Construction of a Growth Model and Screening of Growth-Related Genes for a Hybrid Puffer (Takifugu obscurus ♀ × Takifugu rubripes ♂)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Hybrid Group
2.2. Growth and Morphological Traits Comparison
2.3. Sample Collection and Sequencing
2.4. Quality Control and Genotyping
2.5. Analysis of Population Structure and Kinship
2.6. Screening for Selection Signatures and a Genome-Wide Association Study
2.7. Identification and Functional Annotation of Candidate Genes
2.8. Statistical Analysis
3. Results
3.1. The Disparities in Growth Performance
3.2. The Variations in Morphological Characteristics
3.3. The Growth Model and Discriminant Analysis
3.4. Quality Control of the Sequencing Reads
3.5. Analysis of Population Structure
3.6. Detection of Genome Selection Signatures
3.7. GO Term and KEGG Pathway Analysis
3.8. Genome-Wide Association Analysis of Growth Traits
3.9. Combining Selection Signatures and Association Analysis
4. Discussion
4.1. The Growth Rate and Model
4.2. The Growth-Related Candidate Genes and SNPs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Wu, F.X. China Fishery Statistical Yearbook; China Agriculture Press Co., Ltd.: Beijing, China, 2023; pp. 25–26. [Google Scholar]
- Gao, Y.; Zhang, H.; Gao, Q.; Wang, L.; Zhang, F.; Siva, V.S.; Zhou, Z.; Song, L.; Zhang, S. Transcriptome analysis of artificial hybrid pufferfish Jiyan-1 and its parental species: Implications for pufferfish heterosis. PLoS ONE 2013, 8, e58453. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, G.; Zhu, Y.; Liu, J. Effects of photoperiod, temperature, and salinity on growth and survival of obscure puffer Takifugu obscurus larvae. Aquaculture 2010, 309, 103–108. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Zhang, X.; Duan, M.; Jia, L.; Xu, H.; Liang, M.; Liu, J. Fish protein hydrolysate supplementation in plant protein based diets for tiger puffer (Takifugu rubripes) is an effective strategy of fish meal sparing. Aquac. Rep. 2021, 20, 100720. [Google Scholar] [CrossRef]
- Wang, T.; Wu, X.; Song, L.; Yang, Y.; Gong, S.; Zeng, L.; Tao, Y.; Zhong, C.; Meng, Z.; Liu, X. Identification of candidate growth-related SNPs and genes using GWAS and transcriptome analyses in leopard coral grouper (Plectropomus leopardus). Aquaculture 2023, 574, 739677. [Google Scholar] [CrossRef]
- Aljehani, F.; N’Doye, I.; Laleg-Kirati, T.-M. Extended Kalman filter for fish weight estimation using augmented fish population growth model. IFAC-PapersOnLine 2023, 56, 9855–9861. [Google Scholar] [CrossRef]
- Gui, J.-F.; Zhou, L.; Li, X.-Y. Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security. Water Biol. Secur. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Bai, J.; Li, C.; Tang, Z.; Wu, C.; Wei, Z. Comparative study of carbohydrate levels on growth, oxidative stress and glucolipid metabolism of hybrid fish between Megalobrama amblycephala (♀) × Culter alburnus (♂) and Culter alburnus. Reprod. Breed. 2023, 3, 131–142. [Google Scholar] [CrossRef]
- Wang, S.; Tang, C.; Tao, M.; Qin, Q.; Zhang, C.; Luo, K.; Zhao, R.; Wang, J.; Ren, L.; Xiao, J. Establishment and application of distant hybridization technology in fish. Sci. China Life Sci. 2019, 62, 22–45. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, X.; Tang, L.; Zhang, X.; Li, J.; Li, Y.; Li, Q.; Wang, Z. Study on the effect of mass selection and hybridization on growth performance of Chinese pearl oyster Pinctada martensii. Front. Mar. Sci. 2022, 9, 851142. [Google Scholar] [CrossRef]
