Replacement of Fish Meal with Crustacean Meals in Diets for Long-Snouted Seahorse, Hippocampus guttulatus: Digestibility and Growth Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Diet Preparation
2.2. Shrimp Culture
2.3. Digestibility and Growth Trial
2.4. Chemical Analyses
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Masonjones, H.D.; Lewis, S.M. Differences in potential reproductive rates of male and female seahorses related to courtship roles. Anim. Behav. 2000, 59, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Olivotto, I.; Planas, M.; Simões, N.; Holt, G.J.; Avella, M.A.; Calado, R. Advances in Breeding and Rearing Marine Ornamentals. J. World Aquac. Soc. 2011, 42, 135–166. [Google Scholar] [CrossRef]
- Wilson, M.J.; Vincent, A.C.J. Preliminary success in closing the life cycle of exploited seahorse species, Hippocampus spp., in captivity. Aquar. Sci. Cons. 1998, 2, 179–196. [Google Scholar] [CrossRef]
- Lourie, S.A.; Foster, S.J.; Cooper, E.W.T.; Vincent, A.C.J. A Guide to the Identification of Seahorses; Project Seahorse and TRAFFIC; University of British Columbia and World Wildlife Fund: Washington, DC, USA, 2004; ISBN 0-89164-169-6. [Google Scholar]
- Vincent, A.C.J. The International Trade in Seahorses; TRAFFIC International: Cambridge, UK, 1996; ISBN 1-85850-098-2. [Google Scholar]
- Martin-Smith, K.M.; Vincent, A.C.J. Exploitation and trade of Australian seahorses, pipehorses, sea dragons and pipefishes (Family Syngnathidae). Oryx 2006, 40, 141–151. [Google Scholar] [CrossRef]
- Koldewey, H.J.; Martin-Smith, K.M. A global review of seahorse aquaculture. Aquaculture 2010, 302, 131–152. [Google Scholar] [CrossRef]
- Wilson, A.B.; Orr, J.W. The evolutionary origins of Syngnathidae: Pipefishes and seahorses. J. Fish Biol. 2011, 78, 1603–1623. [Google Scholar] [CrossRef]
- Rønnestad, I.; Yúfera, M.; Ueberschär, B.; Ribeiro, L.; Sæle, Ø.; Boglione, C. Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 2013, 5, S59–S98. [Google Scholar] [CrossRef]
- Ofélio, C.; Cohen, S.; Adriaens, D.; Radaelli, G.; Díaz, A.O. Histochemistry of goblet cells and micro-computed tomography to study the digestive system in the long-snouted seahorse Hippocampus guttulatus. Aquaculture 2019, 502, 400–409. [Google Scholar] [CrossRef]
- Palma, J.; Bureau, D.P.; Andrade, J.P. The effect of diet on ontogenic development of the digestive tract in juvenile reared long snout seahorse Hippocampus guttulatus. Fish Physiol. Biochem. 2014, 40, 739–750. [Google Scholar] [CrossRef]
- Roos, G.; Van Wassenbergh, S.; Aerts, P.; Herrel, A.; Adriaens, D. Effects of snout dimensions on the hydrodynamics of suction feeding in juvenile and adult seahorses. J. Theor. Biol. 2011, 269, 307–317. [Google Scholar] [CrossRef]
- Blanco, A.; Planas, M.; Moyano, F.J. Ontogeny of digestive enzymatic capacities in juvenile seahorses Hippocampus guttulatus fed on different live diets. Aquac. Res. 2016, 47, 3558–3569. [Google Scholar] [CrossRef]
- Palma, J.; Andrade, J.P.; Bureau, D.P. Growth, Reproductive performances, and brood quality of long snout seahorse, Hippocampus guttulatus, fed enriched shrimp diets. J. World Aquac. Soc. 2012, 43, 802–813. [Google Scholar] [CrossRef]
