Age and Feeding Habits of Trematomus bernacchii in the Ross Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Age Determination
2.3. Stomach Content Analysis
2.3.1. Morphological Identification of Stomach Contents
2.3.2. Molecular Identification of Stomach Contents
2.3.3. Molecular Identification of an Unknown Fish Egg
3. Results
3.1. Size and Age
3.2. Feeding Habits
3.2.1. Morphological Identification of Stomach Contents
3.2.2. Molecular Analysis of Stomach Contents
3.3. Prey Composition Changes with Total Length
3.4. Prey Composition Changes by Gender
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeWitt, H.H.; Heemstra, P.C.; Gon, O. Nototheniidae. In Fishes of the Southern Ocean; Gon, O., Heemstra, P.C., Eds.; J.L.B. Smith Institute of Ichthyology: Grahamstown, South Africa, 1990; pp. 279–331. [Google Scholar]
- Eastman, J.T.; Gourley, J. Southernmost Fauna. (Book Reviews: Antarctic Fish Biology. Evolution in a Unique Environment; Antarctic Fish and Fisheries.). Science 1994, 264, 1002–1004. [Google Scholar]
- Vacchi, M.; Cattaneo-Vietti, R.; Chiantore, M.; Dalù, M. Predator–prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 2000, 12, 64–68. [Google Scholar] [CrossRef]
- La Mesa, M.; Vacchi, M.; Arneri, E.; Giannetti, G.; Greco, S. Age and growth of the nototheniid fish Trematomus bernacchii Boulenger from Terra Nova Bay, Antarctica. Polar Biol. 1996, 16, 139–145. [Google Scholar] [CrossRef]
- Vacchi, M.; La Mesa, M.; Castelli, A. Diet of two coastal nototheniid fish from Terra Nova Bay, Ross Sea. Antarct. Sci. 1994, 6, 61–65. [Google Scholar] [CrossRef]
- La Mesa, M.; Eastman, J.T.; Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: A review. Polar Biol. 2004, 27, 321–338. [Google Scholar] [CrossRef]
- Bilyk, K.T.; DeVries, A.L. Heat tolerance and its plasticity in Antarctic fishes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 158, 382–390. [Google Scholar] [CrossRef]
- Greco, S.; Gaetano, A.S.; Furlanis, G.; Capanni, F.; Manfrin, C.; Giulianini, P.G.; Santovito, G.; Edomi, P.; Pallavicini, A.; Gerdol, M. Gene expression profiling of Trematomus bernacchii in response to thermal and stabling stress. Fishes 2022, 7, 387. [Google Scholar] [CrossRef]
- Ametrano, A.; Picchietti, S.; Guerra, L.; Giacomelli, S.; Oreste, U.; Coscia, M.R. Comparative analysis of the pIgR gene from the Antarctic teleost Trematomus bernacchii reveals distinctive features of cold-adapted Notothenioidei. Int. J. Mol. Sci. 2022, 23, 7783. [Google Scholar] [CrossRef]
- Bargagli, R.; Corsolini, S.; Fossi, M.C.; Sanchez-Hernandez, J.C.; Focardi, S. Antarctic fish Trematomus bernacchii as biomonitor of environmental contaminants at Terra Nova Bay Station (Ross Sea). Mem. Natl. Inst. Polar Res. Spec. Issue 1998, 52, 220–229. [Google Scholar]
- Bottari, T.; Nibali, V.C.; Branca, C.; Grotti, M.; Savoca, S.; Romeo, T.; Spanò, N.; Azzaro, M.; Greco, S.; D’angelo, G.; et al. Anthropogenic microparticles in the emerald rockcod Trematomus bernacchii (Nototheniidae) from the Antarctic. Sci. Rep. 2022, 12, 17214. [Google Scholar] [CrossRef]
