A Study on the Catch Losses and Mesh Selectivity Related to the Attachment of Marine Mammal Bycatch Reduction Devices on Midwater Trawl Gear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Fishing Gear with Bycatch Reduction Device
2.2. Fishing Area
2.3. Fishing Experiment with Test Fishing Gear with Bycatch Reduction Device
2.4. Data Analysis
3. Results
3.1. The Composition of Body Length from Catch
3.2. The Relationship between Body Length and Maximum Girth
- The relationship between mantle length (ML) and maximum girth (G) for CFS:
- The relationship between fork length (FL) and maximum girth (G) for SS:
3.3. The Mesh Selectivity of Bycatch Reduction Device
4. Discussion
4.1. The Importance of Caught Fish Species
4.2. The Efficiency of Bycatch Reduction Device
4.2.1. Selectivity According to the Tilt Angle of the BRD
4.2.2. Selectivity According to the Mesh Size of the BRD
4.2.3. Selectivity According to the Behavioral and Biological Characteristics of Fish Schools
4.3. The Masking Effect between Codend and Covernet
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, A.J. Bycatch and depredation. In Marine Mammal Research: Conservation beyond Crisis; Reynolds, J.E., Perrin, W.F., Reeves, R.R., Montgomery, S., Ragen, T.J., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; pp. 5–17. [Google Scholar]
- Reeves, R.R.; McClellan, K.; Werner, T.B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 2013, 20, 71–97. [Google Scholar] [CrossRef]
- Lent, R.; Squires, D. Reducing marine mammal bycatch in global fisheries: An economics approach. Deep-Sea Res. Part II Trop. Stud. Oceanogr. 2017, 140, 268–277. [Google Scholar] [CrossRef]
- Félix, F.; Mangel, J.C.; Alfaro-Shigueto, J.; Cocas, L.A.; Guerra, J.; Pérez-Avarez, M.J.; Sepúlveda, M. Challenges and opportunities for the conservation of marine mammals in the Southeast Pacific with the entry into force the US Marine Mammal Protection Act. Reg. Stud. Mar. Sci. 2021, 48, 102036. [Google Scholar] [CrossRef]
- Barlow, J.; Cameron, G.A. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gill net fishery. Mar. Mammal Sci. 2003, 19, 265–283. [Google Scholar] [CrossRef]
- Laverick, S.; Douglas, L.; Childerhouse, S.; Burns, D. Entanglement of Cetaceans in Pot/Trap Lines and Set Nets and a Review of Potential Mitigation Methods. Blue Planet Marine Report to Department of Conservation, New Zealand. Available online: https://www.doc.govt.nz/our-work/conservation-services-programme/csp-reports/2016-17/entanglement-of-cetaceans-in-pot-trap-lines-and-set-nets-and-a-review-of-potential-mitigation-methods/ (accessed on 5 June 2017).
- Leaper, R.C.; Calderan, S. Review of Methods Used to Reduce Risks of Cetacean Bycatch and Entanglements; CMS Technical Series Publication No. 38; UNEP/Convention on the Conservation of Migratory Species of Wild Animals (CMS) Secretariat: Bonn, Germany, 2018; 76p. [Google Scholar]
- Hamilton, S.; Baker, G.B. Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: Lessons learnt and future directions. Rev. Fish Biol. Fish. 2019, 29, 223–247. [Google Scholar] [CrossRef]