- Gu, H.; Wang, H.; Deng, S.; Dai, X.; He, X.; Wang, Z. Hybridization with Percocypris pingi male can improve the cultivation characteristics of snow trout (Schizothorax wangchiachii), especially the resistance to white spot disease (Ichthyophthirius multifiliis). Aquaculture 2023, 562, 738805. [Google Scholar] [CrossRef]
- Wang, H.; Lin, G.; Zhou, J.; Zong, Y.; Ning, X.; Wang, T.; Yin, S.; Zhang, K.; Ji, J. The hybrid Pelteobagrus fulvidraco (♀) × Leiocassis longirostris (♂) exhibits improved trait on hypoxia-tolerance. Aquaculture 2023, 562, 738859. [Google Scholar] [CrossRef]
- Chen, S.; Tian, Y.; Li, Z.; Liu, Y.; Li, Z.; Duan, P.; Li, L.; Wang, X.; Wang, L.; He, X. Heterosis in growth and low temperature tolerance in Jinhu grouper (Epinephelus fuscoguttatus ♀ × Epinephelus tukula ♂). Aquaculture 2023, 562, 738751. [Google Scholar] [CrossRef]
- Hu, Y.; Hua, Y. The Development of Embryo and Fry of Hybrid Puffer (Fugu Ocellatus♀ × Fugu Obscurus). J. Nanjing Norm. Univ. (Nat. Sci. Ed.) 1996, 19, 59–63. [Google Scholar]
- Fan, W.; Liu, H.; Zhao, W.; Zhang, F. Embryonic, Larval and Juvenile Development of Hybrid between Tawny Puffer Takifugu flavidus (♀) × Redfin Puffer Takifugu rubripes (♂). J. Fish. China 2011, 35, 1065–1071. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Jiang, J.; Pan, G.; Zhou, W. Effects of Salinity on Fertilized Egg Hatching and Larval Growth of Hybrid Puffer (Takifugu flavidus ♀ × Takifugu obscures ♂). Chin. Agric. Sci. Bull. 2015, 31, 31–34. [Google Scholar]
- Jiang, H.-B.; Bao, J.; Han, Y. Mitochondrial DNA sequence of the hybrid of Takifugu flavidus (♀)× Takifugu rubripes (♂). Mitochondrial DNA Part A 2016, 27, 2117–2118. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhu, H.; Shi, Y.; Chen, Z.; Wang, Y.; Gui, J.-F.; Zhao, Z. Host Hybridization Dominates over Cohabitation in Affecting Gut Microbiota of Intrageneric Hybrid Takifugu Pufferfish. Msystems 2023, 8, e01181-22. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-S.; Lee, S.; Yoo, G.-Y. Impact of dietary protein levels on growth, feed utilization, body composition, and hematological characteristics of juvenile hybrid pufferfish (Takifugu obscurus × T. rubripes). Aquac. Rep. 2022, 22, 100994. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, C.; Wang, Y.; Xiong, Y.; Liu, Y.; Yan, H.; Wu, A.; Gao, R.; Li, M.; Wang, L. Gill transcriptomes analysis of Takifugu obscurus, Takifugu rubripes and their hybrid offspring in freshwater and seawater. Aquac. Rep. 2024, 37, 102208. [Google Scholar] [CrossRef]
- Omeka, W.; Liyanage, D.; Lee, S.; Lim, C.; Yang, H.; Sandamalika, W.G.; Udayantha, H.; Kim, G.; Ganeshalingam, S.; Jeong, T. Genome-wide association study (GWAS) of growth traits in olive flounder (Paralichthys olivaceus). Aquaculture 2022, 555, 738257. [Google Scholar] [CrossRef]
- Baesjou, J.-P.; Wellenreuther, M. Genomic signatures of domestication selection in the Australasian snapper (Chrysophrys auratus). Genes 2021, 12, 1737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fu, H.-C.; Wang, Y.-Y.; Huang, H.-Z. Genome-wide association study reveals growth-related SNPs and candidate genes in mandarin fish (Siniperca chuatsi). Aquaculture 2022, 550, 737879. [Google Scholar] [CrossRef]