- Mancuso, M.; Nibali, V.C.; Porcino, N.; Branca, C.; Natale, S.; Smedile, F.; Azzaro, M.; D’Angelo, G.; Bottari, T. Monitoring of anthropogenic microplastic pollution in Antarctic fish (emerald rockcod) from Terra Nova Bay after a quarter of a century. Sci. Total Environ. 2023, 904, 167244. [Google Scholar] [CrossRef] [PubMed]
- Burchett, M.S. The life cycle of Notothenia rossii nearshore at South Georgia. Br. Antarct. Surv. Bull. 1983, 61, 71–73. [Google Scholar]
- Zhu, G.P.; Wei, L. Age and growth of Antarctic fish species: A review. J. Fish. China 2017, 41, 1638–1647. (In Chinese) [Google Scholar]
- Horn, P.L. Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (D. mawsoni) in waters from the New Zealand subantarctic to the Ross Sea. Antarct. Fish. Res. 2002, 56, 275–287. [Google Scholar] [CrossRef]
- Ashford, J.; Duhamel, G.; Jones, C.; Bobko, S. Age, growth and mortality of Patagonian toothfish (Dissostichus eleginoides) caught off Kerguelen. CCAMLR Sci. 2005, 12, 29–41. [Google Scholar]
- Xie, X.; Bao, Z.Y.; Wang, Q.Z. Advances on research and application of age determination by hard tissues in fish: A review. J. Dalian Ocean Univ. 2021, 36, 1071–1080. (In Chinese) [Google Scholar]
- Campana, S.E.; Thorrold, S.R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. 2001, 58, 30–38. [Google Scholar] [CrossRef]
- Morat, F.; Wicquart, J.; Schiettekatte, N.M.D.; de Sinéty, G.; Bienvenu, J.; Casey, J.M.; Brandl, S.J.; Vii, J.; Carlot, J.; Degregori, S.; et al. Individual back-calculated size-at-age based on otoliths from Pacific coral reef fish species. Sci. Data 2020, 7, 1. [Google Scholar] [CrossRef]
- Mahé, K.; Elleboode, R.; Loots, C.; Koubbi, P. Growth of an inshore Antarctic fish, Trematomus newnesi (Nototheniidae), off Adelie Land. Polar Sci. 2016, 10, 167–172. [Google Scholar] [CrossRef]
- Xu, S.; Sun, P.; Zhang, C.; Li, J.; Xi, X.; Ma, S.; Zhang, W.; Tian, Y. Age and feeding habits of caml grenadier Macrourus caml in Cosmonauts Sea. Fishes 2023, 8, 56. [Google Scholar] [CrossRef]
- Schulz-Mirbach, T.; Ladich, F.; Plath, M.; Heß, M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 2019, 94, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Jin, X.S.; Zhang, B.; Liang, Z.L. Diet composition and seasonal variation in feeding habits of small yellow croaker Pseudosciaena polyactis Bleeker in the central Yellow Sea. J. Fish. Sci. China 2004, 11, 237–243. (In Chinese) [Google Scholar]
- Carlig, E.; Blasi, D.; Ghigliotti, L.; Pisano, E.; Koubbi, P.; Vacchi, M. Diversified feeding strategies of Pleuragramma antarctica (Nototheniidae) in the Southern Ocean. Polar Biol. 2019, 42, 2045–2054. [Google Scholar] [CrossRef]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Park, J.M.; Jung, H.K.; Lee, C.I.; Park, H.J. Temporal changes in the diet composition and trophic level of walleye pollock (Gadus chalcogrammus) inhabiting the middle-eastern coast of Korea. Mar. Environ. Res. 2024, 198, 106493. [Google Scholar] [CrossRef]
