Evaluating Batch Imaging as a Method for Non-Lethal Identification of Freshwater Fishes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Data Collection
2.2.1. Field Sampling
2.2.2. Fish Photography
2.2.3. Preservation and Identification
2.2.4. Taxonomic Expert Survey
2.3. Statistical Analysis
2.3.1. Time to Complete Identification
2.3.2. Accuracy of Identification
2.3.3. Misidentifications
2.3.4. Rarefaction
2.3.5. Length Analysis
3. Results
3.1. Survey Responses
3.2. Accuracy of Identification
3.2.1. Correct-Identification Rates by Species and Genus
3.2.2. Factors Affecting Correct Species-Level Identification
3.2.3. Misidentifications
3.3. Rarefaction
3.4. Length Analysis
4. Discussion
4.1. Identification Accuracy
4.2. Processing and Identification Effort Compared to Conventional Sampling
4.3. Limitations
4.4. Methodological Improvements
4.4.1. Image Collection
4.4.2. Fish Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warren, M.L., Jr.; Burr, B.M.; Walsh, S.J.; Bart, H.L., Jr.; Cashner, R.C.; Etnier, D.A.; Freeman, B.J.; Kuhajda, B.R.; Mayden, R.L.; Robison, H.W. Diversity, Distribution, and Conservation Status of the Native Freshwater Fishes of the Southern United States. Fisheries 2000, 25, 7–31. [Google Scholar] [CrossRef]
- Harris, J.H. The Use of Fish in Ecological Assessments. Austral Ecol. 1995, 20, 65–80. [Google Scholar] [CrossRef]
- Walsh, S.J.; Meador, M.R. Guidelines for Quality Assurance and Quality Control of Fish Taxonomic Data Collected as Part of the National Water-Quality Assessment Program; Water-Resources Investigations Report; US Department of the Interior, US Geological Survey: Raleigh, NC, USA, 1998; Report 98-4239; vi + 33p. [Google Scholar]
- Fischer, J.R.; Quist, M.C. Characterizing Lentic Freshwater Fish Assemblages Using Multiple Sampling Methods. Environ. Monit. Assess. 2014, 186, 4461–4474. [Google Scholar] [CrossRef] [PubMed]
- Allibone, R.; David, B.; Hitchmough, R.; Jellyman, D.; Ling, N.; Ravenscroft, P.; Waters, J. Conservation Status of New Zealand Freshwater Fish, 2009. N. Z. J. Mar. Freshw. Res. 2010, 44, 271–287. [Google Scholar] [CrossRef]
- Ross, M.R.; Loomis, D.K. State Management of Freshwater Fisheries Resources: Its Organizational Structure, Funding, and Programmatic Emphases. Fish. Manag. 1999, 24, 8–14. [Google Scholar] [CrossRef]
- Mandrak, N.E.; Bouvier, L.D.; Colm, J.E.; Enders, E.C.; Watkinson, D.; Holm, E.; Drake, D.A.R. Voucher Collection Guidance for Freshwater Fishes in DFO’s Ontario and Prairie, and Arctic Regions; Canadian Manuscript Report of Fisheries and Aquatic Sciences; Fisheries and Oceans Canada: Burlington, ON, Canada, 2022; Report 3235; iv + 30p. [Google Scholar]
- Jennings, C.A.; Sloss, B.L.; Lasee, B.A.; Burtle, G.J.; Moyer, G.R. Chapter 5: Care, Handling and Examination of Sampled Organisms. In Fisheries Techniques; Zale, A.V., Parrish, D.L., Sutton, T.M., Eds.; American Fisheries Society: Bethesda, MD, USA, 2012; pp. 163–221. [Google Scholar]
- Fischer, J. Fish Identification Tools for Biodiversity and Fisheries Assessments: Review and Guidance for Decision-Makers; FAO fisheries and aquaculture technical paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; No. 585; 107p. [Google Scholar]
