Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects
Abstract
:1. Introduction
2. Environmental Dimension of Aquaculture, Sustainability, and Community Resilience
3. Social Dimension of Aquaculture, Sustainability, and Community Resilience
4. Economic Dimension of Aquaculture, Sustainability, and Community Resilience
5. Governance Dimension of Aquaculture, Sustainability, and Community Resilience
6. Moving Forward
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.; Triplett, T. Murky Waters: Environmental Effects of Aquaculture in the United States; Environmental Defense Fund: Washington, DC, USA, 1997. [Google Scholar]
- Zajicek, P.; Corbin, J.; Belle, S.; Rheault, R. Refuting Marine Aquaculture Myths, Unfounded Criticisms, and Assumptions. Rev. Fish. Sci. Aquac. 2021, 1–28. [Google Scholar] [CrossRef]
- FAO. Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches; Food and Agriculture Organization, United Nations: Rome, Italy, 2014; Available online: www.fao.org/sustainability/background/en/ (accessed on 17 June 2022).
- Hambrey, J. The 2030 Agenda and the Sustainable Development Goals: The Challenge for Aquaculture Development and Management. In FAO Fisheries and Aquaculture Circular No. 1141; Food And Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Valenti, W.C.; Kimpara, J.M.; de L Preto, B. Measuring Aquaculture Sustainability. World Aquac. 2011, 42, 26–30. [Google Scholar]
- Valenti, W.C.; Kimpara, J.M.; Preto, B.D.L.; Moraes-Valenti, P. Indicators of sustainability to assess aquaculture systems. Ecol. Indic. 2018, 88, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Odum, E.P. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1953. [Google Scholar]
- Daly, H.E. Toward some operational principles of sustainable development. Ecol. Econ. 1990, 2, 1–6. [Google Scholar] [CrossRef]
- Ross, L.G.; Telfer, T.C.; Falconer, L.; Soto, D.; Aguilar-Manjarrez, J. Site selection and carrying capacities for inland and coastal aquaculture. In FAO/Institute of Aquaculture, University of Stirling, Expert Workshop, 6–8 December, Stirling, UK; FAO Fisheries and Aquaculture Proceedings: Rome, Italy, 2010. [Google Scholar]
- Inglis, G.J.; Hayden, B.J.; Ross, A.H. An Overview of Factors Affecting the Carrying Capacity of Coastal Embayment for Mussel Culture; NIWA Client Report CHC00/69; National Institute of Water & Atmospheric Research: Christchurch, New Zealand, 2000. [Google Scholar]
- Kluger, L.C.; Filgueira, R. Thinking outside the box: Embracing social complexity in aquaculture carrying capacity estimations. ICES J. Mar. Sci. 2020, 78, 435–442. [Google Scholar] [CrossRef]
- Asche, F.; Smith, M.D. Viewpoint: Induced Innovation in Fisheries and Aquaculture. Food Policy 2018, 76, 1–7. [Google Scholar] [CrossRef]
- Cinner, J.E.; Barnes, M.L. Social Dimensions of Resilience in Social-Ecological Systems. One Earth 2019, 1, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Wildavsky, A. Searching for Safety; Transaction: New Brunswick, NJ, USA, 1991. [Google Scholar]
- Lebel, L. Resilience and Sustainability of Landscapes. [Electronic Version]. Retrieved 5th August 2007. 2001. Available online: http://www.asb.cgiar.org/docs (accessed on 15 April 2022).
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.S.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience Management in Social-ecological Systems: A Working Hypothesis for a Participatory Approach. Conserv. Ecol. 2002, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to Natural Hazards: How Useful is this Concept? Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Manyena, S.B. The concept of resilience revisited. Disasters 2006, 30, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness. Am. J. Community Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-Ecological Resilience to Coastal Disasters. Science 2018, 309, 151–159. [Google Scholar] [CrossRef]
- Alexander, D.E. Resilience and disaster risk reduction: An etymological journey. Nat. Hazards Earth Syst. Sci. 2013, 13, 2707–2716. [Google Scholar] [CrossRef] [Green Version]
- Winderl, T. Disaster Resilience Measurements: Stocktaking of Ongoing Efforts in Developing Systems for Measuring Resilience; United Nations Development Programme, United Nations: Rome, Italy, 2014. [Google Scholar]
- Sturgess, P.; Sparrey, R. “What is Resilience? Evidence on Demand.” Department for International Development. United Kingdom. 2016. Available online: www.gov.uk (accessed on 4 January 2022).
- Patel, S.; Rogers, M.B.; Amlôt, R.; Rubin, G.J. What Do We Mean by ‘Community Resilience’? A Systematic Literature Review of How It Is Defined in the Literature. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Stein, A. Definitions of Resilience: 1996-Present; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2020; Available online: www.2020resilience.ifpri.info/files/2013/08/resiliencedefinitions.pdf (accessed on 27 August 2022).