- Choi, K.S.; Jo, H.S.; Kang, M. Investigation on bycatch reduction methods of marine mammals for fishing with gillnet, trap, trawl, stow net and set net. J. Korea Soc. Fish. Technol. 2023, 59, 279–289. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, H.Y.; Song, D.H. The opening efficiency difference of guide net in finless porpoise escape device by the type of extension net in stow net. J. Korean Soc. Fish. Ocean Technol. 2021, 57, 271–282. [Google Scholar] [CrossRef]
- Lee, G.H.; Song, D.H.; Kim, H.Y. Characteristics of catch losses in stow nets with finless porpoise excluder devices and a strategy to reduce them. Reg. Stud. Mar. Sci. 2022, 50, 102–147. [Google Scholar] [CrossRef]
- Boopendranath, M.R.; Pravin, P. Technologies for responsible fishing-BRDs and TEDs. In Proceedings of the Conference: International Symposium on Marine Ecosystems-Challenges and Strategies, Cochin, India, 9–12 February 2009; pp. 9–12. [Google Scholar]
- Lucchetti, A.; Punzo, E.; Virgili, M. Flexible Turtle Excluder Device (TED): An effective tool for Mediterranean coastal multispecies bottom trawl fisheries. Aquat. Living Resour. 2016, 29, 201. [Google Scholar] [CrossRef]
- Vasapollo, C.; Virgili, M.; Petetta, A.; Bargione, G.; Sala, A.; Lucchetti, A. Bottom trawl catch comparison in the Mediterranean Sea: Flexible Turtle Excluder Device (TED) vs. traditional gear. PLoS ONE 2019, 14, e0216023. [Google Scholar] [CrossRef]
- Jung, J.M.; Aizawa, I.; Hoshina, S.; Hirose, M.; Matsushita, Y. Discarded size ranges for Dentex tumifrons and Lepidotrigla spp. In offshore pair-trawl fishery in the East China Sea estimated from trawl selectivity experiment and landing site survey. Nippon Suisan Gakkaishi 2021, 87, 243–254. [Google Scholar] [CrossRef]
- Jung, J.M.; Matsushita, Y.; Hirose, M.; Sakai, T.; Kawauchi, Y.; Yoda, M. Catch difference of groundfishes between two survey trawl nets having differing headrope and groundrope configurations in the East China Sea. Fish. Sci. 2021, 87, 263–270. [Google Scholar] [CrossRef]
- Dolman, S.J.; Breen, C.N.; Brakes, P.; Butterworth, A.; Allen, S.J. The individual welfare concerns for small cetaceans from two bycatch mitigation techniques. Mar. Policy 2022, 143, 105126. [Google Scholar] [CrossRef]
- Park, K.J.; An, Y.R.; Kim, Z.G.; Choi, S.G.; Moon, D.Y.; Park, J.E. Abundance estimates of the Minke whale Balaenoptera acutorostrata, in the East Sea, Korea. Korean J. Fish. Aquat. Sci. 2009, 42, 642–649. [Google Scholar]
- Lee, D.; An, Y.R.; Park, K.J.; Kim, H.W.; Lee, D.; Joo, H.T.; Oh, Y.G.; Kim, S.M.; Kang, C.K.; Lee, S.H. Spartial distribution of common Mike whale (Balaenoptera acutorostrata) as an indication of a biological hotspot in the East Sea. Deep-Sea Res. Part II 2017, 143, 91–99. [Google Scholar] [CrossRef]
- Sohn, M.H.; Park, J.H.; Yoon, B.S.; Choi, Y.M.; Kim, J.W. Species composition and community structure of demersal fish caught by a Danish seine fishery in the coastal waters of the middle and southern East Sea, Korea. Korean J. Fish. Aquat. Sci. 2015, 48, 259–541. [Google Scholar] [CrossRef]
- Tokai, T.; Omoto, S.; Matuda, K. Mesh selectivity of unmarketable trash fish by a small trawl fishery in the Seto Inland Sea. Nippon Suisan Gakkaishi 1993, 60, 347–352. [Google Scholar] [CrossRef]
