Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Collection
2.2. Samples Preparation
2.3. RNA Extraction and cDNA Synthesis
2.4. Analysis of qRT-PCR
2.5. Hematoxylin–Eosin (HE) Staining and Immunohistochemistry
2.6. Measurement of Gonadotropin-Releasing Hormone and Testosterone
2.7. Statistical Analysis
3. Result
3.1. Expression of AANAT2 in Different Tissues of L. crocea
3.2. Expression Characteristics of LcMTNRs Subtypes in L. crocea
3.3. Verification of Melatonin Receptor Expression in the Brain and Gonads
3.4. Determination of Different Reproductive Periods in L. crocea
3.5. Expression of LcMTNRs Across Different Reproductive Phases
3.6. Impact of Melatonin on Gene Expression and Secretion of GnRH in the Brain
3.7. Impact of Melatonin on Testosterone Secretion in the Testes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claustrat, B.; Brun, J.; Chazot, G. The Basic Physiology and Pathophysiology of Melatonin. Sleep. Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef] [PubMed]
- REITER, R.J. Pineal Melatonin: Cell Biology of Its Synthesis and of Its Physiological Interactions. Endocr. Rev. 1991, 12, 151–180. [Google Scholar] [CrossRef]
- McCord, C.P.; Allen, F.P. Evidences Associating Pineal Gland Function with Alterations in Pigmentation. J. Exp. Zool. 1917, 23, 207–224. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of Melatonin, The Pineal Gland Factor that Lightens Melanocytes 1. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Sato, K.; Meng, F.; Francis, H.; Wu, N.; Chen, L.; Kennedy, L.; Zhou, T.; Franchitto, A.; Onori, P.; Gaudio, E.; et al. Melatonin and Circadian Rhythms in Liver Diseases: Functional Roles and Potential Therapies. J. Pineal Res. 2020, 68, e12639. [Google Scholar] [CrossRef]
- Yang, C.; Lu, Z.; Xia, Y.; Zhang, J.; Zou, Z.; Chen, C.; Wang, X.; Tian, X.; Cheng, S.; Jiang, X. Alterations of Gut-Derived Melatonin in Neurobehavioral Impairments Caused by Zinc Oxide Nanoparticles. Int. J. Nanomed. 2023, 18, 1899–1914. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Lorenc, A.; Berezińska, M.; Vivien-Roels, B.; Pévet, P.; Skene, D.J. Diurnal and Circadian Rhythms in Melatonin Synthesis in the Turkey Pineal Gland and Retina. Gen. Comp. Endocrinol. 2006, 145, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Besseau, L.; Vuilleumier, R.; Sauzet, S.; Boeuf, G.; Falcón, J. Contrôle Photopériodique de La Synthèse de Mélatonine Par La Rétine et l’épiphyse de Poisson [Photoperiodic control of melatonin synthesis in fish pineal and retina]. J. Soc. Biol. 2007, 201, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Galarneau, K.M.; Weller, J.L.; Ron, B.; Chen, G.; Coon, S.L.; Klein, D.C. Regulation of Arylalkylamine N-Acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the Fish Pineal Organ: Evidence for a Role of Proteasomal Proteolysis. Endocrinology 2001, 142, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef]