- Zohar, Y.; Mylonas, C.C. Endocrine manipulations of spawning in cultured fish: From hormones to genes. Aquaculture 2001, 197, 99–136. [Google Scholar] [CrossRef]
- Budi, D.S.; Puspitasari, S.; Febrianti, R.P.N.; Bodur, T.; Mukti, A.T. A novel technique for mass induction of propagation in small fish species: Hormone immersion. Anim. Reprod. Sci. 2023, 255, 107280. [Google Scholar] [CrossRef]
- Zadmajid, V.; Bashiri, S.; Sharafi, N.; Butts, I.A.E. Effect of hCG and Ovaprim™ on reproductive characteristics of male Levantine scraper, Capoeta damascina (Valenciennes, 1842). Theriogenology 2018, 115, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cao, S.; Zhang, X.; Zhu, Z.; Hai-Bin, C.; Rui, X.; Zhao, K.-F.; Zhang, C.-X.; Liu, B.-L. Growth patterns and feeding characteristics in early developmental stages of Takifugu rubripes cultured in a recirculating aquaculture system. Aquaculture 2023, 577, 739981. [Google Scholar] [CrossRef]
- Li, W.; Xiong, Y.; Wang, Z.; Zhang, Q.; Shen, X.; Liu, Q.; Yan, H.; Gao, R.; Liu, Y.; Pang, H. Effects of different photoperiod conditions on survival, growth, and gonadal development of Takifugu rubripes adults. Aquaculture 2023, 564, 739048. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y. Growth models in aquaculture for hybrid and natural groupers based on early development stage. Aquaculture 2024, 578, 740026. [Google Scholar] [CrossRef]
- Shi, X.; Chen, S.; Gan, C.; Liu, X.; Chen, F.; Ma, X.; Wu, L.; Zhang, Y.; Waiho, K.; Tian, X. Comparison of growth performance, feed utilization and morphology between homologous and heterologous juvenile Qihe crucian carp Carassius auratus. Aquaculture 2022, 561, 738634. [Google Scholar] [CrossRef]
- Gao, F.-X.; Shi, Y.; Duan, W.; Lu, W.-J.; Huang, W.; Zhang, X.-J.; Zhao, Z.; Zhou, L.; Gui, J.-F. A rapid and reliable method for identifying genetic sex in obscure pufferfish (Takifugu obscurus). Aquaculture 2020, 519, 734749. [Google Scholar] [CrossRef]
- Zhou, H.X.; Duan, G.Q.; Hu, Y.T.; Wang, H.; Jiang, H.; Ling, J.; Pan, T.S.; Chen, X.L. Analysis of Morphological Differences between Differential Body Colors Groups of Hybrid Yellow Catfish. Fish. Sci. 2021, 40, 726–732. [Google Scholar]
- Haddon, M. Modelling and Quantitative Methods in Fisheries; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dureuil, M.; Aeberhard, W.H.; Dowd, M.; Pardo, S.A.; Whoriskey, F.G.; Worm, B. Reliable growth estimation from mark–recapture tagging data in elasmobranchs. Fish. Res. 2022, 256, 106488. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Lin, H.; Zhou, Z.; Liu, B.; Zhong, J.; Pu, F.; Shi, Y.; Zhou, T.; Xu, P. Genome-wide association study identifies genomic loci of sex determination, gonadal weight and gonadosomatic index traits in Takifugu bimaculatus. Aquaculture 2022, 546, 737389. [Google Scholar] [CrossRef]
- Geng, X.; Sha, J.; Liu, S.; Bao, L.; Zhang, J.; Wang, R.; Yao, J.; Li, C.; Feng, J.; Sun, F. A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genom. 2015, 16, 196. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, B.; Wittelsbürger, U.; Ramos-Onsins, S.E.; Lercher, M.J. PopGenome: An efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 2014, 31, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 2016, 166, 1397–1410. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef]
- Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 2014, 46, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Gao, X. Multiple testing corrections for imputed SNPs. Genet. Epidemiol. 2011, 35, 154–158. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Shi, Y.; Lu, G.; Cao, X.; Li, X.; Wang, W.; Fan, W. Growth performance of Takifugu obscurus cultured in different modes. Fish. Sci. Technol. Inf. 2021, 48, 132–136. [Google Scholar] [CrossRef]
- Niu, J.-S.; Wang, T.; Li, Z.; Wang, Z.-W.; Ding, M.; Wang, M.-T.; Lian, Z.-Q.; Mei, J.; Wang, Y.; Zhou, L. Efficient breeding and growth advantage of all-male population in Lanzhou catfish (Silurus lanzhouensis). Aquaculture 2024, 578, 740023. [Google Scholar] [CrossRef]
- Löhr, H.; Hess, S.; Pereira, M.M.; Reinoß, P.; Leibold, S.; Schenkel, C.; Wunderlich, C.M.; Kloppenburg, P.; Brüning, J.C.; Hammerschmidt, M. Diet-induced growth is regulated via acquired leptin resistance and engages a Pomc-somatostatin-growth hormone circuit. Cell Rep. 2018, 23, 1728–1741. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q.; Chen, J.; Wang, Y.; Zhang, Y.; Qin, Q. Identification of candidate SNPs and genes associated with anti-RGNNV using GWAS in the red-spotted grouper, Epinephelus akaara. Fish Shellfish Immunol. 2021, 112, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, Q.; Tang, W.; Huang, Z.; Wang, G.; Wang, Y.; Shi, J.; Xu, H.; Lin, L.; Li, Z. The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc. Natl. Acad. Sci. USA 2020, 117, 29775–29785. [Google Scholar] [CrossRef]
- Ding, J.; Gao, Z.; Wang, J.; Zhang, Y.; Wang, X.; Wu, X.; Zhu, J.; Shen, W. Genome-wide association and transcriptome analysis provide the SNPs and molecular insights into the hypoxia tolerance in large yellow croaker (Larimichthys crocea). Aquaculture 2023, 573, 739547. [Google Scholar] [CrossRef]
- Sheng, Z.; Cao, X.; Deng, Y.-n.; Zhao, X.; Liang, S. SUMOylation of AnxA6 facilitates EGFR-PKCα complex formation to suppress epithelial cancer growth. Cell Commun. Signal. 2023, 21, 189. [Google Scholar] [CrossRef]
- Muñoz-Espín, D.; Cañamero, M.; Maraver, A.; Gómez-López, G.; Contreras, J.; Murillo-Cuesta, S.; Rodríguez-Baeza, A.; Varela-Nieto, I.; Ruberte, J.; Collado, M. Programmed cell senescence during mammalian embryonic development. Cell 2013, 155, 1104–1118. [Google Scholar] [CrossRef]
- Wang, C.M.; Bai, Z.Y.; He, X.P.; Lin, G.; Xia, J.H.; Sun, F.; Lo, L.C.; Feng, F.; Zhu, Z.Y.; Yue, G.H. A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genom. 2011, 12, 174. [Google Scholar] [CrossRef]
- Laghari, M.; Lashari, P.; Zhang, X.; Xu, P.; Xin, B.; Zhang, Y.; Narejo, N.; Sun, X. Mapping quantitative trait loci (QTL) for body weight, length and condition factor traits in backcross (BC1) family of Common carp (Cyprinus carpio L.). Mol. Biol. Rep. 2014, 41, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, L.; Li, Y.; Wang, Y. MiR-139 inhibits proliferation, migration and invasion of osteosarcoma cell line MG63 via down-regulating integrin subunit alpha V (ITGAV). Tissue Cell 2022, 75, 101720. [Google Scholar] [CrossRef]
- Liu, W.; Morito, D.; Takashima, S.; Mineharu, Y.; Kobayashi, H.; Hitomi, T.; Hashikata, H.; Matsuura, N.; Yamazaki, S.; Toyoda, A. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE 2011, 6, e22542. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Thirumurugan, K. New insights into TNFα/PTP1B and PPARγ pathway through RNF213-a link between inflammation, obesity, insulin resistance, and Moyamoya disease. Gene 2021, 771, 145340. [Google Scholar] [CrossRef] [PubMed]