- Matsushita, Y.; Inoue, Y. Variation of square mesh codend selectivity for walleye pollock Theragra chalcogramma with respect to difference in body shape. Nippon Suisan Gakkaishi 1997, 63, 23–29. [Google Scholar] [CrossRef]
- Liang, Z.; Horikawa, H.; Tokimura, M.; Tokai, T. Effect of cross-sectional shape of fish body on mesh selectivity of trawl codend. Nippon Suisan Gakkaishi 1999, 65, 441–447. [Google Scholar] [CrossRef]
- Fryer, R.J. A model of between-haul variation in selectivity. ICES J. Mar. Sci. 1991, 48, 281–290. [Google Scholar] [CrossRef]
- Kinacigil, H.T.; Ìlkyaz, A.T.; Akyol, O.; Metin, G.; Çira, E.; Ayaz, A. Growth parameters of red mullet (Mullus barbatus L., 1758) and seasonal cod-end selectivity of traditional bottom trawl nets in Izmir Bay (Aegean Sea). Acta Adriat. 2001, 42, 113–123. [Google Scholar]
- Özbilgin, H.; Tosunoglu, Z.; Tokac, A.; Metin, G. Seasonal variation in the trawl codend selectivity of red mullet (Mullus barbatus). Turk. J. Fish. Aquat. Sci. 2011, 11, 191–198. [Google Scholar] [CrossRef]
- Bahamon, N.; Sardà, F.; Suuronen, P. Improvement of trawl selectivity in the NW Mediterranean demersal fishery by using a 40 mm square mesh codend. Fish. Res. 2006, 81, 15–25. [Google Scholar] [CrossRef]
- Jørgensen, T.; Ingólfsson, Ò.A.; Graham, N.; Isaksen, B. Size selection of cod by rigid grids-Is anything gained compared to diamond mesh codends only? Fish. Res. 2006, 79, 337–348. [Google Scholar] [CrossRef]
- Bak-Jensen, Z.; Herrmann, B.; Santos, J.; Jacques, N.; Melli, V.; Feekings, P. Fixed mesh shape reduces variability in codend size selection. Can. J. Fish. Aquat. Sci. 2022, 79, 1820–1829. [Google Scholar] [CrossRef]
- Brooks, M.E.; Melli, V.; Savina, E.; Santos, J.; Millar, R.; O’Neill, F.G.; Veiga-Malta, T.; Krag, L.A.; Feekings, J.P. Introducong selfisher: Open source software for statistical analyses of fishing gear selectivity. Can. J. Fish. Aquat. Sci. 2022, 79, 1189–1197. [Google Scholar] [CrossRef]
- Millar, R.B.; Walsh, S.J. Analysis of trawl selectivity studies with an application to trouser trawls. Fish. Res. 1992, 13, 205–220. [Google Scholar] [CrossRef]
- Wileman, D.A.; Ferro, R.S.T.; Fonteyne, R.; Millar, R.B. Manual of methods of measuring the selectivity of towed fishing gears. ICES Coop. Res. Rep. 1996, 215, 1–216. [Google Scholar]
- Millar, R.B.; Fryer, R.J. Estimating the size-selection curves of towed gears, traps, nets and hooks. Rev. Fish Biol. Fish. 1999, 9, 89–116. [Google Scholar] [CrossRef]
- Erzini, K.; Gonçalves, J.M.; Bentes, L.; Moutopoulos, D.K.; Casal, J.A.H.; Soriguer, M.C.; Puente, E.; Errazkin, L.A.; Stergiou, K.I. Size selectivity of trammel nets in southern European small-scale fisheries. Fish. Res. 2006, 79, 183–201. [Google Scholar] [CrossRef]
- National Institute of Fisheries Science (NIFS). Catch, Fishing Effort, and Length Distribution Data by Year, Sea Block Number, Fishery, and Species; NIFS: Busan, Republic of Korea, 2020.
- National Institute of Fisheries Science (NIFS). Fishing Trends and Sock Status Assessments for Korean Coast Major Fisheries; NIFS: Busan, Republic of Korea, 2020.