- Van Senten, J.; Engle, C.R.; Smith, M. Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses. J. World Aquac. Soc. 2020, 51, 571–573. [Google Scholar] [CrossRef]
- Van Senten, J.; Engle, C.R.; Smith, M.A. Effects of COVID-19 on U.S. aquaculture farms. Appl. Econ. Perspect. Policy 2021, 43, 355–367. [Google Scholar] [CrossRef]
- Hishamunda, N.; Ridler, N.; Bueno, P.; Satia, B.; Kuemlangan, B.; Percy, D.; Gooley, G.; Brugere, C.; Sen, S. Improving aquaculture governance: What is the status and options? In Farming the Waters for People and Food: Proceedings of the Global Conference on Aquaculture 2010, Phuket, Thailand, 22–25 September 2010; Subasinghe, R.P., Arthur, J.R., Bartley, D.M., de Silva, S.S., Halwart, M., Hishamunda, N., Mohan, C.V., Sorgeloos, P., Eds.; FAO: Rome, Italy; NACA: Bangkok, Thailand, 2012; pp. 233–264. [Google Scholar]
- Abate, T.G.; Nielsen, R.; Nielsen, M. Agency rivalry in a shared regulatory space and its impact on social welfare: The case of aquaculture regulation. Aquac. Econ. Manag. 2017, 22, 27–48. [Google Scholar] [CrossRef]
- Osmundsen, T.C.; Almklov, P.; Tveterås, R. Fish farmers and regulators coping with the wickedness of aquaculture. Aquac. Econ. Manag. 2017, 21, 163–183. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Building and Measuring Community Resilience: Actions for Communities and the Gulf Research Program; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Pillay, T.V.R. Economic and social dimensions of aquaculture management. Aquac. Econ. Manag. 1997, 1, 3–11. [Google Scholar] [CrossRef]
- Lebel, L.N.; Tri, H.; Saengnoree, A.; Pasong, S.; Buatama, U.; Thoa, L.K. Industrial Transformation and Shrimp Aquaculture in Thailand and Vietnam: Pathways to Ecological, Social, and Economic Sustainability? AMBIO J. Hum. Environ. 2002, 31, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Bestari, N.; Edwards, P.; Katon, B.; Morales, A.; Pullin, R. An Evaluation of Small Scale Freshwater Rural Aquaculture Development for Poverty Reduction. Case Study 6: Tilapia Cage Farming in Lake Taal, Batangas. Philippines Report No. 091704: 110–127. Asian Development Bank. 2005. Available online: https://www.adb.org/publications/evaluation-small-scale-freshwater-rural-aquaculture-developmentpoverty-reduction (accessed on 17 August 2022).
- Primavera, J. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Krumme, U.; Andersen, T.J.; Jennerjahn, T.C. Decadal Trends in Mangrove and Pond Aquaculture Cover on Hainan (China) Since 1966: Mangrove Loss, Fragmentation and Associated Biogeochemical Changes. Estuar. Coast. Shelf Sci. 2020, 233, 106531. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Tran, D.D.; Luan, P.D.M.H.; Ho, L.H.; Loan, V.T.K.; Ngoc, P.T.A.; Quang, N.D.; Wyatt, A.; Sea, W. Socio-ecological resilience of mangrove-shrimp models under various threats exacerbated from salinity intrusion in coastal area of the Vietnamese Mekong Delta. Int. J. Sustain. Dev. World Ecol. 2020, 27, 638–651. [Google Scholar] [CrossRef]
- Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.C.; Brink, P.J.V.D. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: A critical review. Rev. Aquac. 2012, 4, 75–93. [Google Scholar] [CrossRef]
- Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.; Henriksson, P.J.; Murray, F.J.; Little, D.C.; Dalsgaard, A.; Brink, P.V.D. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Tai, M.V. Use of Veterinary Medicines in Vietnamese Aquaculture: Current Status. In Improving Biosecurity Through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production; Bondad-Reantaso, M.G., Arthur, J.R., Subasinghe, R.P., Eds.; FAO Fisheries and Aquaculture Technical Paper No. 547; FAO: Rome, Italy, 2012; pp. 91–98. [Google Scholar]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2019, 12, 640–663. [Google Scholar] [CrossRef]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; De Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ni, L.D.; Chen, H.; Fu, Q.; Xie, Y.; Lu, X.; Wang, Y.; Zhao, Y.; Chen, L. Residual Levels of Antimicrobial Agents and Heavy Metals in 41 Species of Commonly Consumed Aquatic Products in Shanghai, China, and Cumulative Exposure Risk to Children and Teenagers. Food Control 2021, 129, 108225. [Google Scholar] [CrossRef]
- Wang, J.; Beusen, A.H.W.; Liu, X.; Bouwman, A.F. Aquaculture Production is a Large, Spatially Concentrated Source of Nutrients in Chinese Freshwater and Coastal Seas. Environ. Sci. Technol. 2019, 54, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- FAO. Environmental Impact Assessment and Monitoring in Aquaculture. In FAO Fisheries and Aquaculture Technical Paper No. 527; FAO: Rome, Italy, 2009. [Google Scholar]