- Hutchings, P. Why Are Taxonomists Often Regarded as Second Class Citizens? A Misclassification That Threatens the Basic Infrastructure of Biodiversity. In Grumpy Scientists: The Ecological Conscience of a Nation; Lunney, D., Hutchings, P., Recher, H., Eds.; Royal Zoological Society of New South Wales: Mosman, NSW, Australia, 2013; pp. 26–30. [Google Scholar]
- Barrett, J.C.; Grossman, G.D. Effects of Direct Current Electrofishing on the Mottled Sculpin. N. Am. J. Fish. Manag. 1988, 8, 112–116. [Google Scholar] [CrossRef]
- Mesa, M.G.; Schreck, C.B. Electrofishing Mark–Recapture and Depletion Methodologies Evoke Behavioral and Physiological Changes in Cutthroat Trout. Trans. Am. Fish. Soc. 1989, 118, 644–658. [Google Scholar] [CrossRef]
- Cooke, S.J.; Bunt, C.M.; McKinley, R.S. Injury and Short Term Mortality of Benthic Stream Fishes–a Comparison of Collection Techniques. Hydrobiologia 1998, 379, 207–211. [Google Scholar] [CrossRef]
- Nguyen, V.M.; Martins, E.G.; Robichaud, D.; Raby, G.D.; Donaldson, M.R.; Lotto, A.G.; Willmore, W.G.; Patterson, D.A.; Farrell, A.P.; Hinch, S.G.; et al. Disentangling the Roles of Air Exposure, Gill Net Injury, and Facilitated Recovery on the Postcapture and Release Mortality and Behavior of Adult Migratory Sockeye Salmon (Oncorhynchus nerka) in Freshwater. Physiol. Biochem. Zool. 2014, 87, 125–135. [Google Scholar] [CrossRef]
- Jordan, F.; Jelks, H.L.; Bortone, S.A.; Dorazio, R.M. Comparison of Visual Survey and Seining Methods for Estimating Abundance of an Endangered, Benthic Stream Fish. Environ. Biol. Fishes 2008, 81, 313–319. [Google Scholar] [CrossRef]
- Peixoto, S.; Chaves, C.; Velo-Antón, G.; Beja, P.; Egeter, B. Species Detection from Aquatic eDNA: Assessing the Importance of Capture Methods. Environ. DNA 2021, 3, 435–448. [Google Scholar] [CrossRef]
- Rourke, M.L.; Fowler, A.M.; Hughes, J.M.; Broadhurst, M.K.; DiBattista, J.D.; Fielder, S.; Wilkes Walburn, J.; Furlan, E.M. Environmental DNA (eDNA) as a Tool for Assessing Fish Biomass: A Review of Approaches and Future Considerations for Resource Surveys. Environ. DNA 2022, 4, 9–33. [Google Scholar] [CrossRef]
- Smart, A.S.; Weeks, A.R.; van Rooyen, A.R.; Moore, A.; McCarthy, M.A.; Tingley, R. Assessing the Cost-Efficiency of Environmental DNA Sampling. Methods Ecol. Evol. 2016, 7, 1291–1298. [Google Scholar] [CrossRef]
- Evans, N.T.; Shirey, P.D.; Wieringa, J.G.; Mahon, A.R.; Lamberti, G.A. Comparative Cost and Effort of Fish Distribution Detection via Environmental DNA Analysis and Electrofishing. Fisheries 2017, 42, 90–99. [Google Scholar] [CrossRef]
- Castañeda, R.A.; Van Nynatten, A.; Crookes, S.; Ellender, B.R.; Heath, D.D.; MacIsaac, H.J.; Mandrak, N.E.; Weyl, O.L.F. Detecting Native Freshwater Fishes Using Novel Non-Invasive Methods. Front. Environ. Sci. 2020, 8, 29. [Google Scholar] [CrossRef]