- Choi, J.H.; Lee, J.B.; Yoon, S.C.; Kim, D.H.A. Bioeconomic analysis of the sandfish (Arctoscopus japonicus) management policies of the Eastern Sea Danish fishery in Korea. Sustainability 2021, 13, 7868. [Google Scholar] [CrossRef]
- Mai, N.T. Quality index method for freshness assessment of chilled Japanese flying squid (Todarodes pacificus). Asian Food Sci. J. 2021, 20, 110–121. [Google Scholar] [CrossRef]
- Park, H.S.; Jin, S.; Kim, S.R.; Kim, J.J.; Baeck, G.W. Diet composition of common flying squid Todarodes pacificus in the coastal waters of East Sea, Korea. Korean J. Fish. Aquat. Sci. 2021, 54, 1052–1057. [Google Scholar] [CrossRef]
- Lee, S.I.; Kim, D.H.; Song, S.H.; Zhang, C.I. Analysis of the effects of minimum capture size limits on Changes in the biomass and fishing profits of sandfish, Arctoscopus japonicus, in Korean Waters. Ocean Sci. J. 2024, 59, 4. [Google Scholar] [CrossRef]
- Lordan, C.; Burnell, G.M.; Cross, T.F. The diet and ecological importance of Illex coindetii and Todaropsis eblanae (Cephalopoda: Ommastrephidae) in Irish waters. Afr. J. Mar. Sci. 1998, 20, 153–163. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Kim, H.W.; Yoo, J.T.; Sohn, H. Diet of the Pacific white-sided dolphin Lagenorhynchus obliquidens in the East Sea. Korean Soc. Fish. Aquat. Sci. 2019, 52, 740–744, (In Korean with English abstract). [Google Scholar] [CrossRef]
- An, Y.S.; Jang, C.S.; Lee, M.K. Development of the automatic hauling operation system by three boats for Anchovy boat seine. J. Korea Soc. Fish. Technol. 2005, 41, 147–155. [Google Scholar]
- Kim, I.O.; An, H.C.; Shin, J.K.; Cha, B.J. The development of basic structure of jellyfish separator system for a trawl net. J. Korea Soc. Fish. Technol. 2008, 44, 99–111, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Cho, S.K.; An, H.C.; Shin, J.K.; Yang, Y.S.; Park, C.D.; Lee, J.H. Study on the survival rate of fishes escaped from trawl net. J. Korea Soc. Fish. Technol. 2006, 42, 69–77. [Google Scholar]
- Park, C.D.; Kim, I.O.; Lee, K.H.; Lee, G.H.; Park, S.W. The performance of a wedge type jellyfish excluder device inserted in a trawl net. J. Korea Soc. Fish. Technol. 2010, 46, 302–312. [Google Scholar] [CrossRef]
- Cha, B.J.; Roth, R.; Cho, S.K. Model test to understand shape change of BRD (Bycatch Reduction Device) for demersal trawl of Argentina. J. Korea Soc. Fish. Technol. 2015, 51, 312–320. [Google Scholar] [CrossRef]
- Jo, M.J.; Kim, J.J.; Yang, J.H.; Kim, C.S.; Kang, S.K. Changes in the ecological characteristics of Todarodes pacificus associated with long-term catch various in jigging fishery. Korean J. Fish. Aquat. Sci. 2019, 52, 685–695. [Google Scholar] [CrossRef]
- An, H.C.; Lee, K.H.; Lee, S.I.; Park, H.H.; Bae, B.S.; Yang, J.H.; Kim, J.B. Behaviour habitats of sailfin sandfish, Arctoscopus japonicus approaching toward the eastern coastal waters of Korea in the spawning season. Korean Soc. Fish. Mar. Sci. Educ. 2011, 23, 35–42. [Google Scholar]
- Lawson, D.D.; DeAlteris, J.T. Evaluation of a Tutle Excluder Device (TED) in the Scallop Trawl Fisheriy of the Mid-Atlantic; NOAA Contract No. EN-133F-05-SE-6561, Final Report; 2006; 145p.