- Pomeroy, R.S.; Parks, J.E.; Balboa, C.M. Farming the Reef: Is Aquaculture a Solution for Reducing Fishing Pressure on Coral Reefs? Mar. Policy 2006, 30, 111–130. [Google Scholar] [CrossRef]
- Shumway, S.E. Shellfish Aquaculture and the Environment; Wiley-Blackwell: Oxford, UK, 2011. [Google Scholar]
- Smaal, A.C.; Ferreira, J.G.; Grant, J.; Petersen, J.K.; Strand, Ø. Goods and Services of Marine Bivalves; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Duarte, C.M.; Wu, J.; Xiao, X.; Bruhn, A.; Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 2017, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Krause-Jensen, D.; Lavery, P.; Serrano, O.; Marbà, N.; Masque, P.; Duarte, C.M. Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biol. Lett. 2018, 14, 20180236. [Google Scholar] [CrossRef] [Green Version]
- Alleway, H.; Gillies, C.L.; Bishop, M.; Gentry, R.R.; Theuerkauf, S.J.; Jones, R. The Ecosystem Services of Marine Aquaculture: Valuing Benefits to People and Nature. BioScience 2018, 69, 59–68. [Google Scholar] [CrossRef]
- Petersen, J.K.; Hasler, B.; Timmermann, K.; Nielsen, P.; Tørring, D.B.; Larsen, M.M.; Holmer, M. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 2014, 82, 137–143. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Z.; Wang, Q.; Chen, W.; He, Z.; Jiang, S. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res. 2015, 9, 236–244. [Google Scholar] [CrossRef]
- Xiao, X.; Agusti, S.; Lin, F.; Li, K.; Pan, Y.; Yu, Y.; Zheng, Y.; Wu, J.; Duarte, C.M. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 2017, 7, 46613. [Google Scholar] [CrossRef] [Green Version]
- Chopin, T.; Tacon, A.G.J. Importance of Seaweeds and Extractive Species in Global Aquaculture Production. Rev. Fish. Sci. Aquac. 2020, 29, 139–148. [Google Scholar] [CrossRef]
- Powers, M.; Peterson, C.; Summerson, H.; Powers, S. Macroalgal growth on bivalve aquaculture netting enhances nursery habitat for mobile invertebrates and juvenile fishes. Mar. Ecol. Prog. Ser. 2007, 339, 109–122. [Google Scholar] [CrossRef]
- Ysebaert, T.; Hart, M.; Herman, P.M.J. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 2008, 63, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Filgueira, R.; Comeau, L.A.; Guyondet, T.; McKindsey, C.W.; Byron, C.J. Modelling Carrying Capacity of Bivalve Aquaculture: A Review of Definitions and Methods. In Fisheries and Oceans Canada, Ecosystems and Oceans Science; Springer: Berlin/Heidelberg, Germany, 2015; p. 31. [Google Scholar] [CrossRef]
- D’Amours, O.; Archambault, P.; McKindsey, C.; Johnson, L. Local enhancement of epibenthic macrofauna by aquaculture activities. Mar. Ecol. Prog. Ser. 2008, 371, 73–84. [Google Scholar] [CrossRef]
- Filgueira, R.; Guyondet, T.; Thupaki, P.; Sakamaki, T.; Grant, J. The effect of embayment complexity on ecological carrying capacity estimations in bivalve aquaculture sites. J. Clean. Prod. 2020, 288, 125739. [Google Scholar] [CrossRef]
- Byron, C.; Link, J.; Costa-Pierce, B.; Bengtson, D. Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island. Ecol. Model. 2011, 222, 1743–1755. [Google Scholar] [CrossRef]
- FAO. Small Ponds Make a Big Difference. In Integrating Fish with Crop and Livestock Farming; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; p. 30. [Google Scholar]
- Hatch, L.U.; Engle, C.R. Economic Analysis of Aquaculture as a Component of Integrated Agro-Aquaculture Systems: Some Evidence from Panama. J. Aquac. Trop. 1987, 2, 93–105. [Google Scholar]
- Engle, C.R. Optimal Product Mix for Integrated Livestock-Fish Culture Systems on Limited Resource Farms. J. World Aquac. Soc. 1987, 18, 137–147. [Google Scholar] [CrossRef]
- Boyd, C.; McNevin, A.A.; Racine, P.; Tinh, H.Q.; Minh, H.N.; Wiriyatum, R.; Paungkaew, D.; Engle, C. Resource Use Assessment of Shrimp, Litopenaeus vannamei and Penaeus monodon, Production in Thailand and Vietnam. J. World Aquac. Soc. 2017, 48, 201–226. [Google Scholar] [CrossRef]
- Engle, C.R.; McNevin, A.; Racine, P.; Boyd, C.E.; Paungkaew, D.; Viriyatum, R.; Tinh, H.Q.; Minh, H.N. Economics of Sustainable Intensification of Aquaculture: Evidence from Shrimp Farms in Vietnam and Thailand. J. World Aquac. Soc. 2017, 48, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Engle, C.; Kumar, G.; van Senten, J. Resource-use efficiency in US aquaculture: Farm-level comparisons across fish species and production systems. Aquac. Environ. Interact. 2021, 13, 259–275. [Google Scholar] [CrossRef]