- Palma, J.; Lima, R.; Andrade, J.P.; Lança, M.J. Optimization of live prey enrichment media for rearing juvenile short-snouted seahorse, Hippocampus hippocampus. Fishes 2023, 8, 494. [Google Scholar] [CrossRef]
- Palma, J.; Stockdale, J.; Correia, M.; Andrade, J.P. Growth and survival of adult long snout seahorse (Hippocampus guttulatus) using frozen diets. Aquaculture 2008, 278, 55–59. [Google Scholar] [CrossRef]
- Woods, C.M.C.; Valentino, F. Frozen mysids as an alternative to live Artemia in culturing seahorses Hippocampus abdominalis. Aquac. Res. 2003, 34, 757–763. [Google Scholar] [CrossRef]
- Kitsos, M.S.; Tzomos, T.; Anagnostopoulou, L.; Koukouras, A. Diet composition of the seahorses, Hippocampus guttulatus Cuvier, 1829 and Hippocampus hippocampus (L., 1758) (Teleostei, Syngnathidae) in the Aegean Sea. J. Fish Biol. 2008, 72, 1259–1267. [Google Scholar] [CrossRef]
- Woods, C.M.C. Natural diet of the seahorse Hippocampus abdominalis. N. Z. J. Mar. Freshw. Res. 2002, 36, 655–660. [Google Scholar] [CrossRef]
- Yip, M.Y.; Lim, A.C.O.; Chong, V.C.; Lawson, J.M.; Foster, S.J. Food and feeding habits of the seahorses Hippocampus spinosissimus and Hippocampus trimaculatus (Malaysia). J. Mar. Biol. Assoc. UK 2014, 95, 1033–1040. [Google Scholar] [CrossRef]
- Burr, G.S.; Barrows, F.T.; Gaylord, G.; Wolters, W.R. Apparent digestibility of macro-nutrients and phosphorus in plant-derived ingredients for Atlantic salmon, Salmo salar and Arctic charr, Salvelinus alpinus. Aquac. Nut. 2011, 17, 570–577. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; The National Academic Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Booth, M.A.; Allan, G.L.; Smullen, R.P. Digestibility of common feed ingredients by juvenile mulloway Argyrosomus japonicus. Aquaculture 2013, 414–415, 140–148. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects; FAO Fisheries and Aquaculture Technical Paper No. 564; FAO: Rome, Italy, 2011; pp. 71–87. Available online: https://www.fao.org/4/ba0002e/ba0002e.pdf (accessed on 10 September 2024).
- FAO. The State of World Fisheries and Aquaculture. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Dalen, L.L.; Leonardi, G.; Burri, L. Developing sustainable, cost-effective and high-performance shrimp feed formulations containing low fish meal levels. Aquacult. Rep. 2022, 27, 101422. [Google Scholar] [CrossRef]
- Torrecillas, S.; Mompel, D.; Caballero, M.J.; Montero, D.; Merrifield, D.; Rodiles, A.; Robaina, L.; Zamorano, M.J.; Karalazos, V.; Kaushik, S.; et al. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 2017, 468, 386–398. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, S.S.; Ko, G.Y.; Song, J.W.; Oh, D.H.; Kim, J.D.; Kim, J.U.; Lee, K.J. Fish meal replacement by soybean meal in diets for Tiger puffer, Takifugu rubripes. Aquaculture 2011, 313, 165–170. [Google Scholar] [CrossRef]
- Silva-Carrillo, Y.; Hernández, C.; Hardy, R.W.; González-Rodríguez, B.; Castillo-Vargasmachuca, S. The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquaculture 2012, 364–365, 180–185. [Google Scholar] [CrossRef]
