Broadband Scattering Characteristic Quantization Technique for Single Fish Based on a Split-Beam Echosounder
Abstract
:1. Introduction
- Derive the radiation and single target scattering model of the circular piston transducer under far-field conditions. The calculation formula for the backscattering cross section under a single target is given by combining the Helmholtz-Thevenin equivalent circuits model and the acoustic parameters of the transducer.
- Establishes a processing flow for broadband data under a single target and derives the echo integration under broadband based on Fourier transform.
- Using EK80 as the experimental object, this research designs several transducer parameter test experiments and a copper ball TS measurement experiment to compare and verify the accuracy of the calculation model.
2. Materials and Methods
2.1. Single-Target Scattering Model and Backscattering Cross Section in the Far Field
2.2. Equivalent Model of Helmholtz-Thevenin Circuit for Transducers
2.3. Echo Integration and Voltage Estimation under Broadband
3. Results
3.1. Transducer Sensitivity and Impedance Parameters
3.2. Matching Circuit Impedance Inversion Measurement
3.3. Transducer Beam Pattern Measurement
3.4. Copper Ball Broadband TS Measurement
- As the operating frequency of the transducer increases, the sensitivity of the transducer to changes in the surrounding environment increases [44].
4. Discussion
- EK80 did not provide data at the original sampling rate, but instead provided data after two decimations. The equivalent sampling frequency was only 187.5 kHz. When the pulse width is limited, the frequency resolution is low [37], and accurate frequency estimation results of voltage amplitude cannot be provided.
- The signal propagation medium is time-varying and will be affected by the physical environment, including weather changes and vehicle shaking, causing fluctuations in the measurement results [48].
- During long-term use the oxidation and unevenness of the surface become inconsistent with the copper ball in the reference data [20].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Unit | Description |
---|---|---|
Density of water | ||
Particle vibration speed | ||
Transducer diameter | ||
Wave number | ||
Underwater sound speed | ||
Absorption coefficient | ||
The sound pressure of the transducer at any position in the field | ||
Distance from the equivalent sound center of the transducer | ||
Axial sound pressure amplitude at the transducer reference distance | ||
Backscattering sound pressure at reference distance from scatterer | ||
None | Transducer beam pattern | |
Scattered sound pressure at transducer reference distance | ||
Backscattering cross section | ||
Target strength |
Symbol | Unit | Description |
---|---|---|
Axial emission voltage sensitivity at reference distance | ||
Axial received voltage sensitivity at reference distance | ||
Equivalent axial sound pressure | ||
Open-circuit voltage when the transducer is receiving | ||
The voltage loaded across the transducer in the transmitting state | ||
The sampling voltage of the sampling circuit in the receiving state | ||
Transmit power | ||
Transducer impedance | ||
Transducer resistance | ||
Receiver circuit impedance | ||
Receiver circuit resistance | ||
Impedance factor | ||
Logarithmic representation of transmitted voltage sensitivity | ||
Logarithmic representation of received voltage sensitivity |
Symbol | Unit | Description |
---|---|---|
V | Assumed target echo voltage function | |
W | Assumed target echo power | |
None | Ideal wideband signal in time domain | |
None | Ideal wideband signal in frequency domain | |
Time variables in continuous time domain | ||
Single frequency signal period | ||
Integration time variable | ||
The signal frequency in the discrete frequency domain | ||