- Burian, A.; Mauvisseau, Q.; Bulling, M.; Domisch, S.; Qian, S.; Sweet, M. Improving the Reliability of eDNA Data Interpretation. Mol. Ecol. Resour. 2021, 21, 1422–1433. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, S.; Bruneel, S.; Getahun, A.; Anteneh, W.; Goethals, P. Scientific Methods to Understand Fish Population Dynamics and Support Sustainable Fisheries Management. Water 2021, 13, 574. [Google Scholar] [CrossRef]
- Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, E. Fish Species Classification in Unconstrained Underwater Environments Based on Deep Learning: Fish Classification Based on Deep Learning. Limnol. Oceanogr. Methods 2016, 14, 570–585. [Google Scholar] [CrossRef]
- Malik, H.; Naeem, A.; Hassan, S.; Ali, F.; Naqvi, R.A.; Yon, D.K. Multi-Classification Deep Neural Networks for Identification of Fish Species Using Camera Captured Images. PLoS ONE 2023, 18, e0284992. [Google Scholar] [CrossRef] [PubMed]
- Mifsud Scicluna, B.; Gauci, A.; Deidun, A. AquaVision: AI-Powered Marine Species Identification. Information 2024, 15, 437. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. A Review on the Use of Computer Vision and Artificial Intelligence for Fish Recognition, Monitoring, and Management. Fishes 2022, 7, 335. [Google Scholar] [CrossRef]
- Castañeda, R.A.; Weyl, O.L.F.; Mandrak, N.E. Using Occupancy Models to Assess the Effectiveness of Underwater Cameras to Detect Rare Stream Fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 565–576. [Google Scholar] [CrossRef]
- Cook, K.V.; Lennox, R.J.; Hinch, S.G.; Cooke, S.J. Fish Out of Water: How Much Air Is Too Much? Fisheries 2015, 40, 452–461. [Google Scholar] [CrossRef]
- Philippe, C.; Vergauwen, L.; Huyghe, K.; De Boeck, G.; Knapen, D. Chronic Handling Stress in Zebrafish Husbandry. J. Fish Biol. 2023, 103, 367–377. [Google Scholar] [CrossRef]
- Ebner, B.C.; Morgan, D.L. Using Remote Underwater Video to Estimate Freshwater Fish Species Richness. J. Fish Biol. 2013, 82, 1592–1612. [Google Scholar] [CrossRef] [PubMed]
- Frezza, T.L.; Carl, L.M.; Reid, S.M. Evaluation of a Portable Underwater Video Camera to Study Fish Communities in Two Lake Ontario Tributaries. J. Freshw. Ecol. 2003, 18, 269–276. [Google Scholar] [CrossRef]
- Murphy, H.M.; Jenkins, G.P. Observational Methods Used in Marine Spatial Monitoring of Fishes and Associated Habitats: A Review. Mar. Freshw. Res. 2010, 61, 236. [Google Scholar] [CrossRef]
- Herler, J.; Lipej, L.; Makovec, T. A Simple Technique for Digital Imaging of Live and Preserved Small Fish Specimens. Cybium 2007, 31, 39–44. [Google Scholar]
- García-Melo, J.E.; García-Melo, L.J.; García-Melo, J.D.; Rojas-Briñez, D.K.; Guevara, G.; Maldonado-Ocampo, J.A. Photafish System: An Affordable Device for Fish Photography in the Wild. Zootaxa 2019, 4554, 141–172. [Google Scholar] [CrossRef]
- Önsoy, B.; Tarkan, A.S.; Filiz, H.; Bilge, G. Determination of the Best Length Measurement of Fish. North-West. J. Zool. 2011, 7, 178–180. [Google Scholar]
- University of Toronto. Fish Anesthesia Using Clove Oil (Eugenol); Standard Operating Procedure (S.O.P.) 12.9.0, 2015. Available online: https://research.utoronto.ca/ethics-animal-research-teaching/standard-operating-procedures-sops-guidelines-animal-ethics (accessed on 9 January 2025).