- Prendergast, B.J. MT1 Melatonin Receptors Mediate Somatic, Behavioral, and Reproductive Neuroendocrine Responses to Photoperiod and Melatonin in Siberian Hamsters (Phodopus sungorus). Endocrinology 2010, 151, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.K.; Hasan, K.N. The Role of Melatonin as a Hormone and an Antioxidant in the Control of Fish Reproduction. Front. Endocrinol. 2016, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Bano-Otalora, B.; Madrid, J.A.; Rol, M.A. Melatonin Alleviates Circadian System Disruption Induced by Chronic Shifts of the Light-dark Cycle in Octodon degus. J. Pineal Res. 2020, 68, e12619. [Google Scholar] [CrossRef] [PubMed]
- Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on Melatonin Receptors: IUPHAR Review 20. Br. J. Pharmacol. 2016, 173, 2702–2725. [Google Scholar] [CrossRef]
- Dufourny, L.; Levasseur, A.; Migaud, M.; Callebaut, I.; Pontarotti, P.; Malpaux, B.; Monget, P. GPR50 Is the Mammalian Ortholog of Mel1c: Evidence of Rapid Evolution in Mammals. BMC Evol. Biol. 2008, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Denker, E.; Ebbesson, L.O.E.; Hazlerigg, D.G.; Macqueen, D.J. Phylogenetic Reclassification of Vertebrate Melatonin Receptors to Include Mel1d. G3 Genes Genomes Genet. 2019, 9, 3225–3238. [Google Scholar] [CrossRef]
- Maugars, G.; Nourizadeh-Lillabadi, R.; Weltzien, F.-A. New Insights into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front. Endocrinol. 2020, 11, 538196. [Google Scholar] [CrossRef]
- Sauzet, S.; Besseau, L.; Herrera Perez, P.; Covès, D.; Chatain, B.; Peyric, E.; Boeuf, G.; Muñoz-Cueto, J.A.; Falcón, J. Cloning and Retinal Expression of Melatonin Receptors in the European Sea Bass, Dicentrarchus labrax. Gen. Comp. Endocrinol. 2008, 157, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Migaud, H.; Muñoz-Cueto, J.A.; Carrillo, M. Current Knowledge on the Melatonin System in Teleost Fish. Gen. Comp. Endocrinol. 2010, 165, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Motohashi, E.; Doi, H.; Hattori, A.; Ando, H. Synchronized Diurnal and Circadian Expressions of Four Subtypes of Melatonin Receptor Genes in the Diencephalon of a Puffer Fish with Lunar-Related Spawning Cycles. Neurosci. Lett. 2009, 462, 58–63. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005, 27, 101–110. [Google Scholar] [CrossRef]
- Sakai, K.; Yamamoto, Y.; Ikeuchi, T. Vertebrates Originally Possess Four Functional Subtypes of G Protein-Coupled Melatonin Receptor. Sci. Rep. 2019, 9, 9465. [Google Scholar] [CrossRef]
- Chen, L.; He, X.; Zhang, Y.; Chen, X.; Lai, X.; Shao, J.; Shi, Y.; Zhou, N. Melatonin Receptor Type 1 Signals to Extracellular Signal-Regulated Kinase 1 and 2 via Gi and Gs Dually Coupled Pathways in HEK-293 Cells. Biochemistry 2014, 53, 2827–2839. [Google Scholar] [CrossRef]
- Cecon, E.; Oishi, A.; Jockers, R. Melatonin Receptors: Molecular Pharmacology and Signalling in the Context of System Bias. Br. J. Pharmacol. 2018, 175, 3263–3280. [Google Scholar] [CrossRef] [PubMed]
- Ciani, E.; Fontaine, R.; Maugars, G.; Mizrahi, N.; Mayer, I.; Levavi-Sivan, B.; Weltzien, F. Melatonin Receptors in Atlantic Salmon Stimulate CAMP Levels in Heterologous Cell Lines and Show Season-dependent Daily Variations in Pituitary Expression Levels. J. Pineal Res. 2019, 67, e12590. [Google Scholar] [CrossRef] [PubMed]