Broadband signal bandwidth | ||
None | Sequence index under time domain discretization | |
None | Finite sequence length under time domain discretization | |
None | Corresponding amplitude in time domain or frequency domain | |
None | Intermediate variable sequence during derivation in time domain | |
None | Intermediate variable sequence during derivation in frequency domain | |
None | Normalized reference voltage discrete sequence | |
None | Reference voltage discrete sequence |
References
- Orduna Martín, C.; Encina Encina, L.; Rodríguez Ruiz, A.; Rodríguez Sánchez, V. Testing of New Sampling Methods and Estimation of Size Structure of Sea Bass (Dicentrarchus labrax) in Aquaculture Farms Using Horizontal Hydroacoustics. Aquaculture 2021, 545, 737242. [Google Scholar] [CrossRef]
- Muhammad, Z.L. Acoustic Systems (Split Beam Echo Sounder) to Determine Abundance of Fish in Marine Fisheries. Ocean. Fish. 2017, 3, 555607. [Google Scholar] [CrossRef]
- Foote, K.G.; Traynor, J.J. Comparison of Walleye Pollock Target Strength Estimates Determined from in Situ Measurements and Calculations Based on Swimbladder Form. J. Acoust. Soc. Am. 1988, 83, 9–17. [Google Scholar] [CrossRef]
- Kang, M. Overview of the Applications of Hydroacoustic Methods in South Korea and Fish Abundance Estimation Methods. Fish. Aquat. Sci. 2014, 17, 369–376. [Google Scholar] [CrossRef]
- Demer, D.A.; Berger, L.; Bernasconi, M.; Bethke, E.; Boswell, K.; Chu, D.; Domokos, R.; Dunford, A.; Fassler, S.; Gauthier, S. Calibration of acoustic instruments. In ICES Cooperative Research Report; ICES: Copenhagen, Denmark, 2015; Volume 326, 136p. [Google Scholar] [CrossRef]
- Traynor, J.J. Fish and Standard-Sphere Targetstrength Measurements Obtained with a Dual-Beam and Split-Beam Echo Sounding System. Rapp. P.-v. Reun. Cons. Int. Explor. Mer. 1990, 189, 325–335. [Google Scholar]
- Andersen, L.N.; Chu, D.; Heimvoll, H.; Korneliussen, R.; Macaulay, G.J.; Ona, E. Quantitative Processing of Broadband Data as Implemented in a Scientific Splitbeam Echosounder. arXiv 2021, arXiv:2104.07248. [Google Scholar] [CrossRef]
- Dragesund, O.; Olsen, S. On the Possibility of Estimating Year-Class Strength by Measuring Echo-Abundance of 0-Group Fish; ICES: Copenhagen, Denmark, 1965; Volume 13, pp. 44–75. [Google Scholar]
- Jurvelius, J.; Marjomäki, T.J.; Peltonen, H.; Degtev, A.; Bergstrand, E.; Enderlein, O.; Auvinen, H. Fish Density and Target Strength Distribution of Single Fish Echoes in Varying Light Conditions with Single and Split Beam Echosounding and Trawling. Hydrobiologia 2016, 780, 113–124. [Google Scholar] [CrossRef]
- Quazi, A. An Overview on the Time Delay Estimate in Active and Passive Systems for Target Localization. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 527–533. [Google Scholar] [CrossRef]
- Lunde, P.; Korneliussen, R.J. Power-Budget Equations and Calibration Factors for Fish Abundance Estimation Using Scientific Echo Sounder and Sonar Systems. J. Mar. Sci. Eng. 2016, 4, 43. [Google Scholar] [CrossRef]
- Demer, D.A.; Andersen, L.N.; Bassett, C.; Berger, L.; Chu, D.; Condiotty, J.; Hutton, B.; Korneliussen, R.; Bouffant, N.L.; Macaulay, G. 2016 USA–Norway EK80 Workshop Report: Evaluation of a Wideband Echosounder for Fisheries and Marine Ecosystem Science; ICES Cooperative Research Reports (CRR); ICES: Copenhagen, Denmark, 2017; Volume 336. [Google Scholar] [CrossRef]
- Rautureau, C.; Goulon, C.; Guillard, J. In Situ TS Detections Using Two Generations of Echo-Sounder, EK60 and EK80: The Continuity of Fishery Acoustic Data in Lakes. Fish. Res. 2022, 249, 106237. [Google Scholar] [CrossRef]
- Simrad EK500 Operator Manual. Available online: https://www.kongsberg.com/maritime/support/simradsupport/simrad-docs/discontinued-echo-sounders/simrad-ek500/ (accessed on 21 December 2023).