- R Core Team. R, version 4.4.1; A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- RStudio Team. RStudio, version 2024.04.2+764; Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Holm, E.; Mandrak, N.E.; Burridge, M.E. The ROM Field Guide to Freshwater Fishes of Ontario; Royal Ontario Museum (ROM): Toronto, ON, Canada, 2009. [Google Scholar]
- Chao, A. Estimating the Population Size for Capture-Recapture Data with Unequal Catchability. Biometrics 1987, 43, 783–791. [Google Scholar] [CrossRef]
- Colwell, R.K. EstimateS, version 8.0; Statistical Estimation of Species Richness and Shared Species from Samples. 2013. Available online: https://www.robertkcolwell.org/pages/1407 (accessed on 12 January 2025).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Haag, W.R.; DiStefano, R.J.; Fennessy, S.; Marshall, B.D. Chapter 10: Invertebrates and Plants. In Fisheries Techniques; Zale, A.V., Parrish, D.L., Sutton, T.M., Eds.; American Fisheries Society: Bethesda, MD, USA, 2012; pp. 453–519. [Google Scholar]
- Vanderklift, M.A.; Ward, T.J.; Phillips, J.C. Use of Assemblages Derived from Different Taxonomic Levels to Select Areas for Conserving Marine Biodiversity. Biol. Conserv. 1998, 86, 307–315. [Google Scholar] [CrossRef]
- Chang, S.-K.; DiNardo, G.; Lin, T.-T. Photo-Based Approach as an Alternative Method for Collection of Albacore (Thunnus Alalunga) Length Frequency from Longline Vessels. Fish. Res. 2010, 105, 148–155. [Google Scholar] [CrossRef]
- Chang, S.-K.; Lin, T.-T.; Lin, G.-H.; Chang, H.-Y.; Hsieh, C.-L. How to Collect Verifiable Length Data on Tuna from Photographs: An Approach for Sample Vessels. ICES J. Mar. Sci. 2009, 66, 907–915. [Google Scholar] [CrossRef]
- Teletchea, F. Molecular Identification Methods of Fish Species: Reassessment and Possible Applications. Rev. Fish Biol. Fish. 2009, 19, 265–293. [Google Scholar] [CrossRef]
- Overdyk, L.M.; Holm, E.; Crawford, S.S.; Hanner, R.H. Increased Taxonomic Resolution of Laurentian Great Lakes Ichthyoplankton through DNA Barcoding: A Case Study Comparison against Visual Identification of Larval Fishes from Stokes Bay, Lake Huron. J. Gt. Lakes Res. 2016, 42, 812–818. [Google Scholar] [CrossRef]
- Stat, M.; John, J.; DiBattista, J.D.; Newman, S.J.; Bunce, M.; Harvey, E.S. Combined Use of eDNA Metabarcoding and Video Surveillance for the Assessment of Fish Biodiversity. Conserv. Biol. 2019, 33, 196–205. [Google Scholar] [CrossRef]
- Bessey, C.; Jarman, S.N.; Berry, O.; Olsen, Y.S.; Bunce, M.; Simpson, T.; Power, M.; McLaughlin, J.; Edgar, G.J.; Keesing, J. Maximizing Fish Detection with eDNA Metabarcoding. Environ. DNA 2020, 2, 493–504. [Google Scholar] [CrossRef]
- Wickham, H.; Bryan, J. readxl: Read Excel Files. R Package Version 1.4.3. 2023. Available online: https://CRAN.R-project.org/package=readxl (accessed on 28 September 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Benthem, K.J.v.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Lemon, J. Plotrix: A Package in the Red Light District of R. R-News 2006, 6, 8–12. [Google Scholar]
- Zhang, D. rsq: R-Squared and Related Measures. R Package Version 2.6. 2023. Available online: https://CRAN.R-project.org/package=rsq (accessed on 28 September 2024).
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R Package Version 0.4.5. 2022. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 28 September 2024).
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R Package Version 2.8.16. 2024. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 28 September 2024).