- Song, Z.; Li, H.; Wang, J.; Li, P.; Sun, Y.; Zhang, L. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture 2014, 426–427, 96–104. [Google Scholar] [CrossRef]
- Ye, J.; Liu, X.; Wang, Z.; Wang, K. Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder Paralichthys olivaceus. Aquac. Int. 2011, 19, 143–153. [Google Scholar] [CrossRef]
- Tantikitti, C.; Sangpong, W.; Chiavareesajja, S. Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer). Aquaculture 2005, 248, 41–50. [Google Scholar] [CrossRef]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; de Francesco, M.; Luzzana, U.; Harpaz, S. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, W.; Wu, Y.; Han, H.; Qin, J.; Wang, Y. Replacement of dietary fish meal by soybean meal supplemented with crystalline methionine for Japanese seabass (Lateolabrax japonicus). Aquacult. Res. 2016, 47, 243–252. [Google Scholar] [CrossRef]
- Li, Y.; Ai, Q.; Mai, K.; Xu, W.; Deng, J.; Cheng, Z. Comparison of high-protein soybean meal and commercial soybean meal partly replacing fish meal on the activities of digestive enzymes and aminotransferases in juvenile Japanese seabass, Lateolabrax japonicus (Cuvier, 1828). Aquacult. Res. 2014, 45, 1051–1060. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fournier, V.; Herault, M.; Lee, K.J. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418–419, 11–16. [Google Scholar] [CrossRef]
- Hansen, J.Ø.; Penn, M.; Øverland, M.; Shearer, K.D.; Krogdahl, Å.; Mydland, L.T.; Storebakken, T. High inclusion of partially deshelled and whole krill meals in diets for Atlantic salmon (Salmo salar). Aquaculture 2010, 310, 164–172. [Google Scholar] [CrossRef]
- Olsen, R.E.; Suontama, J.; Langmyhr, E.; Mundheim, H.; Ringo, E.; Melle, W.; Malde, M.K.; Hemre, G.I. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquacult. Nut. 2006, 12, 280–290. [Google Scholar] [CrossRef]
- Saleh, R.; Burri, L.; Benitez-Santana, T.; Turkmen, S.; Castro, P.; Izquierdo, M. Dietary krill meal inclusion contributes to better growth performance of gilthead seabream juveniles. Aquacult. Res. 2018, 49, 3289–3295. [Google Scholar] [CrossRef]
- Atkinson, A.; Siegel, V.; Pakhomov, E.A.; Jessopp, M.J.; Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. Part I 2009, 56, 727–740. [Google Scholar] [CrossRef]
- CCAMLR. Krill Fishery Report 2018; CCAMLR: Hobart, Australia, 2018; Available online: https://www.ccamlr.org/en/publications/fishery-reports-2018-0 (accessed on 26 November 2023).
- Ambasankar, K.; Dayal, J.S.; Vasagam, K.P.K.; Sivaramakrishnan, T.; Sandeep, K.P.; Panigrahi, A.; Raja, R.A.; Burri, L.; Vijayan, K.K. Growth, fatty acid composition, immune-related gene expression, histology and haematology indices of Penaeus vannamei fed graded levels of Antarctic krill meal at two different fishmeal concentrations. Aquaculture 2022, 553, 738069. [Google Scholar] [CrossRef]