- Petit, L.; Lacroix, I.; de Coppet, P.; Strosberg, A.D.; Jockers, R. Differential Signaling of Human Mel1a and Mel1b Melatonin Receptors through the Cyclic Guanosine 3′-5′-Monophosphate Pathway. Biochem. Pharmacol. 1999, 58, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.H.; Cecon, E.; Nureki, O.; Rivara, S.; Jockers, R. Melatonin Receptor Structure and Signaling. J. Pineal Res. 2024, 76, e12952. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, J.; Jiang, Z.; Zhou, N.; Liu, X.; Zhang, G.; Yan, X.; Wang, J.; Xu, X.; Guo, S.; et al. Melatonin Modulates the Hypothalamic-Pituitary Neuroendocrine Axis to Regulate Physiological Color Change in Teleost Fish. Int. J. Biol. Sci. 2023, 19, 2914–2933. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.M.P.; Lima, L.F.; Alves, A.M.C.V.; Celestino, J.J.H.; Matos, M.H.T.; Lima-Verde, I.B.; Bernuci, M.P.; Lopes, C.A.P.; Báo, S.N.; Campello, C.C.; et al. Interaction between Melatonin and Follicle-Stimulating Hormone Promotes in Vitro Development of Caprine Preantral Follicles. Domest. Anim. Endocrinol. 2013, 44, 1–9. [Google Scholar] [CrossRef]
- Falcón, J.; Besseau, L.; Fuentès, M.; Sauzet, S.; Magnanou, E.; Boeuf, G. Structural and Functional Evolution of the Pineal Melatonin System in Vertebrates. Ann. N. Y. Acad. Sci. 2009, 1163, 101–111. [Google Scholar] [CrossRef]
- Borjigin, J.; Samantha Zhang, L.; Calinescu, A.-A. Circadian Regulation of Pineal Gland Rhythmicity. Mol. Cell. Endocrinol. 2012, 349, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, O.; Gioacchini, G.; Maradonna, F.; Olivotto, I.; Migliarini, B. Melatonin Induces Follicle Maturation in Danio rerio. PLoS ONE 2011, 6, e19978. [Google Scholar] [CrossRef] [PubMed]
- Yumnamcha, T.; Khan, Z.A.; Rajiv, C.; Devi, S.D.; Mondal, G.; Sanjita Devi, H.; Bharali, R.; Chattoraj, A. Interaction of Melatonin and Gonadotropin-Inhibitory Hormone on the Zebrafish Brain-Pituitary-Reproductive Axis. Mol. Reprod. Dev. 2017, 84, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Servili, A.; Herrera-Pérez, P.; Del Carmen Rendón, M.; Muñoz-Cueto, J. Melatonin Inhibits GnRH-1, GnRH-3 and GnRH Receptor Expression in the Brain of the European Sea Bass, Dicentrarchus labrax. Int. J. Mol. Sci. 2013, 14, 7603–7616. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Park, J.W.; Jin, Y.H.; Kim, D.-J.; Kwon, J.Y. Effect of Melatonin on GnIH Precursor Gene Expression in Nile Tilapia, Oreochromis niloticus. Biol. Rhythm. Res. 2018, 49, 303–313. [Google Scholar] [CrossRef]
- Choi, C.Y.; Shin, H.S.; Kim, N.N.; Yang, S.-G.; Kim, B.-S.; Yu, Y.M. Time-Related Effects of Various LED Light Spectra on Reproductive Hormones in the Brain of the Goldfish Carassius auratus. Biol. Rhythm. Res. 2015, 46, 671–682. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ubuka, T. Discovery of Gonadotropin-Inhibitory Hormone (GnIH), Progress in GnIH Research on Reproductive Physiology and Behavior and Perspective of GnIH Research on Neuroendocrine Regulation of Reproduction. Mol. Cell. Endocrinol. 2020, 514, 110914. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, B.N.; Matos-Brito, B.G.; Paulino, L.R.F.M.; Silva, B.R.; Aguiar, A.W.M.; de Almeida, E.F.M.; Souza, A.L.P.; Vasconcelos, G.L.; De Assis, E.I.T.; Silva, A.W.B.; et al. Effects of Melatonin on Morphology and Development of Primordial Follicles during in Vitro Culture of Bovine Ovarian Tissue. Reprod. Domest. Anim. 2019, 54, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, J.; Hu, S.; Li, Y.; Zhang, Y.; Yang, Y.; Yang, C.; Huo, S.; Yang, Y.; Zhaxi, Y.; et al. Effects of Melatonin on Development and Hormone Secretion of Sheep Theca Cells in Vitro. Theriogenology 2023, 198, 172–182. [Google Scholar] [CrossRef]
- Yu, K.; Deng, S.-L.; Sun, T.-C.; Li, Y.-Y.; Liu, Y.-X. Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Review. Molecules 2018, 23, 447. [Google Scholar] [CrossRef]
- Kasahara, T.; Abe, K.; Mekada, K.; Yoshiki, A.; Kato, T. Genetic Variation of Melatonin Productivity in Laboratory Mice under Domestication. Proc. Natl. Acad. Sci. USA 2010, 107, 6412–6417. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Guan, S.; Tao, J.; Zhu, K.; Lv, D.; Wang, J.; Li, G.; Gao, Y.; Wu, H.; Liu, J.; et al. Melatonin Promotes Male Reproductive Performance and Increases Testosterone Synthesis in Mammalian Leydig Cells. Biol. Reprod. 2021, 104, 1322–1336. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, X.; Zhang, T.; Duan, J.; Zhang, L.; Wang, M.; Li, Y.; Shen, Z.; Mao, J. Testosterone Maintains Male Longevity and Female Reproduction in Chrysopa pallens. Heliyon 2024, 10, e32478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ye, Z.; Jiang, Z.; Wu, C.; Ge, L.; Wang, J.; Xu, X.; Wang, T.; Yang, J. Circadian Patterns and Photoperiodic Modulation of Clock Gene Expression and Neuroendocrine Hormone Secretion in the Marine Teleost Larimichthys crocea. Chronobiol. Int. 2024, 41, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Cao, K.; Zou, Y.; Xiao, S.; Wang, Z.; Cai, M. Sex-Biased Gene Discovery from the Gonadal Transcriptomes of the Large Yellow Croaker (Larimichthys crocea). Aquac. Fish. 2019, 4, 9–16. [Google Scholar] [CrossRef]
- Yan, L.; Jiang, Y.; Xu, Q.; Ding, G.; Chen, X.; Liu, M. Reproductive Dynamics of the Large Yellow Croaker Larimichthys crocea (Sciaenidae), A Commercially Important Fishery Species in China. Front. Mar. Sci. 2022, 9, 8580. [Google Scholar] [CrossRef]
- Zhang, L.L.; Liu, M.; Fang, L.P.; Xu, Q.; Lin, J.J. Reproductive Biology of Johnius taiwanensis (Perciformes: Sciaenidae) in Fujian Waters, Southern China. Zool. Stud. 2019, 58, e38. [Google Scholar] [CrossRef]
- Stamatiades, G.A.; Kaiser, U.B. Gonadotropin Regulation by Pulsatile GnRH: Signaling and Gene Expression. Mol. Cell. Endocrinol. 2018, 463, 131–141. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Peng, J.; Yang, S.; Tong, D. Effects of Melatonin on the Production of GnRH and LH in Luteal Cells of Pregnant Sows. J. Mol. Endocrinol. 2022, 68, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Jiang, S.; Miao, J.; Pan, L. Possible Roles of Gonadotropin-Releasing Hormone (GnRH) and Melatonin in the Control of Gonadal Development of Clam Ruditapes philippinarum. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 262, 111059. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Guo, H.; Li, P.; Li, J.; Xi, L.; Liu, Q. Stimulation Role of Epinephrine in Transcription of the Melatonin Synthesis Key Enzyme AANAT in the Pineal Gland of Broilers. Mol. Cell. Biochem. 2019, 453, 111–119. [Google Scholar] [CrossRef]