- Scacco, U.; Tiralongo, F.; Mancini, E. Feeding in deep waters: Temporal and size-related plasticity in the diet of the slope predator fish Coelorinchus caelorhincus (Risso, 1810) in the central Tyrrhenian Sea. J. Mar. Sci. Eng. 2022, 10, 1235. [Google Scholar] [CrossRef]
- Scacco, U.; Mancini, E.; Marcucci, F.; Tiralongo, F. Microplastics in the deep: Comparing dietary and plastic ingestion data between two Mediterranean bathyal opportunistic feeder species, Galeus melastomus, Rafinesque, 1810, and Coelorinchus caelorhincus (Risso, 1810), through stomach content analysis. J. Mar. Sci. Eng. 2022, 10, 624. [Google Scholar] [CrossRef]
- Kock, K.H.; Gröger, J.; Jones, C.D. Interannual variability in the feeding of ice fish (Notothenioidei, Channichthyidae) in the southern Scotia Arc and the Antarctic Peninsula region (CCAMLR Subareas 48.1 and 48.2). Polar Biol. 2013, 36, 1451–1462. [Google Scholar] [CrossRef]
- La Mesa, M.; Catalano, B.; Greco, S. Larval feeding of Chionodraco hamatus (Pisces, Channichthyidae) in the Ross Sea and its relation to environmental conditions. Polar Biol. 2011, 34, 127–137. [Google Scholar] [CrossRef]
- Buckland, A.; Baker, R.; Loneragan, N.; Sheaves, M. Standardising fish stomach content analysis: The importance of prey condition. Fish. Res. 2017, 196, 126–140. [Google Scholar] [CrossRef]
- Güzin, G.; Emre, K.; Nazli, D. Comparison of fish prey contribution in the diet of European hake by visual assessment of stomach contents and DNA metabarcoding. Environ. Biol. Fishes 2023, 106, 613–625. [Google Scholar]
- Berry, O.; Bulman, C.; Bunce, M.; Coghlan, M.; Murray, D.C.; Ward, R.D. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 2015, 540, 167–181. [Google Scholar] [CrossRef]
- Bessey, C.; Jarman, S.N.; Stat, M.; Rohner, C.A.; Bunce, M.; Koziol, A.; Power, M.; Rambahiniarison, J.M.; Ponzo, A.; Richardson, A.J.; et al. DNA metabarcoding assays reveal a diverse prey assemblage for Mobula rays in the Bohol Sea. Philipp. Ecol. Evol. 2019, 9, 2459–2474. [Google Scholar] [CrossRef] [PubMed]
- Carreon-Martinez, L.; Johnson, T.B.; Ludsin, S.A.; Heath, D.D. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 2011, 78, 1170–1182. [Google Scholar] [CrossRef]
- White, M.G. Age determination in Antarctic fish. In Biology of Antarctic Fish; Springer: Berlin/Heidelberg, Germany, 1991; pp. 87–100. [Google Scholar]
- Pinkas, L.; Oliphant, M.S.; Iverson, I.L. Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bull. 1970, 152, 6–10. [Google Scholar]
- Mirimin, L.; Roodt-Wilding, R. Testing and validating a modified CTAB DNA extraction method to enable molecular parentage analysis of fertilized eggs and larvae of an emerging South African aquaculture species, the dusky kob Argyrosomus japonicus. J. Fish Biol. 2015, 86, 1218–1223. [Google Scholar] [CrossRef]