- Fu, P.; Yue, H.M.; Ruan, R.; Ye, H.; Li, Z.; Li, C.J. Antartic krill meal replacement of fish meal on growth performance and fecundity of female Monopterus albus. Acta Bot. Sin. 2023, 47, 249–256. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Zhang, J.; Ma, X.; Zhong, H.; Peng, M.; He, H.; Hu, Y. Substitution of fish meal with krill meal in rice field eel (Monopterus albus) diets: Effects on growth, immunity, muscle textural quality, and expression of myogenic regulation factors. Anim. Feed Sci. Technol. 2021, 280, 115047. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, G.; Yang, Y.; Liu, C.; Liu, Y.; Mu, X.; Wang, X.; Hu, Y.; Song, H. Effects of Whole Fat or Defatted Antarctic Krill Meal Instead of Fish Meal on Growth Performance, Body Color and Serum Biochemical Indexes of Red-White Koi Carp (Cyprinus carpio var. koi). Chin. J. Anim. Nutr. 2021, 33, 6973–6981. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Jia, M.; Zhou, H.; Zhang, Y.; Xu, W.; Zhang, W.; Mai, K. Effects of dietary Antarctic krill Euphausia superba meal on growth performance and muscle quality of triploid rainbow trout Oncorhynchus mykiss farmed in sea water. Aquaculture 2019, 509, 72–84. [Google Scholar] [CrossRef]
- Wei, Y.; Shen, H.; Xu, W.; Pan, Y.; Chen, J.; Zhang, W.; Mai, K. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea. Aquaculture 2019, 512, 734281. [Google Scholar] [CrossRef]
- Xie, K.; Shi, Y.; He, H.; Zhong, L.; Wu, T.; Zhang, J.; Hu, Y.; Ma, X.; Li, Z. Effects of replacement of fish meal by Antarctic krill meal on growth performance, immune indexes and muscle quality of Pelteobagrus fulvidraco. J. Fish. China 2022, 46, 410–419. [Google Scholar] [CrossRef]
- Xu, H.G.; Zhao, M.; Zheng, K.K.; Wei, Y.L.; Yan, L.; Liang, M.Q. Antarctic krill (Euphausia superba) meal in the diets improved the reproductive performance of tongue sole (Cynoglossus semilaevis) broodstock. Aquacult. Nutr. 2017, 23, 1287–1295. [Google Scholar] [CrossRef]
- Torrecillas, S.; Montero, D.; Carvalho, M.; Benitez-Santana, T.; Izquierdo, M. Replacement of fish meal by Antarctic krill meal in diets for European sea bass Dicentrarchus labrax: Growth performance, feed utilization and liver lipid metabolism. Aquaculture 2021, 545, 737166. [Google Scholar] [CrossRef]
- Lourie, S. Measuring Seahorses; Project Seahorse Technical Report No.4, Version 1.0; Project Seahorse, Fisheries Centre; University of British Columbia: Vancouver, BC, Canada, 2003; ISBN 0-89164-169-6. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, Agricultural Chemicals; Contaminants Drugs, 16th ed.; AOAC International: Arlington, VA, USA, 1995; Volume I. [Google Scholar]
- Atkinson, J.L.; Hilton, J.W.; Slinger, S.J. Evaluation of Acid-Insoluble Ash as an Indicator of Feed Digestibility in Rainbow Trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1984, 41, 1384–1386. [Google Scholar] [CrossRef]
- Lee, S. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture 2002, 207, 79–95. [Google Scholar] [CrossRef]
- Allan, G.L.; Parkinson, S.; Booth, M.A.; Stone, D.A.J.; Rowland, S.J.; Frances, J.; Warner-Smith, R. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: I. Digestibility of alternative ingredients. Aquaculture 2000, 186, 293–310. [Google Scholar] [CrossRef]