- Price, B.; Gearhart, J. Evaluations of Turtle Excluder Device (TED) Performance in the US Southeast Atlantic and Gulf of Mexico Skimmer Trawl Fisheries; NOAA Technical Memorandum NMFS-SEFSC-615; National Marine Fisheries Service: Beaufort, NC, USA; Pascagoula, MS, USA, 2011; 15p. [Google Scholar]
- Liu, W.; Tang, H.; You, X.; Dong, S.; Xu, L.; Hu, F. Effect of cutting ratio and catch on drag characteristics and fluttering motions of midwater trawl codend. J. Mar. Sci. Eng. 2021, 9, 256. [Google Scholar] [CrossRef]
- Petrakis, G.; Stergiou, K.I. Size selectivity of diamond and square mesh codends for four commercial Mediterranean fish species. ICES J. Mar. Sci. 1997, 54, 13–23. [Google Scholar] [CrossRef]
- Kim, J.J.; Stockhausen, W.; Kim, S.; Cho, Y.K.; Seo, G.H.; Lee, J.S. Understanding interannual variability in the distribution of, and transport processes affecting, the early life stages of Todarodes pacificus using behavioral-hydrodynamic modeling approaches. Prog. Oceanogr. 2015, 138, 571–583. [Google Scholar] [CrossRef]
- Glass, C.W.; Sarno, B.; Morris, G.D.; Milliken, H.O.; Carr, H.A. Bycatch reduction in Massachusetts inshore squid (Loligo pealeii) trawl fisheries. Mar. Technol. Soc. J. 1999, 33, 35–42. [Google Scholar] [CrossRef]
- Kang, M.; Fajaryanti, R.; Yoon, S.; Hwang, B. Acoustic Characteristic of Sailfin Sandfish (Arctoscopus japonicus) in Dokdo, Republic of Korea. Ocean Sci. J. 2020, 55, 289–301. [Google Scholar] [CrossRef]
- Ferro, R.S.T.; Özbilgin, H.; Breen, M. The potential for optimizing yield from a haddock trawl fishery using seasonal changes in selectivity, population structure and fish condition. Fish. Res. 2008, 94, 151–159. [Google Scholar] [CrossRef]
- Cha, B.Y.; Kim, J.I.; Kim, J.Y.; Huh, S.H. Spawning ecology and feeding habits of Maurolicus muelleri. Korean J. Ichthyol. 1998, 10, 176–183. (In Korean) [Google Scholar]
- Im, M.Y.; Park, J.H.; Jang, S.H.; Kim, J.K. First record of Polumetme elongata (Stomiiformes: Phosichthyidae) from the Southern Yellow Sea and Jejudo Island, Korea. Korean J. Ichthyol. 2023, 35, 121–128. [Google Scholar] [CrossRef]
- Hannah, R.W.; Jones, S.A. Effectiveness of bycatch reduction devices (BRDs) in the ocean shrimp (Pandalus jordani) trawl fishery. Fish. Res. 2007, 85, 217–225. [Google Scholar] [CrossRef]
- Broadhurst, M.K.; Miller, R.B. Improving the performance of a generic fisheye as a secondary bycatch reduction device in a south-eastern Australian penaeid trawl fishery. Fish. Res. 2023, 259, 106562. [Google Scholar] [CrossRef]
- Aoyama, T. Selective action of trawl nets on fish. Nippon Suisan Gakkaishi 1965, 31, 848–861. (In Japanese) [Google Scholar] [CrossRef]
- Xu, X.; Millar, R.B. Estimation of trap selectivity for male snow crab (Chionoecetes opilio) using the SELECT modeling approach with unequal effort data. Can. J. Fish. Aquat. Sci. 1993, 50, 2485–2490. [Google Scholar] [CrossRef]
- O’Neill, F.G.; Kynoch, R.J. The effect of cover mesh sze and cod-end catch size on cod-end selectivity. Fish. Res. 1996, 28, 291–303. [Google Scholar] [CrossRef]
- He, P. Selectivity of large mesh trawl codends in the Gulf of Marine: I. Comparison of square and diamond mesh. Fish. Res. 2007, 83, 44–59. [Google Scholar] [CrossRef]