- Ishimaru, A. Theory and Application of Wave Propagation and Scattering in Random Media. Proc. IEEE 1977, 65, 1030–1061. [Google Scholar] [CrossRef]
- Hao, C.; Orlando, D.; Liu, J.; Yin, C. Introduction to Radar Systems. In Advances in Adaptive Radar Detection and Range Estimation; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9789811663987. [Google Scholar]
- Bjørnø, L. Chapter 5—Scattering of Sound. In Applied Underwater Acoustics; Neighbors, T.H., Bradley, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–362. [Google Scholar]
- Yang, Y.; Gastauer, S.; Proud, R.; Mangeni-Sande, R.; Everson, I.; Kayanda, R.J.; Brierley, A.S. Modelling and in Situ Observation of Broadband Acoustic Scattering from the Silver Cyprinid (Rastrineobola argentea) in Lake Victoria, East Africa. ICES J. Mar. Sci. 2023. [Google Scholar] [CrossRef]
- Stanton, T.K.; Chu, D. Calibration of Broadband Active Acoustic Systems Using a Single Standard Spherical Target. J. Acoust. Soc. Am. 2008, 124, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Hobaek, H.; Forland, T.N. Characterization of Target Spheres for Broad-Band Calibration of Acoustic Systems. Acta Acust. United Acust. 2013, 99, 465–476. [Google Scholar] [CrossRef]
- Chu, D.; Eastland, G.C. Calibration of a Broadband Acoustic Transducer with a Standard Spherical Target in the near Field. J. Acoust. Soc. Am. 2015, 137, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Lavery, A.C.; Chu, D.; Moum, J.N. Measurements of Acoustic Scattering from Zooplankton and Oceanic Microstructure Using a Broadband Echosounder. ICES J. Mar. Sci. 2010, 67, 379–394. [Google Scholar] [CrossRef]
- Butler, J.L.; Sherman, C.H. Chapter 5—Transducers as Projectors. In Transducers and Arrays for Underwater Sound Compress; Springer: Berlin/Heidelberg, Germany, 2016; pp. 185–272. [Google Scholar]
- Lunde, P. Finite-Amplitude Power Budget Equations for Acoustic Fish Abundance Estimation. J. Mar. Sci. Eng. 2020, 8, 98. [Google Scholar] [CrossRef]
- Butler, J.L.; Sherman, C.H. Chapter 10—Acoustic Radiation from Transducers. In Transducers and Arrays for Underwater Sound Compress; Springer: Berlin/Heidelberg, Germany, 2016; pp. 517–551. [Google Scholar]
- Medwin, H.; Clay, C.S. Chapter 7—Sound Scattered by a Body. In Fundamentals of Acoustical Oceanography; Medwin, H., Clay, C.S., Eds.; Applications of Modern Acoustics; Academic Press: San Diego, CA, USA, 1998; pp. 234–286. [Google Scholar]
- Demer, D.A.; Renfree, J.S. Variations in Echosounder–Transducer Performance with Water Temperature. ICES J. Mar. Sci. 2008, 65, 1021–1035. [Google Scholar] [CrossRef]
- Butler, J.L.; Sherman, C.H. Chapter 6—Transducers as Hydrophones. In Transducers and Arrays for Underwater Sound Compress; Springer: Berlin/Heidelberg, Germany, 2016; pp. 281–341. [Google Scholar]
- Wang, Y.; Sun, D.; Yong, J. Design of Broadband Matching Circuit for Underwater Acoustic Communication Transducer. In Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering, Zhengzhou, China, 11–13 April 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 2298–2305. [Google Scholar]
- Xiao, D.; Fan, Q.; Xu, C.; Zhang, X. Measurement Methods of Ultrasonic Transducer Sensitivity. Ultrasonics 2016, 68, 150–154. [Google Scholar] [CrossRef]
- Soliveres, E.; Poveda, P.; Estruch, V.D.; Pérez-Arjona, I.; Puig, V.; Ordóñez, P.; Ramis, J.; Espinosa, V. Monitoring Fish Weight Using Pulse-Echo Waveform Metrics. Aquac. Eng. 2017, 77, 125–131. [Google Scholar] [CrossRef]
- Puig-Pons, V.; Muñoz-Benavent, P.; Pérez-Arjona, I.; Ladino, A.; Llorens-Escrich, S.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Ordoñez-Cebrian, P.; Pastor-Gimeno, J.I. Estimation of Bluefin Tuna (Thunnus thynnus) Mean Length in Sea Cages by Acoustical Means. Appl. Acoust. 2022, 197, 108960. [Google Scholar] [CrossRef]
- Kubilius, R.; Bergès, B.; Macaulay, G.J. Remote Acoustic Sizing of Tethered Fish Using Broadband Acoustics. Fish. Res. 2023, 260, 106585. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H.; Ding, J.-J. Chapter 3—Fourier Series Representation of Periodic Signals. In Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1997; pp. 177–250. [Google Scholar]
- Liu, D.; Qu, H.; Wang, W.; Deng, J. Multiple Targets Detection of Linear Frequency-Modulated Continuous Wave Active Sonar Using Fractional Fourier Transform. Integr. Ferroelectr. 2020, 209, 1–10. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, L. Method for Parameter Estimation of LFM Signal and Its Application. IET Signal Process. 2019, 13, 538–543. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H.; Ding, J.-J. Chapter 5—The Discrete-Time Fourier Transform. In Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1997; pp. 358–396. [Google Scholar]
- Levanon, N.; Mozeson, E. Chapter 2—Matched Filter. In Radar Signals; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 20–33. [Google Scholar]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H.; Ding, J.-J. Chapter 6—Time and Frequency Characterization of Signals and Systems. In Signals and Systems-6; Prentice Hall: Upper Saddle River, NJ, USA, 1997; pp. 423–472. [Google Scholar]
- Simrad ES200-7C. Available online: https://www.kongsberg.com/maritime/products/commercial-fisheries/td/200-khz/simrad-es200-7c/ (accessed on 20 December 2023).