- Gothilf, Y.; Coon, S.L.; Toyama, R.; Chitnis, A.; Namboodiri, M.A.A.; Klein, D.C. Zebrafish Serotonin N-Acetyltransferase-2: Marker for Development of Pineal Photoreceptors and Circadian Clock Function1. Endocrinology 1999, 140, 4895–4903. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Park, J.-G.; Hiyakawa, N.; Lee, Y.-D.; Kim, S.-J.; Takemura, A. Diurnal and Circadian Regulation of a Melatonin Receptor, MT1, in the Golden Rabbitfish, Siganus guttatus. Gen. Comp. Endocrinol. 2007, 150, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.Y.; Hong, W.S.; Zhu, W.B.; Shi, Q.; You, X.X.; Chen, S.X. Cloning and Expression of Melatonin Receptors in the Mudskipper Boleophthalmus pectinirostris: Their Role in Synchronizing Its Semilunar Spawning Rhythm. Gen. Comp. Endocrinol. 2014, 195, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, K.; Broda, D.; Romerowicz-Misielak, M.; Nowak, S.; Koziorowski, M. Melatonin Concentration in Peripheral Blood and Melatonin Receptors (MT1 and MT2) in the Testes and Epididymis of Male Roe Deer during Active Spermatogenesis. Theriogenology 2020, 149, 25–37. [Google Scholar] [CrossRef] [PubMed]
- González-Arto, M.; Aguilar, D.; Gaspar-Torrubia, E.; Gallego, M.; Carvajal-Serna, M.; Herrera-Marcos, L.; Serrano-Blesa, E.; Hamilton, T.; Pérez-Pé, R.; Muiño-Blanco, T.; et al. Melatonin MT1 and MT2 Receptors in the Ram Reproductive Tract. Int. J. Mol. Sci. 2017, 18, 662. [Google Scholar] [CrossRef]
- Ikegami, T.; Azuma, K.; Nakamura, M.; Suzuki, N.; Hattori, A.; Ando, H. Diurnal Expressions of Four Subtypes of Melatonin Receptor Genes in the Optic Tectum and Retina of Goldfish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 152, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Pelaez, A.; Lopez-Gonzalez, M.A.; Guerrero, J.M. Melatonin Binding Sites in the Harderian Gland of Syrian Hamsters: Sexual Differences and Effect of Castration. J. Pineal Res. 1993, 14, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xu, S.; Liu, Y.; Feng, C.; Xiao, Y.; Wang, Y.; Liu, Q.; Li, J. Changes of Melatonin and Its Receptors in Synchronizing Turbot (Scophthalmus maximus) Seasonal Reproduction and Maturation Rhythm. Acta Oceanol. Sin. 2022, 41, 84–98. [Google Scholar] [CrossRef]
- Confente, F.; Rendón, M.C.; Besseau, L.; Falcón, J.; Muñoz-Cueto, J.A. Melatonin Receptors in a Pleuronectiform Species, Solea Senegalensis: Cloning, Tissue Expression, Day–Night and Seasonal Variations. Gen. Comp. Endocrinol. 2010, 167, 202–214. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R.; Cassone, V.M.; Godson, C.; Kolakowski, L.F. Melatonin Receptors Are for the Birds: Molecular Analysis of Two Receptor Subtypes Differentially Expressed in Chick Brain. Neuron 1995, 15, 1003–1015. [Google Scholar] [CrossRef]