- Rawles, S.D.; Fuller, A.; Green, B.W.; Abernathy, J.W.; Straus, D.L.; Deshotel, M.B.; McEntire, M.E.; Huskey, G.; Rosentrater, K.A.; Beck, B.H.; et al. Growth, body composition, and survival of juvenile white bass (Morone chrysops) when dietary fish meal is partially or totally replaced by soybean meal, poultry by-product meal, an all-plant protein blend or a commercial plant-animal protein blend. Aquacult. Rep. 2022, 26, 101307. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Covès, D.; Dutto, G.; Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 2004, 230, 391–404. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, Z.; Chen, N.; Xie, R.; Zhang, H.; Li, S. Effect of dietary fish meal replacement with spray dried chicken plasma on growth, feed utilization and antioxidant capacity of largemouth bass (Micropterus salmoides). Aquacult. Rep. 2022, 24, 101112. [Google Scholar] [CrossRef]
- Liao, H.; Liu, P.; Deng, Y.; Zhang, W.; Pan, C.; Jia, Y.; Long, F.; Tang, H. Feeding effects of low-level fish meal replacement by algal meals of Schizochytrium limacinum and Nannochloropsis salina on largemouth bass (Micropterus salmoides). Aquaculture 2022, 557, 738311. [Google Scholar] [CrossRef]
- Arriaga-Hernández, D.; Hernández, C.; Martínez-Montaño, E.; Ibarra-Castro, L.; Lizárraga-Velázquez, E.; Leyva-López, N.; Chávez-Sánchez, M.C. Fish meal replacement by soybean products in aquaculture feeds for white snook, Centropomus viridis: Effect on growth, diet digestibility, and digestive capacity. Aquaculture 2021, 530, 735823. [Google Scholar] [CrossRef]
- Slawski, H.; Nagel, F.; Wysujack, K.; Balke, D.T.; Franz, P.; Schulz, C. Total fish meal replacement with canola protein isolate in diets fed to rainbow trout (Oncorhynchus mykiss W.). Aquacult. Nut. 2013, 19, 535–542. [Google Scholar] [CrossRef]
- Brinker, A.; Reiter, R. Fish meal replacement by plant protein substitution and guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality. Aquaculture 2011, 310, 350–360. [Google Scholar] [CrossRef]
- Stuart, K.R.; Barrows, F.T.; Silbernagel, C.; Alfrey, K.; Rotstein, D.; Drawbridge, M.A. Complete replacement of fish oil and fish meal in the diet of juvenile California yellowtail Seriola dorsalis. Aquacult. Res. 2021, 52, 655–665. [Google Scholar] [CrossRef]
- Abdelghany, A.E. Partial and complete replacement of fish meal with gambusia meal in diets for red tilapia ‘Oreochromis niloticus × O. mossambicus’. Aquacult. Nut. 2003, 9, 145–154. [Google Scholar] [CrossRef]
- Bruni, L.; Belghit, I.; Lock, E.J.; Secci, G.; Taiti, C.; Parisi, G. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). Sci. Food Agric. 2020, 100, 1038–1047. [Google Scholar] [CrossRef]
- Gómez-Requeni, P.; Mingarro, M.; Calduch-Giner, J.A.; Médale, F.; Martin, S.A.M.; Houlihan, D.F.; Kaushik, S.; Pérez-Sánchez, J. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 2004, 232, 493–510. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, K.W.; Lee, S.M. Apparent digestibility coefficients of animal feed ingredients for olive flounder (Paralichthys olivaceus). Fish. Aquat. Sci. 2022, 25, 537–548. [Google Scholar] [CrossRef]