- Celeghin, R.; Risato, G.; Beffagna, G.; Cason, M.; Bueno Marinas, M.; Della Barbera, M.; Facchinello, N.; Giuliodori, A.; Brañas Casas, R.; Caichiolo, M. A novel DSP zebrafish model reveals training-and drug-induced modulation of arrhythmogenic cardiomyopathy phenotypes. Cell Death Discov. 2023, 9, 441. [Google Scholar] [CrossRef]
- Jiang, P.; Mao, L.; Lei, X.; Luo, C.; Zhang, Y.; Zhong, X.; Yin, Z.; Xu, X.; Li, D.; Zheng, Q. miR-1297 inhibits osteosarcoma cell proliferation and growth by targeting CCND2. Am. J. Cancer Res. 2022, 12, 3464. [Google Scholar] [PubMed]
- Rulifson, I.C.; Karnik, S.K.; Heiser, P.W.; Ten Berge, D.; Chen, H.; Gu, X.; Taketo, M.M.; Nusse, R.; Hebrok, M.; Kim, S.K. Wnt signaling regulates pancreatic β cell proliferation. Proc. Natl. Acad. Sci. USA 2007, 104, 6247–6252. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.-X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111. [Google Scholar] [CrossRef]
- Du, X.; Li, Q.; Yang, L.; Liu, L.; Cao, Q.; Li, Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death Dis. 2020, 11, 373. [Google Scholar] [CrossRef]
- Du, X.; Pan, Z.; Li, Q.; Liu, H.; Li, Q. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis. 2018, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Huang, J.; Kuang, Y.; Li, Y.; Zhong, D.; Song, J. Metformin inhibits proliferation of oral squamous cell carcinoma cells by suppressing proteolysis of nerve growth factor receptor. Arch. Oral Biol. 2021, 121, 104971. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, J.; Zhang, Y.; Liu, Y.; Zuo, S.; Li, R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019, 11, 10697. [Google Scholar] [CrossRef] [PubMed]
Stage | Obscure Puffer | Hybrid Puffer | |||||||
---|---|---|---|---|---|---|---|---|---|
Family | DPH | WGR | AGR | SGR | CF | WGR | AGR | SGR | CF |
Larval | 60 | 10.48 | 0.17 | 4.07% | 4.97 | 17.93 | 0.3 | 4.90% | 3.56 |
90 | 50.56 | 0.56 | 4.38% | 4.24 | 67.22 | 0.88 | 4.69% | 4.2 | |
Juvenile | 120 | 75.1 | 0.63 | 3.61% | 3.87 | - | - | - | - |
150 | 92.77 | 0.62 | 3.03% | 3.85 | 122.31 | 0.82 | 3.08% | 4.09 | |
180 | 123.99 | 0.69 | 2.68% | 3.63 | 184.23 | 1.02 | 2.90% | 4.32 | |
210 | 137.85 | 0.66 | 2.35% | 3.54 | 203.16 | 0.97 | 2.53% | 3.74 | |
Young | 270 | 173.31 | 0.64 | 1.91% | 3.62 | 294.29 | 1.09 | 2.11% | 3.97 |
Family | Trait | SNP | Chr | Position | Beta | p Value | Region | Gene Name |
---|---|---|---|---|---|---|---|---|
Obscure puffer | BW and AL | LOC1:2211857 | 1 | 2,211,857 | −37.33243 | 1.83 × 10−4 | Intergenic | NA |
LOC1:3193101 | 1 | 3,193,101 | 29.33228 | 2.79 × 10−4 | Exonic | rnf213 | ||
BW and TL | LOC22:5379885 | 22 | 5,379,885 | 32.05076 | 1.04 × 10−4 | Intergenic | NA | |
TL and AL | LOC1:3253768 | 1 | 3,253,768 | −1.273611 | 2.08 × 10−4 | Intronic | baiap2 | |
LOC1:3253792 | 1 | 3,253,792 | −1.273611 | 2.08 × 10−4 | Intronic | baiap2 | ||
LOC1:3327200 | 1 | 3,327,200 | −1.273611 | 2.08 × 10−4 | Intronic | wapl | ||
LOC1:3403622 | 1 | 3,403,622 | −1.273611 | 2.08 × 10−4 | Intronic | grid1 | ||
LOC1:3479403 | 1 | 3,479,403 | 1.435881 | 1.04 × 10−4 | Intronic | ccser2 | ||
LOC1:3479441 | 1 | 3,479,441 | 1.435881 | 1.04 × 10−4 | Intronic | ccser2 | ||