- Dempster, T.; Sanchez-Jerez, P.; Bayle-Sempere, J.T.; Giménez-Casalduero, F.; Valle, C. Attraction of wild fish to sea-cage fish farms in the south-western Mediterranean Sea: Spatial and short-term temporal variability. Mar. Ecol. Prog. Ser. 2002, 242, 237–252. [Google Scholar] [CrossRef]
- Waknitz, F.W.; Tynan, T.J.; Nash, C.E.; Iwamoto, R.N.; Rutter, L.G. Review of Potential Impacts of Atlantic Salmon Culture on Puget Sound Chinook Salmon and Hood Canal Summer-Run Chum Salmon. In Evolutionarily Significant Units Technical Memo. NMFS-NWFSC-53; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2002. [Google Scholar]
- Halide, H.; Jompa, J.; McKinnon, A.D. Wild fish associated with tropical sea cage aquaculture in South Sulawesi, Indonesia. Aquaculture 2009, 286, 233–239. [Google Scholar] [CrossRef]
- Clark, D.; Lee, K.; Murphy, K.; Windrope, A. 2017 Cypress Island Atlantic Salmon Net Pen Failure: An Investigation and Review; Olympia (WA) Washington Department of Natural Resources: Washington, DC, USA, 2018. [Google Scholar]
- Welch, A.W.; Knapp, A.N.; El Tourky, S.; Daugherty, Z.; Hitchcock, G.; Benetti, D. The nutrient footprint of a submerged-cage offshore aquaculture facility located in the tropical Caribbean. J. World Aquac. Soc. 2018, 50, 299–316. [Google Scholar] [CrossRef]
- Robinson, E.H.; Li, M.H. Channel catfish, Ictalurus punctatus, nutrition in the United States: A historical perspective. J. World Aquac. Soc. 2019, 51, 93–118. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, M.; de Mitcheson, Y.S.; Cao, L.; Leadbitter, D.; Newton, R.; Little, D.C.; Li, S.; Yang, Y.; Chen, X.; et al. Fishing for Feed in China: Facts, Impacts and Implications. Fish Fish. 2020, 21, 47–62. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Lilai, X.; Islam, I.; Ali, G.; Tang, J. Resilience of coastal communities to climate change in Bangladesh: Research gaps and future directions. Watershed Ecol. Environ. 2019, 1, 42–56. [Google Scholar] [CrossRef]
- Peacock, W.G.; Brody, S.D.; Seitz, W.A.; Merrell, W.J.; Vedlitz, A.; Zahran, S.; Harriss, R.C.; Stickney, R.R. Advancing the Resilience of Coastal Localities: Developing, Implementing and Sustaining the Use of Coastal Resilience Indicators: A Final Report; Coastal Services Center and The National Oceanic and Atmospheric Administration: Washington, DC, USA, 2010. [Google Scholar]
- Milsa, D.J.; Adhuria, D.S.; Phillips, M.J.; Ravikumarc, B.; Padiyard, A.P. Shocks, Recovery Trajectories and Resilience Among Aquaculture Dependent Households in Post-Tsunami Aceh, Indonesia. Local Environ. 2011, 16, 425–444. [Google Scholar] [CrossRef]
- Mathiesen, A. Achieving Blue Growth Building Vibrant Fisheries and Aquaculture Communities; Food and Agricultural Organization of the United Nations: Rome, Italy, 2018; Available online: http://www.fao.org/3/CA0268EN/ca0268en.pdf (accessed on 7 August 2022).
- Newell, C.; Heasman, K.; Smaal, A.; Jiang, Z. Mussel aquaculture. In Molluscan Shellfish Aquaculture; Shumway, S., Ed.; 5M Printing: London, UK, 2021; pp. 107–148. [Google Scholar]
- Engle, C.R. Bringing Aquaculture Sustainability Down to Earth. J. World Aquac. Soc. 2019, 50, 246–248. [Google Scholar] [CrossRef]
- Krause, G.; Billing, S.-L.; Dennis, J.; Grant, J.; Fanning, L.; Filgueira, R.; Miller, M.; Agúndez, J.A.P.; Stybel, N.; Stead, S.M.; et al. Visualizing the social in aquaculture: How social dimension components illustrate the effects of aquaculture across geographic scales. Mar. Policy 2020, 118, 103985. [Google Scholar] [CrossRef]
- Engle, C.R. Optimal Resource Allocation by Fish Farmers in Rwanda. J. Appl. Aquac. 1997, 7, 1–17. [Google Scholar] [CrossRef]
- Engle, C.R.; Brewster, M.; Hitayezu, F. An Economic Analysis of Fish Production in a Subsistence Agricultural Economy: The Case of Rwanda. J. Aquac. Trop. 1993, 8, 151–165. [Google Scholar]
- Roos, N.; Islam, M.M.; Shakuntala, S.H. Small Indigenous Fish Species in Bangladesh: Contribution to Vitamin A, Calcium and Iron Intakes. J. Nutr. 2002, 133, 4021S–4026S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mail Buoy. Finfish Aquaculture Has No Place in U.S. Waters. National Fisherman. 2019. Available online: https://www.nationalfisherman.com/viewpoints/national-international/finfish-aquaculture-has-no-place-in-u-s-waters/pdf (accessed on 7 July 2022).
