Growth, Feed Efficiency, and Health Status of Tilapia sp. Fed with New Technology Promoter Binder Fortified Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. The Measurement of Parameters and Data Analysis
2.3.1. Growth Performances
2.3.2. Body Indices, Fish Health Status and Filet Texture
2.4. Statistical Analysis
3. Results
3.1. The Growth Performance of Tilapia sp.
3.2. Nutrient Retention of Tilapia sp.
3.3. Glucose, Urea, and Creatinine Concentration
3.4. Viscerosomatic Index (VSI), Hepatosomatic Index (HSI), and Muscle Texture of Tilapia sp.
3.5. Free Amino Acid in Tilapia sp. Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kementerian Kelautan dan Perikanan. Produksi Perikanan Tahun 2020. Available online: https://statistik.kkp.go.id/home.php?m=total&i=2#panel-footer (accessed on 2 February 2024).
- Dai, Y.Y.; Yuan, Y.M.; Yuan, Y.; Zhou, Z.; Zhang, H.Y. Competitiveness of Chinese and Indonesian tilapia exports in the US market. Aquac. Int. 2020, 28, 791–804. [Google Scholar] [CrossRef]
- Collins, S.A.; Øverland, M.; Skrede, A.; Drew, M.D. Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture 2013, 400–401, 85–100. [Google Scholar] [CrossRef]
- Gajardo, K.; Jaramillo-Torres, A.; Kortner, T.M.; Merrifield, D.L.; Tinsley, J.; Bakke, A.M.; Krogdahl, Å. Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar). Appl. Environ. Microbiol. 2017, 83, e02615-16. [Google Scholar] [CrossRef] [PubMed]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Halim, H.H.; Aliyu-Paiko, M.; Hashim, R. Partial Replacement of Fish Meal with Poultry By-product Meal in Diets for Snakehead, Channa striata (Bloch, 1793), Fingerlings. J. World Aquac. Soc. 2014, 45, 233–241. [Google Scholar] [CrossRef]
- Gunben, E.M.; Senoo, S.; Yong, A.; Shapawi, R. High potential of poultry by-product meal as a main protein source in the formulated feeds for a commonly cultured grouper in Malaysia (Epinephelus fuscoguttatus). Sains Malays. 2014, 43, 399–405. [Google Scholar]
- Panicz, R.; Żochowska-Kujawska, J.; Sadowski, J.; Sobczak, M. Effect of feeding various levels of poultry by-product meal on the blood parameters, filet composition and structure of female tenches (Tinca tinca). Aquac. Res. 2017, 48, 5373–5384. [Google Scholar] [CrossRef]
- Parés-Sierra, G.; Durazo, E.; Ponce, M.A.; Badillo, D.; Correa-Reyes, G.; Viana, M.T. Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquac. Res. 2014, 45, 1459–1469. [Google Scholar] [CrossRef]
- Riche, M. Nitrogen utilization from diets with refined and blended poultry by-products as partial fish meal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquaculture 2015, 435, 458–466. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Ji, W.-X.; Han, H.; Li, P. Optimizing dietary protein sources for Japanese sea bass (Lateolabrax japonicus) with an emphasis on using poultry by-product meal to substitute fish meal. Aquac. Res. 2015, 46, 874–883. [Google Scholar] [CrossRef]
- Zapata, D.B.; Lazo, J.P.; Herzka, S.Z.; Viana, M.T. The effect of substituting fishmeal with poultry by-product meal in diets for Totoaba macdonaldi juveniles. Aquac. Res. 2016, 47, 1778–1789. [Google Scholar] [CrossRef]
- Dawson, M.R.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Seaton, P.J. Evaluation of poultry by-product meal as an alternative to fish meal in the diet of juvenile Black Sea bass reared in a recirculating aquaculture system. N. Am. J. Aquac. 2018, 80, 74–87. [Google Scholar] [CrossRef]
- Galkanda-Arachchige, H.S.; Wilson, A.E.; Davis, D.A. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: A meta-analysis. Rev. Aquac. 2020, 12, 1624–1636. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, C.; Pan, J.; Ma, C.; Wang, C.; Li, X.; Cai, W.; Yang, K. Effects of dietary guanidinoacetic acid on growth performance, guanidinoacetic acid absorption and creatine metabolism of lambs. PLoS ONE 2022, 17, e0264864. [Google Scholar] [CrossRef]
- Ostojic, S.M. Advanced physiological roles of guanidinoacetic acid. Eur. J. Nutr. 2015, 54, 1211–1215. [Google Scholar] [CrossRef]
- Jayaraman, B.; La, K.V.; La, H.; Doan, V.; Carpena, E.M.; Rademacher, M.; Channarayapatna, G. Supplementation of guanidinoacetic acid to pig diets: Effects on performance, carcass characteristics and meat quality. J. Anim. Sci. 2018, 96, 2332–2342. [Google Scholar] [CrossRef]
- Córdova-Noboa, H.; Oviedo-Rondón, E.; Sarsour, A.; Barnes, J.; Ferzola, P.; Rademacher-Heilshorn, M.; Braun, U. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid. Poult. Sci. 2018, 97, 2479–2493. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Afsar, A.; Lotfollahian, H. Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. J. Appl. Poult. Res. 2013, 22, 47–54. [Google Scholar] [CrossRef]