TL and BL | LOC3:3685861 | 3 | 3,685,861 | 1.141095 | 3.91 × 10−4 | Intronic | cfap74 | |
LOC3:3685871 | 3 | 3,685,871 | −1.141095 | 3.91 × 10−4 | Intronic | cfap75 | ||
LOC12:5883873 | 12 | 5,883,873 | −2.1259 | 2.70 × 10−4 | ncRNA intronic | LOC115251859 | ||
Hybrid puffer | BW and CL | LOC1:5146711 | 1 | 5,146,711 | 78.12444 | 4.94 × 10−5 | Intronic | vclb |
LOC20:7178403 | 20 | 7,178,403 | −58.05161 | 3.70 × 10−5 | Intronic | lingo3 | ||
BW and TL | LOC21:8126695 | 21 | 8,126,695 | 118.4649 | 5.24 × 10−5 | Intergenic | NA |
Chr | Gene | Symbol | Description | Selected Region | Fst | π Ratio | SNPs Number | Traits | p Value |
---|---|---|---|---|---|---|---|---|---|
1 | LOC101079631 | itgav | integrin alpha-V | 28,970,001–29,070,000 | 0.71 | 1.82 | - | - | - |
5 | LOC101067887 | ighv3-43 | immunoglobulin epsilon heavy chain-like | 6,090,001–6,220,000 | 0.86 | 1.78 | - | - | - |
5 | LOC101075124 | ighm | Ig mu chain C region membrane-bound form | 6,120,001–6,200,000 | 0.86 | 1.78 | - | - | - |
- | LOC101072524 | atp6v1b2 | V-type proton ATPase subunit B, brain isoform | 390,001–490,000 | 0.89 | 4.45 | - | - | - |
10 | LOC101069674 | pld1 | phospholipase D1-like | 11,240,001–11,340,000 | 0.35 | 1.07 | 6 | BL | 8.48 × 10−5 |
10 | LOC101073748 | xmrk | melanoma receptor tyrosine-protein kinase-like | 11,880,001–12,000,000 | 0.30 | 1.23 | 1 | TL | 6.99 × 10−5 |
10 | LOC101073973 | inhba | inhibin beta A chain-like | 11,870,001–12,000,000 | 0.29 | 1.24 | 1 | TL | 6.99 × 10−5 |
22 | LOC115247960 | dsp | desmoplakin-like, partial | 1,290,001–1,490,000 | 0.58 | 1.98 | 2 | TL | 5.35 × 10−6 |
22 | LOC101063843 | dsp | desmoplakin-like, partial | 1,380,001–1,490,000 | 0.64 | 1.09 | 2 | TL | 5.35 × 10−6 |
22 | LOC115247930 | dsg2 | desmoglein-2-like, partial | 1,340,001–1,49,0000 | 0.66 | 1.47 | 2 | TL | 5.35 × 10−6 |
22 | LOC101064287 | dsg2 | desmoglein-2-like, partial | 1,250,001–1,450,000 | 0.57 | 2.03 | 2 | TL | 5.35 × 10−6 |
22 | LOC101064516 | dsc2 | desmocollin-2-like | 1,240,001–1,440,000 | 0.57 | 2.04 | 2 | TL | 5.35 × 10−6 |
22 | LOC115247939 | dsc2 | desmocollin-2-like | 1,330,001–1,490,000 | 0.68 | 1.74 | 2 | TL | 5.35 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Shi, Y.; Gao, Y.; Shi, S.; Wang, M.; Yao, Y.; Sun, Z.; Wang, Y.; Zhao, Z. Construction of a Growth Model and Screening of Growth-Related Genes for a Hybrid Puffer (Takifugu obscurus ♀ × Takifugu rubripes ♂). Fishes 2024, 9, 404. https://doi.org/10.3390/fishes9100404
Wang C, Shi Y, Gao Y, Shi S, Wang M, Yao Y, Sun Z, Wang Y, Zhao Z. Construction of a Growth Model and Screening of Growth-Related Genes for a Hybrid Puffer (Takifugu obscurus ♀ × Takifugu rubripes ♂). Fishes. 2024; 9(10):404. https://doi.org/10.3390/fishes9100404
Chicago/Turabian StyleWang, Chaoyu, Yan Shi, Yuanye Gao, Shuo Shi, Mengmeng Wang, Yunlong Yao, Zhenlong Sun, Yaohui Wang, and Zhe Zhao. 2024. "Construction of a Growth Model and Screening of Growth-Related Genes for a Hybrid Puffer (Takifugu obscurus ♀ × Takifugu rubripes ♂)" Fishes 9, no. 10: 404. https://doi.org/10.3390/fishes9100404
APA StyleWang, C., Shi, Y., Gao, Y., Shi, S., Wang, M., Yao, Y., Sun, Z., Wang, Y., & Zhao, Z. (2024). Construction of a Growth Model and Screening of Growth-Related Genes for a Hybrid Puffer (Takifugu obscurus ♀ × Takifugu rubripes ♂). Fishes, 9(10), 404. https://doi.org/10.3390/fishes9100404