- Jeunen, G.J.; Knapp, M.; Spencer, H.G.; Lamare, M.D.; Taylor, H.R.; Stat, M.; Bunce, M.; Gemmell, N.J. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 2019, 19, 426–438. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Duan, J.N.; Shi, H.L.; Guo, J.X.; Wang, X.Y.; Gao, T.X.; Ping, H.L.; Li, Z.L. Species identification of small fish in Xixuan Island coastal waters of Zhoushan using DNA barcoding. J. Appl. Ichthyol. 2020, 36, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.; Song, N.; Liu, S.; Chen, Z.; Xu, A.; Gao, T. DNA barcoding of fishes from Zhoushan coastal waters using mitochondrial COI and 12S rRNA genes. J. Oceanol. Limnol. 2023, 41, 1997–2009. [Google Scholar] [CrossRef]
- Mesa, M.L.; Eastman, J.T. Assessing current knowledge and future challenges of age determination, life span and growth performance in notothenioid fishes: A review. Rev. Fish Biol. Fish. 2024, 34, 575–596. [Google Scholar] [CrossRef]
- Folkvord, A.; Blom, G.; Johannessen, A.; Moksness, E. Growth-dependent age estimation in herring (Clupea harengus L.) larvae. Fish. Res. 2000, 46, 91–103. [Google Scholar] [CrossRef]
- Ekau, W. Ökomorphologie nototheniider Fische aus dem Weddellmeer. Antarktis Ber. Polarforsch 1988, 51, 1–140. [Google Scholar]
- Kawaguchi, K.; Ishikawa, S.; Matsuda, O.; Naito, Y. Tagging experiment of nototheniid fish, Trematomus bernacchii Boulenger under the coastal fast ice in Lutzow-Holm Bay, Antarctica. In Proceedings of the NIPR Symposium on Polar Biology, Tokyo, Japan, 6–8 December 1989; National Institute of Polar Research: Tokyo, Japan; Volume 2, pp. 111–116. [Google Scholar]
- Sakakibara, S.; Kondo, Y.; Tobayama, T.; Hoshiai, T. Growth of nototheniid fish, Trematomus bernacchii and Pagothenia borchgrevinki reared in aquarium. In Proceedings of the NIPR Symposium on Polar Biology, Tokyo, Japan, 6–8 December 1989; National Institute of Polar Research: Tokyo, Japan; Volume 2, pp. 105–110. [Google Scholar]
- Dearborn, J.H. Reproduction in the nototheniid fish Trematomus bernacchii Boulenger at McMurdo Sound, Antarctica. Copeia 1965, 46, 302–308. [Google Scholar] [CrossRef]
- Pereira, L.S.; Agostinho, A.A.; Winemiller, K.O. Revisiting cannibalism in fishes. Rev. Fish Biol. Fish. 2017, 27, 499–513. [Google Scholar] [CrossRef]
- Bone, B.; Davoren, G.K. Egg cannibalism in capelin Mallotus villosus at beach and deep-water spawning habitats in the northwest Atlantic Ocean. J. Fish Biol. 2018, 93, 641–648. [Google Scholar] [CrossRef]
- Frye, M.; Egeland, T.B.; Nordeide, J.T.; Folstad, I. Cannibalism and protective behavior of eggs in Arctic charr (Salvelinus alpinus). Ecol. Evol. 2021, 11, 14383–14391. [Google Scholar] [CrossRef] [PubMed]
- La Mesa, M.; Dalù, M.; Vacchi, M. Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol. 2004, 27, 721–728. [Google Scholar] [CrossRef]
- Trokhymets, V.; Zinkovskyi, A.; Dykyy, I.; La Mesa, M. Feeding ecology of an inshore population of Notothenia coriiceps from the Argentine Islands, Bellingshausen Sea. Polar Biol. 2022, 45, 1623–1634. [Google Scholar] [CrossRef]
- Nilsson, K.A.; Persson, L. Refuge availability and within-species differences in cannibalism determine population variability and dynamics. Ecosphere 2013, 4, 1–15. [Google Scholar] [CrossRef]
- Smith, C.; Reay, P. Cannibalism in teleost fish. Rev. Fish Biol. Fish. 1991, 1, 41–64. [Google Scholar] [CrossRef]
