeg (Monodora Myristica) Lowers Cholesterol and Modulates Lipid Peroxidation in Experimentally Induced Hypercholesterolemic Male Wistar Rats. Int. J. Biomed. Sci. IJBS 2015, 11, 86–92. [Google Scholar] [CrossRef]
- Tengjaroenkul, B.; Smith, B.J.; Caceci, T.; Smith, S.A. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 2000, 182, 317–327. [Google Scholar] [CrossRef]
- Xu, S.D.; Zheng, X.; Wang, S.Q.; Chu, W.; Ai, Q.H.; Mai, K.S. Effects of dietary tributyrin supplementation on the growth performance, serum biochemistry, antioxidant capability and intestinal morphology and structure of golden pompano (Trachinotus ovatus). Aquac. Res. 2022, 53, 5463–5474. [Google Scholar] [CrossRef]
- Luo, L.; Meng, X.W.; Wang, S.H.; Zhang, R.; Guo, K.; Zhao, Z.G. Effects of dietary ginger (Zingiber officinale) polysaccharide on the growth, antioxidant, immunity response, intestinal microbiota, and disease resistance to Aeromonas hydrophila in crucian carp (Carassius auratus). Int. J. Biol. Macromol. 2024, 275, 133711. [Google Scholar] [CrossRef]
- Shituleni, S.A.; Gan, F.; Nido, S.A.; Mengistu, B.M.; Khan, A.Z.; Liu, Y.; Huang, K. Effects of yeast polysaccharide on biochemical indices, antioxidant status, histopathological lesions and genetic expressions related with lipid metabolism in mice fed with high fat diet. Bioact. Carbohydr. Diet. Fibre 2016, 8, 51–57. [Google Scholar] [CrossRef]
- Cao, Y.; Zou, S.; Xu, H.; Li, M.; Tong, Z.; Xu, M.; Xu, X. Front cover: Hypoglycemic activity of the Baker’s yeast β-glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol. Nutr. Food Res. 2016, 60, 2678–2690. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Zou, S.W.; Li, M.X.; Xu, X.J. Orally Administered Baker’s Yeast β-Glucan Promotes Glucose and Lipid Homeostasis in the Livers of Obesity and Diabetes Model Mice. J. Agric. Food Chem. 2017, 65, 9665–9674. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, I.; Oliva-Teles, A.; Enes, P. Prebiotics as functional ingredients: Focus on Mediterranean fish aquaculture. Rev. Aquac. 2018, 10, 800–832. [Google Scholar] [CrossRef]
- Hemre, G.I.; Mommsen, T.P.; Krogdahl, Å. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2002, 8, 175–194. [Google Scholar] [CrossRef]
- Stone, D.A.J.; Allan, G.L.; Anderson, A.J. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell).: III.: The protein-sparing effect of wheat starch-based carbohydrates. Aquac. Res. 2003, 34, 123–134. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem. 2009, 35, 519–539. [Google Scholar] [CrossRef]
- Moon, T.W. Glucose intolerance in teleost fish: Face or fiction? Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2001, 129, 243–249. [Google Scholar] [CrossRef]
- Booth, M.A.; Moses, M.D.; Allan, G.L. Utilisation of carbohydrate by yellowtail kingfish Seriola lalandi. Aquaculture 2013, 376, 151–161. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Xie, S.W.; Guo, T.Y.; Liu, Z.L.; Fang, H.H.; Zheng, L.; Xie, J.J.; Tian, L.X.; Liu, Y.J.; Jin, N. High dietary starch inclusion impairs growth and antioxidant status, and alters liver organization and intestinal microbiota in largemouth bass Micropterus salmoides. Aquac. Nutr. 2020, 26, 1806–1821. [Google Scholar] [CrossRef]
- Lu, J.; Huang, Z.F.; Ye, Y.L.; Xu, A.L.; Li, Z.B. Effects of Poria cocos polysaccharide on growth performance, physiological parameters, and lipid metabolism of spotted sea bass Lateolabrax maculatus. J. Oceanol. Limnol. 2024, 42, 316–331. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, L.; Lu, Y.; Yang, Y.L.; Xu, M.Y.; Wang, Y.X.; Liu, J.G. Treatment effect of a flavonoid prescription on duck virus hepatitis by its hepatoprotective and antioxidative ability. Pharm. Biol. 2017, 55, 198–205. [Google Scholar] [CrossRef]