- Krause, G.; Brugere, C.; Diedrich, A.; Ebeling, M.W.; Ferse, S.C.; Mikkelsen, E.; Agúndez, J.A.P.; Stead, S.M.; Stybel, N.; Troell, M. A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture 2015, 447, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Toufique, K.A.; Gregory, R. Common waters and private lands: Distributional impacts of floodplain aquaculture in Bangladesh. Food Policy 2008, 33, 587–594. [Google Scholar] [CrossRef]
- Rickard, L.N.; Britwum, K.; Noblet, C.L.; Evans, K.S. Factory-made or farm fresh? Measuring U.S. support for aquaculture as a food technology. Mar. Policy 2020, 115, 103858. [Google Scholar] [CrossRef]
- IFPRI. 2014–2015 Global Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2015. [Google Scholar]
- Hernandez, R.; Belton, B.; Reardon, T.; Hu, C.; Zhang, X.; Ahmed, A. The Quiet Revolution in the Aquaculture Value Chain in Bangladesh. Aquaculture 2018, 493, 456–468. [Google Scholar] [CrossRef]
- USDA-NASS. Census of Aquaculture (2018); National Agricultural Statistics Service, United States Department of Agriculture: Washington, DC, USA, 2019. [Google Scholar]
- Bricknell, I.R.; Birkel, S.D.; Brawley, S.H.; Van Kirk, T.; Hamlin, H.J.; Capistrant-Fossa, K.; Huguenard, K.; Van Walsum, G.P.; Liu, Z.L.; Zhu, L.H.; et al. Resilience of cold water aquaculture: A review of likely scenarios as climate changes in the Gulf of Maine. Rev. Aquac. 2020, 13, 460–503. [Google Scholar] [CrossRef]
- Belton, B.; Bush, S.R.; Little, D.C. Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Glob. Food Secur. 2018, 16, 85–92. [Google Scholar] [CrossRef]
- Gunningham, N.; Kagan, R.A.; Thornton, D. Social License and Environmental Protection: Why Businesses Go Beyond Compliance. Law Soc. Inq. 2004, 29, 307–341. [Google Scholar] [CrossRef]
- Hall, N.L. The discourse of social licence to operate: Case study of the Australian wind industry. AIMS Energy 2014, 2, 443–460. [Google Scholar] [CrossRef]
- Edwards, P.; Lacey, J.; Wyatt, S.; Williams, K.J.H. Social licence to operate and forestry—An introduction. For. Int. J. For. Res. 2016, 89, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Martin, P. Defending the Social Licence of Farming: Issues, Challenges and New Directions for Agriculture; CSIRO: Collingwood, Australia, 2011. [Google Scholar] [CrossRef]
- Kelly, R.; Pecl, G.T.; Fleming, A. Social licence in the marine sector: A review of understanding and application. Mar. Policy 2017, 81, 21–28. [Google Scholar] [CrossRef]
- Baines, J.; Edwards, P. The role of relationships in achieving and maintaining a social licence in the New Zealand aquaculture sector. Aquaculture 2018, 485, 140–146. [Google Scholar] [CrossRef]
- Billing, S.-L. Using public comments to gauge social licence to operate for finfish aquaculture: Lessons from Scotland. Ocean Coast. Manag. 2018, 165, 401–415. [Google Scholar] [CrossRef]
- Hishamunda, N.; Poulain, F.; Ridler, N. Prospective analysis of aquaculture development: The Delphi method. In FAO Fisheries Technical Paper No. 521; FAO: Rome, Italy, 2009; p. 93. [Google Scholar]
- Beckensteiner, J.; Kaplan, D.M.; Scheld, A.M. Barriers to Eastern Oyster Aquaculture Expansion in Virginia. Front. Mar. Sci. 2020, 7, 53. [Google Scholar] [CrossRef]
- UNISDR. Hyogo Framework for Action 2005–2015: Building Resilience of Nations and Communities to Disasters. In Proceedings of the World Conference on Disaster Reduction, Kobe, Japan, 18–22 January 2005; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2007. [Google Scholar]
- Flora, C.B.; Flora, J.L. Entrepreneurial Social Infrastructure—A Necessary Ingredient. Ann. Am. Acad. Political Soc. Sci. 1993, 529, 48–58. [Google Scholar] [CrossRef]
- Horn, R.V. Statistical Indicators for the Economic and Social Sciences; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Johnson, P.; Conway, C.; Kattuman, P. Small Business Growth in the Short Run. Small Bus. Econ. 1999, 12, 103–112. [Google Scholar] [CrossRef]
- Buckle, P.; Marsh, G.; Smale, S. Assessing Resilience and Vulnerability: Principles, Strategies and Actions Guidelines; Emergency Management Australia: Canberra, Australia, 2001. [Google Scholar]
- Walter, J. World Disaster Report 2004: Focus on Community Resilience; International Federation of Red Cross and Red Crescent Societies (IFRC): Geneva, Switzerland, 2004. [Google Scholar]
- Harrington, D.G.; Lawton, T.C.; Tazeeb, R. Embracing and Exploiting Industry Turbulence: The Strategic Transformation of Aer Lingus. Eur. Manag. J. 2005, 23, 450–457. [Google Scholar] [CrossRef]
- Maguire, B.; Hagan, P. Disasters and Communities: Understanding Social Resilience. Aust. J. Emerg. Manag. 2007, 22, 16–20. [Google Scholar]
- Flora, C.B.; Emery, M.; Fey, S.; Bregendahl, C. Community Capitals: A Tool for Evaluating Strategic Interventions and Projects. In Encyclopedia of Rural America: The Land and People; Goreham, G., Ed.; Grey House Publishing House: Millerton, NY, USA, 2008. [Google Scholar]
- NIST. Community Resilience Planning Guide for Buildings and Infrastructure Systems; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Ritchie, L.A.; Gill, D.A. Considering Community Capitals in Disaster Recovery and Resilience. PERI Scope 2011, 14, 2. [Google Scholar]