- Hanley, F. The digestibility of foodstuffs and the effects of feeding selectivity on digestibility determinations in tilapia, Oreochromis niloticus (L). Aquaculture 1987, 66, 163–179. [Google Scholar] [CrossRef]
- Guillaume, J.; Choubert, G. Digestive physiology and nutrient digestibility in fishes. In Nutrition and Feeding of Fish and Crustaceans; Guillaume, J., Kaushik, S., Berbot, P., Métailler, R., Eds.; Springer-Praxis: Chichester, UK, 2001; pp. 27–58. ISBN 1852332417/9781852332419. [Google Scholar]
- Le, H.T.M.D.; Shao, X.; Krogdahl, Å.; Kortner, T.M.; Lein, I.; Kousoulaki, K.; Lie, K.K.; Sæle, Ø. Intestinal Function of the Stomachless Fish, Ballan Wrasse (Labrus bergylta). Front. Mar. Sci. 2019, 6, 140. [Google Scholar] [CrossRef]
- Portz, L.; Cyrino, P.J.E. Digestibility of nutrients and amino acids of different protein sources in practical diets by largemouth bass Micropterus salmoides (Lacepédè, 1802). Aquacult. Res. 2004, 35, 312–320. [Google Scholar] [CrossRef]
- Small, B.C.; Austic, R.E.; Joseph, H.S., Jr. Amino acid availability of four practical feed ingredients fed to striped bass Morone saxatilis. J. World Aquac. Soc. 1999, 30, 58–64. [Google Scholar] [CrossRef]
- Stone, D.A.J.; Allan, G.L.; Parkinson, S.; Frances, J. Replacement of fishmeal in diets for Australian silver perch Bidyanus bidyanus (Mitchell). II. Effects of cooking on digestibility of a practical diet containing different starch products. Aquacult. Res. 2003, 34, 195–204. [Google Scholar] [CrossRef]
- Kono, M.; Shimizu, C.; Matsui, T. Effect of Chitin, Chitosan, and Cellulose as Diet Supplements on the Growth of Cultured Fish. Bull. Jpn. Soc. Sci. Fish. 1987, 53, 125. [Google Scholar] [CrossRef]
- Pascon, G.; Cardinaletti, G.; Daniso, E.; Bruni, L.; Messina, M.; Parisi, G.; Tulli, F. Effect of dietary chitin on growth performance, nutrient utilization, and metabolic response in rainbow trout (Oncorhynchus mykiss). Aquac. Rep. 2024, 37, 102244. [Google Scholar] [CrossRef]
- Bai, S.C.; Choi, S.M.; Kim, K.W.; Wang, X.J. Apparent protein and phosphorus digestibilities of five different dietary protein sources in Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquacult. Res. 2001, 32, 99–105. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish; Committee on Animal Nutrition, Board on Agricultural National R.C. Academy Press: Washington, DC, USA, 1993; ISBN 0 309 59629 7. [Google Scholar]
- Lall, S.P. Digestibility, metabolism and excretion of dietary phosphorus in fish. In Nutritional Strategies and Aquaculture Waste, Proceedings of the 1st International Symposium on Nutritional Strategies in Management of Aquaculture Waste; Cowey, C.B., Cho, C.Y., Eds.; University of Guelph: Guelph, ON, Canada, 1991; pp. 21–36. ISBN 0-88955-294-0. [Google Scholar]
- Ogino, C.; Takeuchi, L.; Taheda, H.; Watanabe, T. Availability of dietary phosphorus in carp and rainbow trout. Bull. Jpn. Soc. Sci. Fish. 1979, 49, 1527–1532. [Google Scholar] [CrossRef]