- Xu, S.; Chen, M.; Feng, T.; Zhan, L.; Zhou, L.; Yu, G. Use ggbreak to Effectively Utilize Plotting Space to Deal with Large Datasets and Outliers. Front. Genet. 2021, 12, 774846. [Google Scholar] [CrossRef] [PubMed]
- Kahle, D.; Wickham, H. ggmap: Spatial Visualization with Ggplot2. R J. 2013, 5, 144–161. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with “Ggplot2”. R Package Version 0.9.5. 2024. Available online: https://CRAN.R-project.org/package=ggrepel (accessed on 28 September 2024).
- Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R Package Version 1.1.9. 2023. Available online: https://CRAN.R-project.org/package=ggspatial (accessed on 28 September 2024).
- Arnold, J.B. ggthemes: Extra Themes, Scales and Geoms for “ggplot2”. R Package Version 5.1.0. 2024. Available online: https://CRAN.R-project.org/package=ggthemes (accessed on 28 September 2024).
- Massicotte, P.; South, A. rnaturalearth: World Map Data from Natural Earth. R Package Version 1.0.1. 2023. Available online: https://CRAN.R-project.org/package=rnaturalearth (accessed on 28 September 2024).
- South, A.; Michael, S.; Massicotte, P. rnaturalearthdata: World Vector Map Data from Natural Earth Used in “rnaturalearth”. R Package Version 1.0.0. 2024. Available online: https://CRAN.R-project.org/package=rnaturalearthdata (accessed on 28 September 2024).
- Wickham, H.; Pedersen, T.L.; Seidel, D. scales: Scale Functions for Visualization. R Package Version 1.3.0. 2023. Available online: https://CRAN.R-project.org/package=scales (accessed on 28 September 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R Package Version 1.4.8. 2024. Available online: https://yihui.org/knitr/ (accessed on 28 September 2024).
- Zhu, H. kableExtra: Construct Complex Table with “kable” and Pipe Syntax. R Package Version 1.4.0. 2024. Available online: https://CRAN.R-project.org/package=kableExtra (accessed on 28 September 2024).
Expertise Class | Definition | Number of Respondents |
---|---|---|
1 | Can identify all fish families in Ontario | 6 |
2 | Can identify all game fishes and common non-game fishes in Ontario | 19 |
3 | Can identify the adults of most fish species in Ontario | 27 |
4 | Can identify the juveniles and adults of most fish species in Ontario | 44 |
5 | Can identify the juveniles and adults of all fish species in Ontario | 3 |
Predictor | Chi-Squared | df | p-Value |
---|---|---|---|
Species | 764.144 | 24 | <0.001 * |
Expertise Class | 39.897 | 4 | <0.001 * |
Fish Density | 0.455 | 1 | 0.500 |
Predictor | Estimate | Std. Error | z Value | p-Value |
---|---|---|---|---|
Intercept | −2.751 | 0.502 | −5.480 | <0.001 * |
Subsample Size | 0.182 | 0.039 | 4.679 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratt, C.J.; Mandrak, N.E. Evaluating Batch Imaging as a Method for Non-Lethal Identification of Freshwater Fishes. Fishes 2025, 10, 36. https://doi.org/10.3390/fishes10010036
Pratt CJ, Mandrak NE. Evaluating Batch Imaging as a Method for Non-Lethal Identification of Freshwater Fishes. Fishes. 2025; 10(1):36. https://doi.org/10.3390/fishes10010036
Chicago/Turabian StylePratt, Conrad James, and Nicholas E. Mandrak. 2025. "Evaluating Batch Imaging as a Method for Non-Lethal Identification of Freshwater Fishes" Fishes 10, no. 1: 36. https://doi.org/10.3390/fishes10010036
APA StylePratt, C. J., & Mandrak, N. E. (2025). Evaluating Batch Imaging as a Method for Non-Lethal Identification of Freshwater Fishes. Fishes, 10(1), 36. https://doi.org/10.3390/fishes10010036