- Pickering, H.; Sword, S.; Vonhoff, S.; Jones, R.; Sugden, D. Analogues of Diverse Structure Are Unable to Differentiate Native Melatonin Receptors in the Chicken Retina, Sheep Pars Tuberalis and Xenopus Melanophores. Br. J. Pharmacol. 1996, 119, 379–387. [Google Scholar] [CrossRef]
- Jockers, R.; Petit, L.; Lacroix, I.; Coppet, P.d.; Barrett, P.; Morgan, P.J.; Guardiola, B.; Delagrange, P.; Marullo, S.; Strosberg, A.D. Novel Isoforms of Mel1c Melatonin Receptors Modulating Intracellular Cyclic Guanosine 3′,5′-Monophosphate Levels. Mol. Endocrinol. 1997, 11, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Serna, M.; Neira-Rivera, E.; Cardozo, J.A.; Grajales-Lombana, H.; Cebrián-Pérez, J.Á.; Muiño-Blanco, T.; Pérez-Pé, R.; Casao, A. Melatonin Membrane Receptors MT1 and MT2 Are Expressed in Ram Spermatozoa from Non-Seasonal Breeds. Trop. Anim. Health Prod. 2020, 52, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pu, J.; Teng, Y.; Zhu, Q.; Guo, L.; Zhao, J.; Ding, H.; Fang, Y.; Ma, X.; Liu, H.; et al. Melatonin Inhibits Testosterone Synthesis in Rooster Leydig Cells by Targeting CXCL14 through MiR-7481-3p. Int. J. Mol. Sci. 2023, 24, 16552. [Google Scholar] [CrossRef] [PubMed]
- Renuka, K.; Joshi, B.N. Melatonin-Induced Changes in Ovarian Function in the Freshwater Fish Channa Punctatus (Bloch) Held in Long Days and Continuous Light. Gen. Comp. Endocrinol. 2010, 165, 42–46. [Google Scholar] [CrossRef]
- Garg, S.K. Effect of Pinealectomy, Eye Enucleation, and Melatonin Treatment on Ovarian Activity and Vitellogenin Levels in the Catfish Exposed to Short Photoperiod or Long Photoperiod. J. Pineal Res. 1989, 7, 91–104. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence (5′→3′) | Size (bp) |
---|---|---|
Lc MTNR1A1 | F: TACAGGTGAGGAGACGAGTGAAG | 215 |
R: GAAGTAGGCCATGAAGTAGCTGG | ||
Lc MTNR1A2 | F: GTGAGCTCGCTGTACACTATCAC | 181 |
R: CGACGAACATGGTGAGGAAGTTG | ||
Lc MTNR1B1 | F: ACACAGTGGCAGTAGTAGTGGT | 179 |
R: CAGCACAAAGACCACGAACATG | ||
Lc MTNR1B2 | F: TCAACCGCTACTGTTACATCTGC | 194 |
R: GTATGAGGTGCTGACTGTCTGTG | ||
Lc MTNR1C | F: ACATCTTCGTGGTGAGTTTGTCC | 169 |
R: GTGATGTTGAAGATGGAGCCGAT | ||
Lc AANAT2 | F: CACTTACTCACGTCTAACATGGA | 187 |
R: TTGTCCTTACACAGTCCTTCTTC | ||
Lc GnRH3 | F: AGCGAACCTTTTCTTTCGGT | 186 |
R: TCCTATGGATGGCTACCAGG | ||
Lc β-Tubulin | F: TGCCTTCATGGTAGATAACGAGG | 158 |
R: TCAGATCAACATTGAGAGCACCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Wang, J.; Huang, B.; Yuan, H.; Ren, Y.; Wu, C.; Wang, T.; Yang, J. Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea). Fishes 2025, 10, 28. https://doi.org/10.3390/fishes10010028
Liang X, Wang J, Huang B, Yuan H, Ren Y, Wu C, Wang T, Yang J. Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea). Fishes. 2025; 10(1):28. https://doi.org/10.3390/fishes10010028
Chicago/Turabian StyleLiang, Xudong, Jixiu Wang, Baoyi Huang, Haojie Yuan, Yucheng Ren, Chenqian Wu, Tianming Wang, and Jingwen Yang. 2025. "Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea)" Fishes 10, no. 1: 28. https://doi.org/10.3390/fishes10010028
APA StyleLiang, X., Wang, J., Huang, B., Yuan, H., Ren, Y., Wu, C., Wang, T., & Yang, J. (2025). Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea). Fishes, 10(1), 28. https://doi.org/10.3390/fishes10010028