- Riche, M.; Brown, P.B. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 1996, 142, 269–282. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Dong, F.M.; Rathbone, C.K.; Hardy, R.W. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 1998, 159, 177–202. [Google Scholar] [CrossRef]
- Morales, G.A.; Azcuy, R.L.; Casaretto, M.E.; Márquez, L.; Hernández, A.J.; Gómez, F.; Koppe, W.; Mereu, A. Effect of different inorganic phosphorus sources on growth performance, digestibility, retention efficiency and discharge of nutrients in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 495, 568–574. [Google Scholar] [CrossRef]
- Yone, Y.; Toshima, N. The utilization of phosphorus in fish meal by carp Cyprinus carpio and black sea bream Mylio macrocephalus. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 753–756. [Google Scholar] [CrossRef]
- Shcherbina, M.A.; Gamygin, E.A.; Sal’kova, I.A. Availability of phosphorus from main dietary sources in common carp, Cyprinus carpio L. Živočišná Výroba 1997, 42, 125–130. [Google Scholar]
- Watanabe, T.; Takeuchi, T.; Murakami, A.; Ogino, C. Availability to Tilapia nilotica of phosphorus in whitefish meal. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 897–900. [Google Scholar] [CrossRef]
- Miranda, E.C.; Pezzato, A.C.; Pezzato, L.E.; Furuya, W.M. Apparent phosphorus availability in food for the Nile tilapia (Oreochromis niloticus). Acta Sci. Anim. Sci. 2000, 22, 669–675. [Google Scholar]
- Furuya, W.M.; Pezzato, L.E.; de Miranda, E.C.; Furuya, V.R.B.; Barros, M.M. Apparent digestibility coefficients of energy and nutrients of some ingredients for Nile tilapia, Oreochromis niloticus (L.) (Thai strain). Acta Sci. Anim. Sci. 2001, 23, 465–469. [Google Scholar]
- Köprücü, K.; Özdemir, Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 2005, 250, 308–316. [Google Scholar] [CrossRef]
- Dias, J.; Yúfera, M.; Valente, L.M.P.; Rema, P. Feed transit and apparent protein, phosphorus and energy digestibility of practical feed ingredients by Senegalese sole (Solea senegalensis). Aquaculture 2010, 302, 94–99. [Google Scholar] [CrossRef]
- Sugiura, S.H. Digestion and Absorption of Dietary Phosphorus in Fish. Fishes 2024, 9, 324. [Google Scholar] [CrossRef]
- Bentov, S.; Aflalo, E.D.; Tynyakov, J.; Glazer, L.; Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 2016, 6, 22118. [Google Scholar] [CrossRef]
Ingredient (g/100 g) | Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 |
---|---|---|---|---|---|
Fish meal, herring | 0 | 45 | 25 | 25 | 25 |
Krill meal | 0 | 0 | 20 | 0 | 10 |
Cyclop-eeze | 0 | 0 | 0 | 20 | 10 |
Soy protein concentrate | 0 | 10 | 10 | 10 | 10 |
Starch, raw | 95 | 0 | 0 | 0 | 0 |
Wheat flour | 0 | 23.5 | 24 | 26 | 25 |
Wheat gluten | 0 | 10 | 10 | 10 | 10 |
Krill oil | 0 | 6.5 | 6 | 4 | 5 |
Vitamin premix1 | 1 | 1 | 1 | 1 | 1 |
Mineral premix2 | 1 | 1 | 1 | 1 | 1 |
CaHPO4 | 2 | 2 | 2 | 2 | 2 |
Marker (Cr2O3) | 1 | 1 | 1 | 1 | 1 |
Carophyl pink | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Analyzed composition (g/100 g) | |||||
Dry matter | 90.5 | 91.1 | 91.1 | 90.9 | 91.0 |
Crude Protein | 0 | 46.7 | 45.1 | 43.3 | 44.2 |