- Jordan, E.; Javernick, A. Measuring Community Resilience and Recovery: A Content Analysis of Indicators. Constr. Res. Congr. 2012, 2012, 2190–2199. [Google Scholar]
- Cimellaro, G.P.; Renschler, C.; Reinhorn, A.M.; Arendt, L. PEOPLES: A framework for evaluating resilience. J. Struct. Eng. 2016, 142, 04016063. [Google Scholar] [CrossRef]
- Clark-Ginsberg, A.; McCaul, B.; Bremaud, I.; Caceres, G.; Mpanje, D.; Patel, S.; Patel, R. Practitioner Approaches to Measuring Community Resilience: The Analysis of the Resilience of Communities to Disasters Toolkit. Int. J. Disaster Risk Reduct. 2020, 50, 101714. [Google Scholar] [CrossRef]
- Engle, C. Marketing. Chapter 19. In Molluscan Shellfish Aquaculture; Shumway, S., Ed.; 5M Printing: London, UK, 2020. [Google Scholar]
- Sheriff, N.; Little, D.C.; Tantikamton, K. Aquaculture and the Poor—Is the Culture of High-Value Fish a Viable Livelihood Option for the Poor? Mar. Policy 2008, 32, 1094–1102. [Google Scholar] [CrossRef]
- Little, D.C.; Murray, F.J.; Leschen, W.; Waley, D. Socio-economic factors affecting aquaculture site selection and carrying capacity. In Site Selection and Carrying Capacities for Inland and Coastal Aquaculture; Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguillar-Mannjarrez, J., Eds.; FAO Fisheries and Aquaculture Proceedings No. 21; FAO: Rome, Italy, 2013; pp. 103–115. [Google Scholar]
- Dicks, M.R.; McHugh, R.; Webb, B. Economy-Wide Impacts of U.S. Aquaculture; Bulletin P-946; Oklahoma State University: Norman, OK, USA, 1996. [Google Scholar]
- Diesenroth, D.B.; Bond, C.A.; Loomis, J.B. The Economic Contribution of the Private, Recreation-Based Aquaculture Industry in the Western United States. Aquac. Econ. Manag. 2012, 16, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Engle, C.R. The Economic Impact of Aquaculture in Pennsylvania; Department of Agriculture: Harrisburg, PA, USA, 2018. [Google Scholar]
- Hughes, D.W. The Contribution of the Pet Turtle Industry to the Louisiana Economy. Aquac. Econ. Manag. 1999, 3, 205–214. [Google Scholar] [CrossRef]
- Van Senten, J.; Engle, C.; Dey, M.; Roy, L.; Kelly, A. Inefficiency Factors and Economic Impact of Baitfish and Sportfish Production. Ark. Aquafarming 2017, 34, 5–6. [Google Scholar]
- Kaliba, A.; Engle, C.R. The Economic Impact of the Catfish, Ictalurus punctatus, Industry on Chicot County, Arkansas. J. Appl. Aquac. 2004, 15, 29–60. [Google Scholar] [CrossRef]
- Kaliba, A.R.; Engle, C.R.; Pomerleau, S.; Hinshaw, J.; Sloan, D. The Economic Impact of the Trout, Oncorhynchus mykiss, Industry on Transylvania County, North Carolina. J. Appl. Aquac. 2004, 15, 61–83. [Google Scholar] [CrossRef]
- Hegde, H.; Kumar, G.; Engle, C.; Hanson, T.; Roy, L.A.; van Senten, J.; Johnson, J.; Avery, J.; Aarattuthodi, S.; Dahl, S.; et al. Economic Contribution of the U.S. Catfish Industry. Aquac. Econ. Manag. 2021, 1–30. [Google Scholar] [CrossRef]
- Knapp, G. Potential Economic Impacts of U.S. Offshore Aquaculture. In Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities; NOAA Technical Memorandum NMFS F/SPO-103; Rubino, M., Ed.; U.S. Department of Commerce: Silver Spring, MD, USA, 2008. [Google Scholar]
- Peel, D.; Lloyd, M.G. Governance and Planning Policy in the Marine Environment: Regulating Aquaculture in Scotland. Geogr. J. 2008, 174, 361–373. [Google Scholar] [CrossRef]
- Northern Economics. The Economic Impact of Shellfish Aquaculture in Washington, Oregon, and California; Pacific Shellfish Institute: Seattle, WA, USA, 2013. [Google Scholar]
- Murray, T.J.; Hudson, K. Economic Activity Associated with Shellfish Aquaculture in Virginia–2012. In Virginia Sea Grant Extension Program; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 2013. [Google Scholar]
- Van Senten, J.; Engle, C.; Parker, M.; Webster, D. Analysis of the Economic Benefits of the Maryland shellfish Aquaculture Industry. In Final Project Report; Chesapeake Bay Foundation: Annapolis, MD, USA, 2019. [Google Scholar]
- Cole, A.; Langston, A.; Davis, C. Maine Aquaculture Economic Impact Report; Aquaculture Research Institute, University of Maine: Bangor, ME, USA, 2016. [Google Scholar]
- Parker, M.; Lipton, D.; Harrell, R.M. Impact financing and aquaculture: Maryland oyster aquaculture profitability. J. World Aquac. Soc. 2020, 51, 874–895. [Google Scholar] [CrossRef]
- Bostock, J.; Fletcher, D.; Badiola, M.; Murray, F. An Update on the 2014 Report: Review of Recirculation Aquaculture System Technologies and Their Commercial Application; Highlands & Islands Enterprise: Inverness, UK, 2018. [Google Scholar]
- Partelow, S.; Schlüter, A.; Manlosa, A.; Nagel, B.; Paramita, A. Governing aquaculture commons. Rev. Aquac. 2021, 14, 729–750. [Google Scholar] [CrossRef]
- Engle, C.R.; D’Abramo, L. Showcasing Research Focusing on Sustainability of Aquaculture Enterprises and Global Food Security. J. World Aquac. Soc. 2016, 47, 311–313. [Google Scholar] [CrossRef]
- Engle, C.R.; Stone, N.M. Competitiveness of U.S. Aquaculture within the Current U.S. Regulatory Framework. Aquac. Econ. Manag. 2013, 17, 251–280. [Google Scholar] [CrossRef]
- Knapp, G.; Rubino, M.C. The Political Economics of Marine Aquaculture in the United States. Rev. Fish. Sci. Aquac. 2016, 24, 213–229. [Google Scholar] [CrossRef]