- Broadhurst, M.K.; Miller, R.B. Square-mesh codend circumference and selectivity. ICES J. Mar. Sci. 2009, 66, 566–572. [Google Scholar] [CrossRef]
- Sala, A.; Lucchetti, A. Effect of mesh size and codend circumference on selectivity in the Mediterranean demersal trawl fisheries. Fish. Res. 2011, 110, 252–258. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Larsen, R.B. Effect of codend mesh size increases on the size selectivity of commercial species in a small mesh bottom trawl fishery. J. Appl. Ichthyol. 2013, 29, 762–768. [Google Scholar] [CrossRef]
- Park, C.D.; Park, H.H.; Kim, J.N. Size selectivity of a shrimp beam trawl for the Southern rough shrimp Trachysalambria curvirostris with the extended SELECT method. J. Korea Soc. Fish. Technol. 2011, 44, 390–396. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Baek, S.; Kim, J.; Kim, P. A study on the mesh size selectivity by alternate haul method of trawl using the SELECT model. J. Korea Soc. Fish. Technol. 2023, 59, 099–109. [Google Scholar] [CrossRef]
- Davies, F.M. Size limits and mesh regulations for sea fish: Appendix B—Report on the results of experiments with savings gear. Appendix C—A mesh experiment indicating that small fish escape while the trawl is being towed. Appendix D—Preliminary note on a commercial mesh experiment. Rapp. Process-Verbaux Reun. Cons. Perm. Int. Pour I’Exploration 1934, 90, 14–31. [Google Scholar]
- Madsen, N.; Hansen, K.E.; Moth-Poulsen, T. The kite cover: A new concept for covered codend selectivity studies. Fish. Res. 2001, 49, 219–226. [Google Scholar] [CrossRef]
- Kim, Y. Bycatch reduction by experimental shaking codend attached with canvas in a bottom trawl. Korean J. Fish. Aquat. Sci. 2015, 18, 325–332. [Google Scholar] [CrossRef]
- Tokai, T.; Shiode, D.; Sakai, T.; Yoda, M. Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size. Fish. Sci. 2019, 85, 19–32. [Google Scholar] [CrossRef]
Common Name | Scientific Name | The Number of Catch | Weight of Catch |
---|---|---|---|
Common flying squid | Todarodes pacificus | 5458 | 55.9 kg |
Sailfin sandfish | Arctoscopus japonicus | 2120 | 77.0 kg |
Pearlsides | Maurolicus muelleri | 1,085,193 | 1166.4 kg |
Pacific cod | Gadus macrocephalus | 2 | 1.7 kg |
Green rough-backed puffer | Lagocephalus lunaris | 4 | 0.8 kg |
Striped puffer | Takifugu xanthopterus | 5 | 2.2 kg |
Schoolmaster gonate squid | Berryteuthis magister | 4 | 1.4 kg |
Japanese Spanish mackerel | Scomberomorus niphonius | 1 | 0.1 kg |
Blackmouth angler | Lophiomus setigerus | 1 | 1.3 kg |
John dory | Zeus faber | 20 | 1.1 kg |
Largehead hairtail | Trichiurus lepturus | 17 | 0.3 kg |
Firefly squid | Watasenia scintillans | 240 | 3.3 kg |
Pacific herring | Clupea pallasii | 3 | 0.1 kg |
Silver pomfret | Pampus argenteus | 2 | 0.5 kg |
Total | 1,093,070 | 1312.1 kg |
Scientific Name | Estimation Method (30°, 45°, Total) | Logistic Parameters | Selectivity Curve Parameters | Model Fit | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | C.I. of | S.R. | C.I. of S.R. | Deviance | df | p-Value | |||
Todarodes pacificus | Average of each haul | −0.43 (0.82) | 0.02 (0.06) | 28.4 (78.2) | Error | 146 (381.3) | Error | 0 | 21 | 0.813 |
Sum of hauls | −0.41 (0.18) | 0.02 (0.04) | 27.0 (58.3) | - | 146 (615.5) | - | 0 | 21 | 0.701 | |