- Ding, C.; Shi, X.; Guan, Y.L.; Li, X.J. Deoxynivalenol induces carp neutrophil apoptosis and necroptosis via CYP450s/ROS/PI3K/AKT pathway. Aquaculture 2021, 545, 737182. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, X.; Liu, Q.Q.; Li, X.J. Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells. Aquat. Toxicol. 2022, 246, 106153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.D.; Wen, H.L.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem. 2016, 199, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Fontagne-Dicharry, S.; Lataillade, E.; Surget, A.; Larroquet, L.; Cluzeaud, M.; Kaushik, S. Antioxidant defense system is altered by dietary oxidized lipid in first-feeding rainbow trout (Oncorhynchus mykiss). Aquaculture 2014, 424, 220–227. [Google Scholar] [CrossRef]
- Li, M.; Chen, L.Q.; Qin, J.G.; Li, E.; Yu, N.; Du, Z.Y. Growth performance, antioxidant status and immune response in darkbarbel catfish Pelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia. Aquaculture 2013, 406, 18–27. [Google Scholar] [CrossRef]
- Jiang, X.D.; Zu, L.; Wang, Z.Y.; Cheng, Y.X.; Yang, Y.H.; Wu, X.G. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2020, 102, 499–510. [Google Scholar] [CrossRef]
- Liang, H.L.; Ji, K.; Ge, X.P.; Ren, M.C.; Liu, B.; Xi, B.W.; Pan, L.K. Effects of dietary arginine on antioxidant status and immunity involved in AMPK-NO signaling pathway in juvenile blunt snout bream. Fish Shellfish Immunol. 2018, 78, 69–78. [Google Scholar] [CrossRef]
- Zhang, T.J.; Huang, D.J.; Liu, X.Y.; Chen, F.B.; Liu, Y.Y.; Jiang, Y.; Li, D.P. Antioxidant activity and semi-solid emulsification of a polysaccharide from coffee cherry peel. Int. J. Biol. Macromol. 2023, 244, 125207. [Google Scholar] [CrossRef]
- Kishk, Y.F.M.; Al-Sayed, H.M.A. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT-Food Sci. Technol. 2007, 40, 270–277. [Google Scholar] [CrossRef]
- Huang, Z.F.; Ye, Y.L.; Xu, A.L.; Li, Z.B. Effects of dietary crude polysaccharides from Lycium barbarum on growth performance, digestion, and serum physiology and biochemistry of spotted sea bass Lateolabrax maculatus. Aquac. Rep. 2023, 32, 101710. [Google Scholar] [CrossRef]
- Xiang, X.; Zhou, X.H.; Chen, J.; Wang, W.J.; Li, D.J. Effect of Astragalus Polysaccharides on Growth, Nutrient Composition of Body and Immunological indices in Schizothorax prenanti. In Proceedings of the 14th International Symposium on Fish Nutrition & Feeding, Qingdao, China, 31 May–4 June 2010; p. 428. [Google Scholar]
- Yang, Q.; Yang, R.; Li, M.; Zhou, Q.C.; Liang, X.P.; Elmada, Z.C. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2014, 41, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Niu, J. Evaluation of four macro-algae on growth performance, anti-oxidant capacity and non-specific immunity in golden pompano (Trachinotus ovatus). Aquaculture 2022, 548, 737690. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, Y.; Fu, Y.T.; Jalukar, S.; Ma, J.L.; Liu, Y.R.; Guo, Y.P.; Ma, Q.G.; Ji, C.; Zhao, L.H. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult. Sci. 2023, 102, 102862. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.K.; Chen, H.M.; Zhou, Q.C.; Zhang, Y.W.; Huang, X.L.; Huang, Z.; Li, T.; Zhou, C.P.; Ma, Z.H.; et al. Effects of dietary chitosan on the growth, health status and disease resistance of golden pompano (Trachinotus ovatus). Carbohydr. Polym. 2023, 300, 120237. [Google Scholar] [CrossRef]