- Van Senten, J.; Engle, C.R.; Hudson, B.; Conte, F.S. Regulatory costs on Pacific coast shellfish farms. Aquac. Econ. Manag. 2020, 24, 447–479. [Google Scholar] [CrossRef]
- NOAA. Overcoming Impediments to Shellfish Aquaculture through Legal Research and Outreach: Case Studies; NOAA: Washington, DC, USA, 2021. [Google Scholar]
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenson, K.; Ropicki, A.; Smith, M.; Tveterås, R. A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- Abate, T.G.; Nielsen, R.; Tveterås, R. Stringency of Environmental Regulation and Aquaculture Growth: A Crosscountry Analysis. Aquac. Econ. Manag. 2016, 20, 201–221. [Google Scholar] [CrossRef]
- Helvey, M.; Pomeroy, C.; Pradhan, N.C.; Squires, D.; Stohs, S. Can the United States have its fish and eat it too? Mar. Policy 2017, 75, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Genschick, S. Pangasius Risk: Governance in Farming and Processing, and the Role of Different Capital. In ZEF Working Paper Series; ZEF Center for Development Research University of Bonn: Bonn, Germany, 2011. [Google Scholar]
- Hishamunda, N.; Bueno, P.; Ridler, N.; Yap, W. Analysis of aquaculture development in Southeast Asia: A policty perspective. In FAO Fisheries Technical Paper No. 509; FAO: Rome, Italy, 2009; p. 80. [Google Scholar]
- Ramos, J.; Caetano, M.; Himes-Cornell, A.; dos Santos, M.N. Stakeholders’ Conceptualization of Offshore Aquaculture and Small-Scale Fisheries Interactions Using a Bayesian Approach. Ocean. Coast. Manag. 2017, 138, 70–82. [Google Scholar] [CrossRef]
- World Bank. World Development Report: Agriculture for Development; International Bank for Reconstruction and Development: Washington, DC, USA, 2008; p. 365. Available online: http://siteresources.worldbank.org/INTWDR2008/Resources/WDR_00_book.pdf (accessed on 17 July 2022).
- Van Senten, J.; Engle, C.R. The Costs of Regulations on US Baitfish and Sportfish Producers. J. World Aquac. Soc. 2017, 20, 201–517. [Google Scholar] [CrossRef] [Green Version]
- Engle, C.R.; Senten, J.; Fornshell, G. Regulatory costs on U.S. salmonid farms. J. World Aquac. Soc. 2019, 50, 522–549. [Google Scholar] [CrossRef]
- Hegde, S.; Kumar, G.; Engle, C.; van Senten, J. Cost of Regulations on U.S. Catfish Farms. J. World Aquac. Soc. 2022. [Google Scholar] [CrossRef]
- Boldt, N.C.; Engle, C.R.; Senten, J.; Cassiano, E.J.; DiMaggio, M.A. A regulatory cost assessment of ornamental aquaculture farms in Florida. J. World Aquac. Soc. 2022. [Google Scholar] [CrossRef]
- van Senten, J.; Dey, M.; Engle, C.R. Effects of Regulations on Technical Efficiency of U.S. Baitfish and Sportfish Producers. Aquac. Econ. Manag. 2018, 22, 284–305. [Google Scholar] [CrossRef]
- McLaughlin, P.A.; Ghei, N.; Wilt, M. Regulatory Accumulation and its Costs: An Overview; Policy Brief; George Mason University: Arlington, VA, USA, 2018. [Google Scholar]
- NOAA. Announcement of Aquaculture Opportunity Areas. 2021. Available online: https://www.fisheries.noaa.gov (accessed on 4 August 2022).
- Froehlich, H.E.; Runge, C.A.; Gentry, R.R.; Gaines, S.D.; Halpern, B.S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl. Acad. Sci. USA 2018, 115, 5295–5300. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Stead, S. A comparative analysis of two forms of stakeholder participation in European aquaculture governance: Self-regulation and Integrated Coastal Zone Management. In Participation in Fisheries Governance; Gray, T., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 179–190. [Google Scholar]
- Van Senten, J.; Engle, C.R.; Hartman, K.; Johnson, K.K.; Gustafson, L.L. Is there an economic incentive for farmer participation in a uniform health standard for aquaculture farms? An empirical case study. Prev. Veter- Med. 2018, 156, 58–67. [Google Scholar] [CrossRef]
- Engle, C.R.; van Senten, J.; Schwarz, M.; Hartman, K.; Gustafson, L.; Johnson, K.; Creekmore, L. Farm-level cost drivers of salmonid fish health inspections. J. Aquat. Anim. Health 2021, 33, 199–219. [Google Scholar] [CrossRef]
- Van Wesenbeeck, B.K.; Balke, T.; van Eijk, P.; Tonneijck, F.; Siry, H.Y.; Rudianto, M.E.; Winterwerp, J.C. Aquaculture induced erosion of tropical coastlines throws coastal communities back into poverty. Ocean. Coast. Manag. 2015, 116, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Lebel, L.; Lebel, P.; Chuah, C.J. Water Use by Inland Aquaculture in Thailand: Stakeholder Perceptions, Scientific Evidence, and Public Policy. Environ. Manag. 2019, 63, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Black, E.; Chopin, T.; Grant, J.; Page, F.; Ridler, N.; Smith, J. Canada. In Aquaculture and Ecosystems: An Integrated Coastal and Ocean Management Approach; McVey, J.P., Lee, C.-S., O’Bryen, P.J., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2006; pp. 7–52. [Google Scholar]
- Howarth, W. Global challenges in the regulation of aquaculture. Towards principled access and operations, Chapter 1. In Aquaculture, Law and Policy; Vander Zwaag, D., Chao, G., Eds.; Routledge: London, UK, 2006; pp. 13–36. [Google Scholar]
- Norwegian Ministry of Fisheries and Coastal Affairs. Strategy for a competitive Norwegian Aquaculture Industry. Oslo. 2008. 30p. Available online: www.regjeringen.no/upload/FKD/Vedlegg/Diverse/2007/Konkurransestrategien%20for%20havbruksnæringen%20på%20eng.pdf (accessed on 8 August 2022).