Average of each haul | −0.33 (0.03) | 0.02 (0.06) | 13.1 (18.7) | Error | 93.6 (252.6) | Error | 0 | 21 | 0.711 | |
Sum of hauls | −0.31 (0.81) | 0.02 (0.03) | 17.4 (17.6) | - | 115.2 (186.3) | - | 0 | 21 | 0.536 | |
Average of each haul | −0.16 (0.81) | 0.01 (0.06) | 12.3 (32.5) | 12.1–12.5 | 167.8 (806.8) | Error | 0 | 21 | 0.408 | |
Sum of hauls | −0.16 (0.07) | 0.01 (0.02) | 12.4 (9.4) | - | 168.5 (203.5) | - | 0 | 21 | 0.835 |
Scientific Name | Estimation Method (30°, 45°, Total) | Logistic Parameters | Selectivity Curve Parameters | Model Fit | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | C.I. of | S.R. | C.I. of S.R. | Deviance | df | p-Value | |||
Arctoscopus japonicus | Average of each haul | −9.96 (4.38) | 0.51 (0.22) | 19.4 (1.42) | 19.0–20.6 | 4.3 (1.9) | 2.5–6.5 | 0 | 20 | 0.02 |
Sum of hauls | −8.75 (0.45) | 0.45 (0.03) | 19.5 (0.20) | - | 4.9 (0.3) | - | 0.2 | 20 | <0.01 | |
Average of each haul | −11.18 (5.20) | 0.54 (0.25) | 20.9 (1.41) | 20.1–21.4 | 4.1 (1.9) | 2.2–6.0 | 0 | 20 | 0.01 | |
Sum of hauls | −10.85 (1.17) | 0.52 (0.07) | 20.9 (0.42) | - | 4.2 (0.5) | - | 0.1 | 20 | <0.01 | |
Average of each haul | −9.59 (4.42) | 0.45 (0.21) | 21.5 (1.6) | 21.5–21.9 | 4.9 (2.3) | 4.4–5.2 | 0 | 20 | 0.03 | |
Sum of hauls | −9.58 (0.54) | 0.44 (0.03) | 21.7 (0.3) | - | 5.0 (0.3) | - | 0.1 | 20 | <0.01 |
Scientific Name | Estimation Method (30°, 45°, Total) | Logistic Parameters | Selectivity Curve Parameters | Model Fit | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | C.I. of | S.R. | C.I. of S.R. | Deviance | df | p-Value | |||
Maurolicus muelleri | Average of each haul | −1.581 (0.637) | 0.001 (0.164) | 2106 (45,993) | Error | 2928 (64,020) | Error | 0 | 66 | 0.999 |
Sum of hauls | −1.580 (0.032) | 0.001 (0.006) | 2776 (30,886) | - | 3861 (43,031) | - | 0 | 66 | 0.988 | |
Average of each haul | −1.499 (0.62) | 0.003 (0.159) | 541 (30,960) | Error | 793 (45,639) | Error | 0 | 66 | 0.989 | |
Sum of hauls | −1.501 (0.04) | 0.002 (0.008) | 502 (1409) | - | 736 (2084) | - | 0 | 66 | 0.985 | |
Average of each haul | −1.501 (0.62) | 0.014 (0.159) | 1053 (11,768) | Error | 1541 (17,277) | Error | 0 | 66 | 0.999 | |
Sum of hauls | −1.501 (0.02) | 0.013 (0.004) | 1146 (4345) | - | 1677 (6390) | - | 0 | 66 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-M.; Park, M.-S.; Choi, K.-S. A Study on the Catch Losses and Mesh Selectivity Related to the Attachment of Marine Mammal Bycatch Reduction Devices on Midwater Trawl Gear. Fishes 2024, 9, 391. https://doi.org/10.3390/fishes9100391
Jung J-M, Park M-S, Choi K-S. A Study on the Catch Losses and Mesh Selectivity Related to the Attachment of Marine Mammal Bycatch Reduction Devices on Midwater Trawl Gear. Fishes. 2024; 9(10):391. https://doi.org/10.3390/fishes9100391
Chicago/Turabian StyleJung, Jung-Mo, Min-Seuk Park, and Kyu-Suk Choi. 2024. "A Study on the Catch Losses and Mesh Selectivity Related to the Attachment of Marine Mammal Bycatch Reduction Devices on Midwater Trawl Gear" Fishes 9, no. 10: 391. https://doi.org/10.3390/fishes9100391
APA StyleJung, J. -M., Park, M. -S., & Choi, K. -S. (2024). A Study on the Catch Losses and Mesh Selectivity Related to the Attachment of Marine Mammal Bycatch Reduction Devices on Midwater Trawl Gear. Fishes, 9(10), 391. https://doi.org/10.3390/fishes9100391