- Yousefi, S.; Shokri, M.M.; Noveirian, H.A.; Hoseinifar, S.H. Effects of dietary yeast cell wall on biochemical indices, serum and skin mucus immune responses, oxidative status and resistance against Aeromonas hydrophila in juvenile Persian sturgeon (Acipenser persicus). Fish Shellfish Immunol. 2020, 106, 464–472. [Google Scholar] [CrossRef]
- Yao, C.L.; Kong, P.; Huang, X.N.; Wang, Z.Y. Molecular cloning and expression of IRF1 in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol. 2010, 28, 654–660. [Google Scholar] [CrossRef]
- Xun, P.W.; Zhou, C.P.; Huang, X.L.; Huang, Z.; Yu, W.; Yang, Y.K.; Li, T.; Huang, J.B.; Wu, Y.; Lin, H.Z. Effects of Dietary Sodium Acetate on Growth Performance, Fillet Quality, Plasma Biochemistry, and Immune Function of Juvenile Golden Pompano (Trachinotus ovatus). Aquac. Nutr. 2022, 2022, 9074549. [Google Scholar] [CrossRef]
- Sun, Y.K.; Wang, X.; Zhou, H.H.; Mai, K.S.; He, G. Dietary Astragalus polysaccharides ameliorates the growth performance, antioxidant capacity and immune responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 99, 603–608. [Google Scholar] [CrossRef]
- Zhao, W.; Fang, H.H.; Gao, B.Y.; Dai, C.M.; Liu, Z.Z.; Zhang, C.W.; Niu, J. Dietary Tribonema sp. supplementation increased growth performance, antioxidant capacity, immunity and improved hepatic health in golden pompano (Trachinotus ovatus). Aquaculture 2020, 529, 735667. [Google Scholar] [CrossRef]
- Guo, X.; Chen, D.D.; Peng, K.S.; Cui, Z.W.; Zhang, X.J.; Li, S.; Zhang, Y.A. Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol. 2016, 52, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Dittrich-Breiholz, O.; Holtmann, H.; Kracht, M. Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 2002, 72, 847–855. [Google Scholar] [CrossRef]
- Resseguier, J.; Dalum, A.S.; Du Pasquier, L.; Zhang, Y.; Koppang, E.O.; Boudinot, P.; Wiegertjes, G.F. Lymphoid Tissue in Teleost Gills: Variations on a Theme. Biology 2020, 9, 9060127. [Google Scholar] [CrossRef]
- Niu, X.L.; Chen, Y.M.; Qi, L.; Liang, G.Q.; Wang, Y.; Zhang, L.P.; Qu, Y.; Wang, W.L. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor 1α pathway. Cytokine 2019, 113, 117–127. [Google Scholar] [CrossRef]
- Liang, H.L.; Mokrani, A.; Ji, K.; Ge, X.P.; Ren, M.C.; Pan, L.K.; Sun, A.J. Effects of dietary arginine on intestinal antioxidant status and immunity involved in Nrf2 and NF-κB signaling pathway in juvenile blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 2018, 82, 243–249. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef]
- Kotenko, S.V. The family of IL-10-related cytokines and their receptors: Related, but to what extent? Cytokine Growth Factor Rev. 2002, 13, 223–240. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.Y.; Guo, Z.J.; Li, Q.Z.; Zhang, L.D.; Zhao, L.X.; Zhou, X.W. Immunomodulatory Effect of Cordyceps militaris Polysaccharide on RAW 264.7 Macrophages by Regulating MAPK Signaling Pathways. Molecules 2024, 29, 3408. [Google Scholar] [CrossRef]
- Liu, Q.M.; Xu, S.S.; Li, L.; Pan, T.M.; Shi, C.L.; Liu, H.; Cao, M.J.; Su, W.J.; Liu, G.M. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr. Polym. 2017, 165, 189–196. [Google Scholar] [CrossRef]
Ingredients | Level (%) | Ingredients | Level (%) |
---|---|---|---|
Fish meal a | 30.00 | Fish oil | 6.66 |
Chicken meal a | 5.00 | Cassava starch | 5.00 |
Soy protein concentrate a | 8.00 | Choline chloride | 0.50 |
Soybean meal a | 11.00 | Vitamin premix b | 1.00 |
Rapeseed meal a | 7.20 | Mineral premix b | 1.00 |
Blood meal a | 5.00 | Monocalcium phosphate | 3.46 |
Wheat meal | 5.00 | Vitamin C | 0.05 |
Corn gluten meal a | 7.70 | L-lysine c | 0.28 |
Wheat gluten a | 3.00 | L-methionine c | 0.15 |
Analyzed proximate composition (dry matter) | |||