- Payne, A.G.; Smith, C.; Campbell, A.C. Filial cannibalism improves survival and development of beaugregory damselfish embryos. Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 2095–2102. [Google Scholar] [CrossRef]
- Ryan-Keogh, T.J.; Smith, W.O., Jr. Temporal patterns of iron limitation in the Ross Sea as determined from chlorophyll fluorescence. J. Mar. Syst. 2021, 215, 103500. [Google Scholar] [CrossRef]
- Pineda-Metz, S.E.; Gerdes, D.; Richter, C. Benthic fauna declined on a whitening Antarctic continental shelf. Nat. Commun. 2020, 11, 2226. [Google Scholar] [CrossRef]
- Munari, C.; Borja, A.; Corinaldesi, C.; Rastelli, E.; Lo Martire, M.; Pitacco, V.; Mistri, M. First application of the AMBI index to the macrobenthic soft-bottom community of Terra Nova Bay (Ross Sea, Southern Ocean). Water 2022, 14, 2994. [Google Scholar] [CrossRef]
- Cummings, V.J.; Hewitt, J.E.; Thrush, S.F.; Marriott, P.M.; Halliday, N.J.; Norkko, A. Linking Ross Sea coastal benthic communities to environmental conditions: Documenting baselines in a spatially variable and changing world. Front. Mar. Sci. 2018, 5, 232. [Google Scholar] [CrossRef]
- Daniels, R.A. Feeding ecology of some fishes of the Antarctic Peninsula. Fish. Bull. 1982, 80, 575–588. [Google Scholar]
- Kirkland, J.G.; Kamakaka, R.T. Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. J. Cell Biol. 2013, 201, 809–826. [Google Scholar] [CrossRef]
Target Region | Primer Names | Primer Sequences |
---|---|---|
COI | mlCOlintF | GGWACWGGWTGAACWGTWTAYCCYCC |
jgHCO2198 | TANACYTCNGGRTGNCCRAARAAYCA |
Target Region | Primer Names | Primer Sequences |
---|---|---|
12S rRNA | MiFish_U-F | GTCGGTAAAACTCGTGCCAGC |
MiFish_U-R | CATAGTGGGGTATCTAATCCCAGTTTG |
Age | ♂ | ♀ | * | Standard Length/mm | Total Length/mm | Anal Length/mm | Weight/g | Gutted Weight/g |
---|---|---|---|---|---|---|---|---|
10 | — | — | 1 | 144 | 168 | 76 | 65 | 52 |
12 | — | 1 | 1 | 164–186 | 188–212 | 90–93.5 | 90–146 | 76–124 |
13 | 3 | 2 | 1 | 169–225 | 194–258 | 82–123 | 93–259 | 80–209 |
14 | 3 | 1 | — | 191–231 | 220–263 | 95–156 | 135–274 | 117–229 |
15 | 1 | 4 | — | 196–234 | 228–267 | 96–134 | 159–269 | 113–220 |
16 | — | 3 | — | 212–213 | 243–246 | 111–116 | 217–231 | 164–191 |
17 | — | 1 | — | 227 | 259 | 118 | 298 | 217 |
18 | — | 2 | — | 237–258 | 272–298 | 129–134 | 271–426 | 224–301 |
19 | 1 | — | — | 230 | 263 | 120 | 285 | 209 |
Prey Types | F% | N% | W% |
---|---|---|---|
Polychaeta | 21.74 | 0.44 | 8.77 |
Cnidaria | 34.78 | 2.19 | 5.36 |
Amphipoda | 13.04 | 1.02 | * |
Mollusca | |||
Bivalvia | 17.4 | * | * |
Gastropoda | 13.1 | 0.44 | 6.53 |
Echinoidea | 30.43 | 0.44 | * |
Fish | 8.7 | 0.29 | 2.49 |
Tunicata | |||
Ascidiacea | 8.7 | 1.02 | 17.6 |
Thaliacea | 4.35 | 0.15 | * |
Euphausiacea | 13.04 | 2.63 | * |
Algae | 8.7 | 0.58 | 9.22 |
Fish Egg | 47.83 | 90.79 | 50.02 |
Prey Taxon | Contigs | Prey Taxon | Contigs | ||
---|---|---|---|---|---|
Polychaeta | 50.860% | Mollusca | 7.670% | ||
Phyllodocida | Aglaophamus cf. | 5.009% | Bivalvia | Adamussium colbecki | 3.983% |
Harmothoe crosetensis | 2.636% | elliptica sp1. | 0.135% | ||