- Majdeddin, M.; Braun, U.; Lemme, A.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Poult. Sci. 2020, 99, 4442–4453. [Google Scholar] [CrossRef]
- Li, S.Y.; Wang, C.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; Zhang, Y.L.; Pei, C.X.; et al. Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Animal 2020, 14, 2535–2542. [Google Scholar] [CrossRef]
- Yang, L.-L.; Wu, P.; Feng, L.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Guanidinoacetic acid supplementation totally based on vegetable meal diet improved the growth performance, muscle flavor components and sensory characteristics of on-growing grass carp (Ctenopharygodon idella). Aquaculture 2021, 531, 735841. [Google Scholar] [CrossRef]
- Mabrouk, M.; Abdelhamid, A.; Gewida, A.; Abo-State, H. Effects of creatine and guanidinoacetic acid as feed additives on Nile Tilapia (Oreochromis niloticus) Growth Performance. J. Anim. Poult. Prod. 2020, 11, 143–147. [Google Scholar] [CrossRef]
- Wiriyapattanasub, P.; Suratip, N.; Charoenwattanasak, S.; Ponglamjiak, S.; Kattakdad, S.; Yuangsoi, B. Dietary guanidinoacetic acid response on digestibility, growth performance, feed utilization and carcass quality in Nile Tilapia (Oreochromis niloticus). Aquac. Res. 2020, 51, 5141–5150. [Google Scholar] [CrossRef]
- Espe, M.; Lemme, A.; Petri, A.; El-Mowafi, A. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture 2006, 255, 255–262. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Olsen, H.J.; Albrektsen, S.; Langmyhr, E.; Mjøs, S.A.; Campbell, P.; Aksnes, A. High growth rates in Atlantic salmon (Salmo salar L.) fed 7.5% fish meal in the diet. Micro-, ultra- and nano-filtration of stickwater and effects of different fractions and compounds on pellet quality and fish performance. Aquaculture 2012, 338–341, 134–146. [Google Scholar] [CrossRef]
- Egerton, S.; Wan, A.; Murphy, K.; Collins, F.; Ahern, G.; Sugrue, I.; Busca, K.; Egan, F.; Muller, N.; Whooley, J.; et al. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci. Rep. 2020, 10, 4194. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of Official Analytical Chemists International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Feng, H.; Zhang, M.; Gecevska, V.; Chen, B.; Saeed, R.; Zhang, X. Modeling and evaluation of quality monitoring based on wireless sensor and blockchain technology for live fish waterless transportation. Comput. Electron. Agric. 2022, 193, 106642. [Google Scholar] [CrossRef]
- Tossenberger, J.; Rademacher, M.; Németh, K.; Halas, V.; Lemme, A. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poult. Sci. 2016, 95, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, M. Role of creatine in the heart: Health and disease. Nutrients 2021, 13, 1215. [Google Scholar] [CrossRef]
- Michiels, J.; Maertens, L.; Buyse, J.; Lemme, A.; Rademacher, M.; Dierick, N.; De Smet, S. Supplementation of guanidinoacetic acid to broiler diets: Effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult. Sci. 2012, 91, 402–412. [Google Scholar] [CrossRef]
- Aziza, A.; Mahmoud, R.; Zahran, E.; Gadalla, H. Dietary supplementation of guanidinoacetic acid improves growth, biochemical parameters, antioxidant capacity and cytokine responses in Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immunol. 2020, 97, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Andresen, K.; Handå, A.; Jensen, B.; Reitan, K.I.; Olsen, Y. Chemical composition and release rate of waste discharge from an Atlantic salmon farm with an evaluation of IMTA feasibility. Aquac. Environ. Interact. 2013, 4, 147–162. [Google Scholar] [CrossRef]
- Murakami, A.E.; Rodrigueiro, R.J.B.; Santos, T.C.; Ospina-Rojas, I.C.; Rademacher, M. Effects of dietary supplementation of meat-type quail breeders with guanidinoacetic acid on their reproductive parameters and progeny performance. Poult. Sci. 2014, 93, 2237–2244. [Google Scholar] [CrossRef]
- Lund, M.; Duedahl-Olesen, L.; Christensen, J.H. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal. Talanta 2009, 79, 10–15. [Google Scholar] [CrossRef]
- Vera, L.M.; Hamre, K.; Espe, M.; Hemre, G.-I.; Skjærven, K.; Lock, E.-J.; Prabhu, A.J.; Leeming, D.; Migaud, H.; Tocher, D.R.; et al. Higher dietary micronutrients are required to maintain optimal performance of Atlantic salmon (Salmo salar) fed a high plant material diet during the full production cycle. Aquaculture 2020, 528, 735551. [Google Scholar] [CrossRef]
- Kurniawan, D.R.; Arief, M.; Agustono Lamid, M. Effect of maggot (Hermetia illucens) flour in commercial feed on protein retention, energy retention, protein content and fat content in tilapia (Oreochromis niloticus). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Batu City, Indonesia, 7–9 November 2017. p. 012072.