- Li, J.; Jiang, L.; Yu, F.; Zhang, Y.; Gao, K. Research on Improving Measurement Accuracy of Acoustic Transfer Function of Underwater Vehicle. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 336, p. 01006. [Google Scholar] [CrossRef]
- Ainslie, M.A.; McColm, J.G. A Simplified Formula for Viscous and Chemical Absorption in Sea Water. J. Acoust. Soc. Am. 1998, 103, 1671–1672. [Google Scholar] [CrossRef]
- Conti, S.G.; Demer, D.A. Wide-Bandwidth Acoustical Characterization of Anchovy and Sardine from Reverberation Measurements in an Echoic Tank. ICES J. Mar. Sci. 2003, 60, 617–624. [Google Scholar] [CrossRef]
- Au, W.W.; Benoit-Bird, K.J. Broadband Backscatter from Individual Hawaiian Mesopelagic Boundary Community Animals with Implications for Spinner Dolphin Foraging. J. Acoust. Soc. Am. 2008, 123, 2884–2894. [Google Scholar] [CrossRef]
- De Robertis, A.; Higginbottom, I. A Post-Processing Technique to Estimate the Signal-to-Noise Ratio and Remove Echosounder Background Noise. ICES J. Mar. Sci. 2007, 64, 1282–1291. [Google Scholar] [CrossRef]
- Demer, D.A.; Conti, S.G.; De Rosny, J.; Roux, P. Absolute Measurements of Total Target Strength from Reverberation in a Cavity. J. Acoust. Soc. Am. 2003, 113, 1387–1394. [Google Scholar] [CrossRef]
- Maclennan, D.N. The Theory of Solid Spheres as Sonar Calibration Targets. Scottish Fish. Res. Rep. 1981, 22, 1–16. [Google Scholar]
- Jech, J.M.; Schaber, M.; Cox, M.; Escobar-Flores, P.; Gastauer, S.; Haris, K.; Horne, J.; Jarvis, T.; Ladroit, Y.; O’Driscoll, R. Collecting Quality Echosounder Data in Inclement Weather. In ICES Cooperative Research Report; ICES: Copenhagen, Denmark, 2021; Volume 352, 108p. [Google Scholar] [CrossRef]
- Jech, J.M.; Foote, K.G.; Chu, D.; Hufnagle Jr, L.C. Comparing Two 38-kHz Scientific Echosounders. ICES J. Mar. Sci. 2005, 62, 1168–1179. [Google Scholar] [CrossRef]
- MacLennan, D.N.; Fernandes, P.G.; Dalen, J. A Consistent Approach to Definitions and Symbols in Fisheries Acoustics. ICES J. Mar. Sci. 2002, 59, 365–369. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Transducer | ES200-7C |
Nominal frequency (kHz) | 200 |
Frequency range (kHz) | 160~260 |
Beam type | Split-Beam |
Nominal beam width (°) | 7 |
) | 75 |
Diameter (mm) | 120 |
Parameters | Values |
---|---|
Hydrophone type | Standard hydrophone |
Model | TC4038-4 |
Effective frequency (MHz) | 0.02~0.8 |
100 kHz receiving sensitivity (dB re 1V/μPa @1 m) | −238.09 |
300 kHz receiving Sensitivity (dB re 1V/μPa @1 m) | −237.81 |
Transmitting sensitivity (dB re 1μPa/V @1 m) | 100~120 |