Lipid | 0 | 11.8 | 12.3 | 14.3 | 13.3 |
Ash | 2.5 | 8.7 | 8.6 | 6.9 | 7.7 |
Gross energy (MJ/kg) | 16.7 | 16.0 | 14.9 | 13.5 | 14.2 |
Diets | Shrimp + D1 | Shrimp + D2 | Shrimp + D3 | Shrimp + D4 | Shrimp + D5 |
---|---|---|---|---|---|
% Dry Matter | 96.8 | 96.9 | 95.7 | 93.4 | 97.2 |
Ash % | 20.0 | 20.4 | 20.3 | 20.5 | 20.1 |
Lipid % | 5.4 | 5.6 | 5.7 | 5.5 | 5.7 |
Protein % | 69.0 | 73.2 | 72.4 | 74.2 | 72.5 |
Phosphorus % | 1.1 | 1.2 | 1.2 | 1.2 | 1.2 |
Gross Energy (kJ/g) | 17.9 | 18.6 | 18.8 | 19.2 | 18.5 |
Shrimp + D1 | Shrimp + D2 | Shrimp + D3 | Shrimp + D4 | Shrimp + D5 | |
---|---|---|---|---|---|
Initial length (cm) | 15.9 ± 0.3 a | 15.7 ± 0.3 a | 15.7 ± 0.2 a | 15.8 ± 0.2 a | 15.9 ± 0.3 a |
Final length (cm) | 17.4 ± 0.5 a | 17.5 ± 0.4 a | 17.7 ± 0.7 a | 17.5 ± 0.7 a | 17.7 ± 0.6 a |
Initial weight (g) | 9.2 ± 0.6 a | 9.2 ± 0.5 a | 9.3 ± 0.4 a | 9.3 ± 0.5 a | 9.2 ± 0.7 a |
Final weight (g) | 13.2 ± 1.1 b | 14.9 ± 1.3 a | 15.3 ± 1.4 a | 15.4 ± 1.6 a | 15.2 ± 1.5 a |
WG (g/fish) | 0.43 ± 0.21 b | 0.62 ± 0.2 a | 0.65 ± 0.18 a | 0.66 ± 0.24 a | 0.65 ± 0.27 a |
TGC | 0.07 ± 0.02 b | 0.10 ± 0.01 a | 0.11 ± 0.01 a | 0.11 ± 0.02 a | 0.11 ± 0.02 a |
Initial CF | 0.23 ± 0.02 a | 0.24 ± 0.02 a | 0.24 ± 0.03 a | 0.24 ± 0.02 a | 0.23 ± 0.03 a |
Final CF | 0.25 ± 0.05 a | 0.28 ± 0.04 a | 0.28 ± 0.06 a | 0.29 ± 0.05 a | 0.27 ± 0.06 a |
FCR | 3.8 ± 0.5 b | 2.7 ± 0.3 a | 2.6 ± 0.5 a | 2.5 ± 0.5 a | 2.6 ± 0.4 a |
% survival | 100 | 100 | 100 | 100 | 100 |
Shrimp + D1 | Shrimp + D2 | Shrimp + D3 | Shrimp + D4 | Shrimp + D5 | |
---|---|---|---|---|---|
Dry Matter | 46.1 ± 0.7 b | 72.1 ± 1.1 a | 72.3 ± 2.6 a | 71.5 ± 2.6 a | 72.2 ± 0.5 a |
Lipid | 73.3 ± 0 b | 85.5 ± 0.7 a | 85 ± 2.9 a | 83.9 ± 1.1 a | 83.9 ± 1.6 a |
Protein | 89.8 ± 0.3 b | 95.8 ± 0.2 a | 95.2 ± 0.5 a | 95.6 ± 0.4 a | 95.3 ± 0.1 a |
Energy | 82 ± 0.5 b | 92.2 ± 0.4 a | 90.5 ± 0.6 a | 91.5 ± 0.5 a | 90.6 ± 0.3 a |
Phosphorus | 28.7 ± 0.1 b | 64.4 ± 1.7 a | 59.1 ± 2.7 a | 63 ± 3.2 a | 61.6 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, J.; Correia, M.; Andrade, J.P.; Bureau, D. Replacement of Fish Meal with Crustacean Meals in Diets for Long-Snouted Seahorse, Hippocampus guttulatus: Digestibility and Growth Performance. Fishes 2024, 9, 383. https://doi.org/10.3390/fishes9100383
Palma J, Correia M, Andrade JP, Bureau D. Replacement of Fish Meal with Crustacean Meals in Diets for Long-Snouted Seahorse, Hippocampus guttulatus: Digestibility and Growth Performance. Fishes. 2024; 9(10):383. https://doi.org/10.3390/fishes9100383
Chicago/Turabian StylePalma, Jorge, Miguel Correia, José Pedro Andrade, and Dominique Bureau. 2024. "Replacement of Fish Meal with Crustacean Meals in Diets for Long-Snouted Seahorse, Hippocampus guttulatus: Digestibility and Growth Performance" Fishes 9, no. 10: 383. https://doi.org/10.3390/fishes9100383
APA StylePalma, J., Correia, M., Andrade, J. P., & Bureau, D. (2024). Replacement of Fish Meal with Crustacean Meals in Diets for Long-Snouted Seahorse, Hippocampus guttulatus: Digestibility and Growth Performance. Fishes, 9(10), 383. https://doi.org/10.3390/fishes9100383