Barrukia cristata | 1.994% | elliptica sp2. | 0.097% | ||
Harmothoe sp. | 1.682% | Gastropoda | Neobuccinum eatoni | 2.664% | |
Aglaophamus trissophyllus | 0.593% | Margarella antarctica | 0.373% | ||
Others | 1.202% | Limacina sp. | 0.235% | ||
Terebellidae | Amphitrite kerguelensis | 15.614% | Marseniopsis sp. | 0.056% | |
Lysilla sp. | 11.468% | Others | 0.127% | ||
Thelepus antarcticus | 3.784% | Echinodermata | 11.376% | ||
Others | 0.716% | Echinoidea | Abatus agassizii | 4.737% | |
Spionidae | Laonice weddellia | 1.596% | Sterechinus neumayeri | 0.363% | |
Scolelepis eltaninae | 0.338% | Asteroidea | Macroptychaster accrescens | 4.676% | |
Chaetopteridae | Unclassify | 0.920% | Odontaster sp. | 1.462% | |
Sabellida | Perkinsiana littoralis | 0.131% | Asteroidea | Glabraster antarctica | 0.119% |
Unclassify | 3.176% | Others | 0.009% | ||
Cnidaria | 8.915% | Holothuroidea | Psolicrux sp. | 0.004% | |
Hydrozoa | Corymorpha sp. | 4.875% | Unclassify | 0.006% | |
Obelia sp. | 2.441% | Fish | 4.112% | ||
Erenna sp. | 0.005% | Nototheniidae | Trematomus sp1. | 3.004% | |
Bougainvillia sp. | 0.004% | Pleuragramma antarctica | 0.048% | ||
Others | 1.104% | Trematomus sp2. | 0.033% | ||
Anthozoa | Stomphia sp. | 0.017% | Trematomus newnesi | 0.018% | |
Scyphozoa | Phacellophora camtschatica | 0.331% | Trematomus sp3. | 0.004% | |
Unclassify | 0.130% | Channichthyidae | Pseudochaenichthys georgianus | 0.108% | |
Crustacea | 9.332% | Chionodraco sp. | 0.064% | ||
Amphipoda | Orchomenella pinguides | 4.482% | Stromateida | Pampus sp. | 0.025% |
Iphimedia sp. | 0.715% | Bathydraconidae | Gymnodraco acuticeps | 0.228% | |
Paramoera walkeri | 0.111% | Centrarchidae | Micropterus salmoides | 0.412% | |
Caprella penantis | 0.010% | Unclassify | 0.166% | ||
Others | 0.011% | Others | 7.734% | ||
Decapoda | Chorismus antarcticus | 3.040% | Tentaculata | Unclassify | 3.379% |
Copepoda | Sinocalanus sp. | 0.739% | Pycnogonida | Ammothea clausi | 3.079% |
Paracalanus sp. | 0.041% | Others | 0.074% | ||
Sinocalanus tenellus | 0.010% | Algea | Unclassify | 0.175% | |
Others | 0.021% | Nemertea | Unclassify | 0.980% | |
Euphausiacea | Euphausia crystallorophias | 0.012% | Chaetognatha | Sagitta sp. | 0.043% |
Unclassify | 0.140% | Sponge | Unclassify | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, P.; Xu, S.; Wang, Y.; Tian, Y. Age and Feeding Habits of Trematomus bernacchii in the Ross Sea. Fishes 2025, 10, 58. https://doi.org/10.3390/fishes10020058
Li Z, Sun P, Xu S, Wang Y, Tian Y. Age and Feeding Habits of Trematomus bernacchii in the Ross Sea. Fishes. 2025; 10(2):58. https://doi.org/10.3390/fishes10020058
Chicago/Turabian StyleLi, Zhenlin, Peng Sun, Siqing Xu, Yehui Wang, and Yongjun Tian. 2025. "Age and Feeding Habits of Trematomus bernacchii in the Ross Sea" Fishes 10, no. 2: 58. https://doi.org/10.3390/fishes10020058
APA StyleLi, Z., Sun, P., Xu, S., Wang, Y., & Tian, Y. (2025). Age and Feeding Habits of Trematomus bernacchii in the Ross Sea. Fishes, 10(2), 58. https://doi.org/10.3390/fishes10020058