Horizontal directivity pattern (°) | 360 |
Vertical directivity pattern (°) | 120 |
Parameters | Values |
---|---|
Signal type | Linear FM |
Pulse duration (ms) | 1 |
Frequency range (kHz) | 160~260 |
Transmitting amplitude (V) | 3 |
Receiving amplifier gain (dB) | 120 |
Oscilloscope sample frequency (MHz) | 1 |
Frequency (kHz) | Alongship Beamwidth (°) | Athwartship Beamwidth (°) | Alongship Axis Bias (°) | Athwartship Axis Bias (°) |
---|---|---|---|---|
160 | 8.21 | 8.12 | −0.04 | 0.05 |
165 | 7.82 | 7.76 | −0.06 | 0.04 |
170 | 7.46 | 7.38 | −0.05 | 0.06 |
175 | 7.12 | 7.08 | −0.04 | 0.05 |
180 | 6.74 | 6.70 | −0.05 | 0.04 |
185 | 6.47 | 6.46 | −0.06 | 0.04 |
190 | 6.28 | 6.26 | −0.06 | 0.06 |
195 | 6.14 | 6.08 | −0.06 | 0.05 |
200 | 5.93 | 5.96 | 0 | 0 |
205 | 5.84 | 5.89 | −0.04 | 0.02 |
210 | 5.66 | 5.70 | 0.01 | 0.03 |
215 | 5.46 | 5.58 | 0 | 0.04 |
220 | 5.40 | 5.51 | 0.02 | 0.02 |
225 | 5.36 | 5.44 | 0.01 | 0.03 |
230 | 5.30 | 5.31 | 0.01 | 0.03 |
235 | 5.18 | 5.18 | 0.03 | 0.02 |
240 | 5.10 | 5.13 | 0.03 | 0.02 |
245 | 5.05 | 5.07 | 0.01 | 0.02 |
250 | 4.98 | 5.01 | 0.04 | 0.04 |
255 | 4.92 | 4.96 | 0.02 | 0.01 |
260 | 4.85 | 4.92 | 0.03 | 0.02 |
Parameter | Values |
---|---|
Water Parameters | |
Temperature (°C) | 23.2 |
Salinity (‰) | 0 |
Depth (m) | 2.0 |
) | 0.9975 |
Sound velocity (m/s) | 1486.5 |
Copper Parameters | |
Material | Copper |
Diameter (mm) | 63 |
) | 8947 |
Compressed wave speed | 4760 |
Shearing wave speed | 2288.5 |
Transmit Parameters | |
Type | Linear FM |
Pulse duration (ms) | 1.024 |
Frequency range (kHz) | 160~260 |
Transmit power (W) | 150 |
Ping interval (ms) | 200 |
Max range (m) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, Q.; Li, H.; Yao, J.; Li, C.; Tao, J. Broadband Scattering Characteristic Quantization Technique for Single Fish Based on a Split-Beam Echosounder. Fishes 2024, 9, 12. https://doi.org/10.3390/fishes9010012
Ai Q, Li H, Yao J, Li C, Tao J. Broadband Scattering Characteristic Quantization Technique for Single Fish Based on a Split-Beam Echosounder. Fishes. 2024; 9(1):12. https://doi.org/10.3390/fishes9010012
Chicago/Turabian StyleAi, Qiuming, Haisen Li, Jin Yao, Chao Li, and Jiangping Tao. 2024. "Broadband Scattering Characteristic Quantization Technique for Single Fish Based on a Split-Beam Echosounder" Fishes 9, no. 1: 12. https://doi.org/10.3390/fishes9010012
APA StyleAi, Q., Li, H., Yao, J., Li, C., & Tao, J. (2024). Broadband Scattering Characteristic Quantization Technique for Single Fish Based on a Split-Beam Echosounder. Fishes, 9(1), 12. https://doi.org/10.3390/fishes9010012