Crude protein (%) | 50.25 ± 0.15 | ||
Crude lipid (%) | 11.25 ± 0.14 | ||
Ash (%) | 10.05 ± 0.01 | ||
Gross energy (KJ/g) | 20.45 ± 0.04 |
Genes | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Source |
---|---|---|---|
V-rel reticuloendotheliosis viral oncogene homolog A (rela) | GCTGGTGTCTGGTTCATT | GCCTCCTCTTCCATCTCT | [34] |
Nuclear factor-kappa B (nf-κb) | CCACTCAGGTGTTGGAGCTT | TCCAGAGCACGACACACTTC | [35] |
Glutathione peroxidase (gpx) | GAAGGTGGATGTGAATGGA | CCAACCAGGAACTTCTCAA | |
Kelch-like ECH-associated protein 1 (keap1) | CCGTTGGAGGCTATGATG | GCACTGGTAGACTGAGAC | |
Interleukin-8 (il-8) | TCGGTCCTCCTGGGTGAAAA | GTGCTCCTTCCTGCTGATGTA | |
Interleukin-10 (il-10) | CGGCACAGAAATCCCAGAGC | CAGCAGGCTCACAAAATAAACATCT | [36] |
Beta-actin (β-actin) | CCACCTTCAACAGCATCA | AGCCTCCAATCCATACAGA | |
Catalase (cat) | CTATGGCTCTCACACCTTC | TCCTCTACTGGCAGATTCT | |
Superoxide dismutase (sod) | TGGCAAGAACAAGAACCACA | CCTCTGATTTCTCCTGTCACC | |
Toll-like receptor-2 (tlr2) | TCGCTGTTCACCAATCTG | TAGTTCTCCTCTCCATCTGT | |
Nuclear factor erythroid 2-related factor 2 (nrf2) | AGAGACATTCGCCGTAGA | TCGCAGTAGAGCAATCCT |
Control | 0.05Y | 0.10Y | 0.15Y | 0.20Y | |
---|---|---|---|---|---|
IBW (g) | 3.23 ± 0.02 | 3.21 ± 0.01 | 3.21 ± 0.02 | 3.20 ± 0.01 | 3.23 ± 0.01 |
FBW (g) | 26.65 ± 0.35 | 26.01 ± 1.29 | 23.86 ± 0.44 | 24.97 ± 0.40 | 25.70 ± 2.34 |
WGR (%) | 725.04 ± 5.73 | 709.99 ± 39.95 | 643.61 ± 14.67 | 679.54 ± 13.40 | 696.66 ± 72.91 |
SGR (%/d) | 3.70 ± 0.01 | 3.67 ± 0.09 | 3.52 ± 0.03 | 3.60 ± 0.03 | 3.63 ± 0.16 |
SR (%) | 91.67 ± 8.33 | 95.00 ± 5.00 | 91.67 ± 1.67 | 88.33 ± 1.67 | 80.00 ± 2.89 |
FCR | 1.02 ± 0.01 b | 1.19 ± 0.10 ab | 1.27 ± 0.05 a | 1.19 ± 0.04 ab | 1.29 ± 0.06 a |
Moisture (%) | Crude Protein (%) | Crude Lipid (%) | Ash (%) | |
---|---|---|---|---|
Control | 72.63 ± 0.18 | 16.45 ± 0.06 | 6.02 ± 0.47 | 3.74 ± 0.22 |
0.05Y | 72.47 ± 0.09 | 16.51 ± 0.16 | 6.98 ± 0.03 | 3.95 ± 0.12 |
0.10Y | 72.98 ± 0.16 | 16.60 ± 0.05 | 6.33 ± 0.53 | 3.63 ± 0.15 |
0.15Y | 72.53 ± 0.13 | 16.56 ± 0.15 | 6.41 ± 0.14 | 4.00 ± 0.10 |
0.20Y | 72.58 ± 0.23 | 16.67 ± 0.27 | 6.38 ± 0.09 | 3.83 ± 0.14 |
Control | 0.05Y | 0.10Y | 0.15Y | 0.20Y | |
---|---|---|---|---|---|
ALT (U/L) | 5.11 ± 0.90 | 2.68 ± 0.44 | 5.04 ± 0.89 | 4.24 ± 0.90 | 5.14 ± 0.87 |
AST (U/L) | 13.47 ± 2.11 | 12.67 ± 2.05 | 10.93 ± 3.06 | 14.40 ± 2.18 | 13.43 ± 0.83 |
ALP (U/L) | 18.33 ± 1.63 b | 22.23 ± 2.26 ab | 22.80 ± 2.31 a | 22.58 ± 2.20 ab | 20.65 ± 1.93 ab |
GLU (mmol/L) | 5.88 ± 0.49 c | 5.71 ± 0.91 c | 6.64 ± 0.44 bc | 7.26 ± 0.32 ab | 8.05 ± 0.27 a |
TC (mmol/L) | 6.82 ± 0.39 | 7.86 ± 0.33 | 7.32 ± 0.47 | 7.62 ± 0.32 | 7.58 ± 0.31 |
TG (mmol/L) | 12.69 ± 0.53 | 13.02 ± 0.79 | 13.43 ± 0.46 | 13.14 ± 0.85 | 12.89 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Mi, H.; Ren, M.; Huang, D.; Liang, H.; Zhang, L.; Teng, T.; Yin, H. A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides). Fishes 2025, 10, 26. https://doi.org/10.3390/fishes10010026
Qin J, Mi H, Ren M, Huang D, Liang H, Zhang L, Teng T, Yin H. A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides). Fishes. 2025; 10(1):26. https://doi.org/10.3390/fishes10010026
Chicago/Turabian StyleQin, Junjie, Haifeng Mi, Mingchun Ren, Dongyu Huang, Hualiang Liang, Lu Zhang, Tao Teng, and Heng Yin. 2025. "A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides)" Fishes 10, no. 1: 26. https://doi.org/10.3390/fishes10010026
APA StyleQin, J., Mi, H., Ren, M., Huang, D., Liang, H., Zhang, L., Teng, T., & Yin, H. (2025). A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides). Fishes, 10(1), 26. https://doi.org/10.3390/fishes10010026