- Pinto, F. Salmoncultura Chilena: Entre el Exito Comercial y la Insustentabilidad (RPP 23); Terram: Santiago, Chile, 2007. [Google Scholar]
- Tucker, C.; Hargreaves, J. Environmental Best Management Practices for Aquaculture; Wiley-Blackwell: Oxford, UK, 2008; p. 592. [Google Scholar]
- De Silva, S.; Davy, F.B. Success Stories in Asian Aquaculture; Springer: Dordrecht, The Netherlands, 2010; p. 210. [Google Scholar]
- Glenn, G.; White, H. Legal traditions, environmental awareness, and a modern industry: Comparative legal analysis and marine aquaculture. Ocean. Dev. Int. Law 2007, 38, 71–99. [Google Scholar] [CrossRef]
- Spriej, M. Trends in national aquaculture legislation (part I). In FAN, FAO Aquaculture Newsletter, No. 30; FAO: Rome, Italy, 2003; pp. 10–13. [Google Scholar]
- Percy, R.D.; Hishamunda, N. Promotion of sustainable commercial aquaculture in sub-Saharan Africa. Volume 3. Legal, regulatory and institutional framework. In FAO Fisheries Technical Paper. No. 408/3; FAO: Rome, Italy, 2001; p. 29. [Google Scholar]
- Pew Trust. Sustainable marine Aquaculture: Fulfilling the Promise; Managing the Risk. Report of the Aquaculture Task Force. 2007, p. 142. Available online: www.pewtrusts.org/uploadedFiles/wwwpewtrustsorg/Reports/Protecting_ocean_life/Sustainable_Marine_Aquaculture_final_1_07.pdf (accessed on 8 August 2022).
- Bjorndal, T.; Tusvik, A. Land-Based Farming: Economic Analysis (Working Paper Series No. 1/2017); Department of International Business, Norwegian University of Science and Technology: Ålesund, Norway, 2017. [Google Scholar]
- Bjorndal, T.; Tusvik, A. Economic analysis of land based farming of salmon. Aquac. Econ. Manag. 2019, 23, 449–475. [Google Scholar] [CrossRef]
- FAO. The state of food and agriculture: Paying farmers for environmental services. In FAO Agriculture Series No. 38; FAO: Rome, Italy, 2007; p. 240. [Google Scholar]
- FAO. Guidelines for the promotion of environmental management of coastal aquaculture development. (by U.C. Barg). In Fisheries Technical Paper No. 328; FAO: Rome, Italy, 1992; p. 122. [Google Scholar]
- Queensland Government. Great Sandy Regional Marine Aquaculture Plan (Draft) Department of Primary Industries and Fisheries, Queensland, Australia; Queensland Government: Brisbane, Australia, 2008. [Google Scholar]
- Government Gazette. No. 2888; Aquaculture Act; Govenrment of Namibia: Windhoek, Namibia, 2002; p. 22.
- Kaiser, M.; Stead, M. Uncertainties and values in European aquaculture; communication management and policy issues in times of changing public perceptions. Aquac. Int. 2002, 10, 469–490. [Google Scholar] [CrossRef]
- Gentry, R.R.; Lester, S.E.; Kappel, C.V.; White, C.; Bell, T.W.; Stevens, J.; Gaines, S.D. Offshore Aquaculture: Spatial Planning Principles for Sustainable Development. Ecol. Evol. 2017, 7, 733–743. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the Global Potential for Marine Aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef]
Dimension | Description |
---|---|
Environmental (natural assets, quality, diversity, ecosystems & services) | Air, land, water, mineral resources; water quality, air quality; diversity in ecological systems; biodiversity; services, stability |
Social (includes human and cultural) | Relationship patterns/social support; community bonds; social institutions & participation; social memory; access to services; trust & reciprocity; political engagement; volunteerism |
Economic (Economic diversity, economic stability, economic development, investment in physical infrastructure) | Size and diversity of businesses and forms of economic livelihood, economic growth or contraction; physical infrastructure (Commercial & industrial buildings, schools, residential housing, response support facilities, power, transportation (bridges & roads), communications, water, wastewater treatment) |
Governance (political, institutions; leadership, management & regulations) | Services, preparedness, disaster & emergency management experience & capacity; governance/regulatory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engle, C.R.; van Senten, J. Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes 2022, 7, 268. https://doi.org/10.3390/fishes7050268
Engle CR, van Senten J. Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes. 2022; 7(5):268. https://doi.org/10.3390/fishes7050268
Chicago/Turabian StyleEngle, Carole R., and Jonathan van Senten. 2022. "Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects" Fishes 7, no. 5: 268. https://doi.org/10.3390/fishes7050268
APA StyleEngle, C. R., & van Senten, J. (2022). Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes, 7(5), 268. https://doi.org/10.3390/fishes7050268