- Martínez-Porchas, M.; Rafael Martínez-Córdova, L.; Ramos-Enriquez, R. Cortisol and Glucose: Reliable indicators of fish stress? Panam. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- Zeng, Q.H.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C.X. Effects of guanidinoacetic acid supplementation in all-plant protein diets on growth, antioxidant capacity and muscle energy metabolism of bullfrog Rana (Lithobates) catesbeiana. Aquac. Res. 2018, 49, 748–756. [Google Scholar] [CrossRef]
- El Sayed, M.R.; Aziza, A.; Ali Gadalla, H. Influence of guanidinoacetic acid supplementation of fish diets with different levels of energy content on growth performance and serum metabolites. J. Vet. Sci. Anim. Husb. 2019, 7, 305. [Google Scholar]
- Shuzhen, L.; Yang, L.; Wenhuan, C.; Zhimin, C.; Aijuan, Z.; Zedong, W.; Guohua, L. Supplementation of guanidinoacetic acid and betaine improve growth performance and meat quality of ducks by accelerating energy metabolism. Ital. J. Anim. Sci. 2021, 20, 1656–1664. [Google Scholar] [CrossRef]
- Malini, D.M.; Madihah Apriliandri, A.F.; Arista, S. Increased Blood Glucose Level on Pelagic Fish as Response to Environmental Disturbances at East Coast Pangandaran, West Java. IOP Conf. Ser. Earth Environ. Sci. 2018, 166, 012011. [Google Scholar] [CrossRef]
- Campbell, T.W. Clinical Chemistry of Fish and Amphibian. In Veterinary Hematology and Clinical Chemistry, 2nd ed.; Thrall, M.A., Weiser, G., Allison, R.W., Campbell, T., Eds.; Wiley-Blackwell: Lowa, IA, USA; John Willey & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 607–614. [Google Scholar]
- Ostermann, M.; Kashani, K.; Forni, L.G. The two sides of creatinine: Both as bad as each other? J. Thorac. Dis. 2016, 8, E628–30. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Noreldin, A.E.; Sewilam, H. Blood biochemical variables, antioxidative status, and histological features of intestinal, gill, and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress. Environ. Sci. Pollut. Res. 2022, 19, 56357–56369. [Google Scholar] [CrossRef] [PubMed]
- Asiriwardhana, M.; Bertolo, R.F. Guanidinoacetic acid supplementation: A narrative review of its metabolism and effects in swine and poultry. Front. Anim. Sci. 2022, 3, 972868. [Google Scholar] [CrossRef]
- Ajeniyi, S.A.; Solomon, R.J. Urea and creatinine of Clarias gariepinus in three different commercial ponds. Nat. Sci. 2017, 12, 124–138. [Google Scholar]
- Pastorino, P.; Bergagna, S.; Vercelli, C.; Pagliasso, G.; Dellepiane, L.; Renzi, M.; Barbero, R.; Re, G.; Elia, A.C.; Dondo, A.; et al. Changes in serum blood parameters in farmed Rainbow trout (Oncorhynchus mykiss) fed with diets supplemented with waste derived from supercritical fluid extraction of Sweet basil (Ocimum basilicum). Fishes 2022, 7, 89. [Google Scholar] [CrossRef]
- Ighwela, K.A.; Ahmad, B.A.; Abol-Munafi, A.B. The selection of viscerosomatic and hepatosomatic indices for the measurement and analysis of Oreochromis niloticus condition fed with varying dietary maltose levels. Int. J. Fauna Biol. Stud. IJFBS 2014, 1, 18–20. [Google Scholar]
- Luo, Y.; Wu, X.; Li, W.; Jiang, S.; Lu, S.; Wu, M. Effects of different corn starch levels on growth, protein input, and feed utilization of juvenile Hybrid grouper (male Epinephelus lanceolatus × female E. fuscoguttatus). N. Am. J. Aquac. 2016, 78, 168–173. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Han, Z.; Zeng, X.A. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, L.; Wu, P.; Feng, L.; Jiang, W.; Liu, Y.; Kuang, S.; Li, S.; Mi, H.; Tang, L.; et al. Dietary protein levels changed the hardness of muscle by acting on muscle fiber growth and the metabolism of collagen in sub-adult grass carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2022, 13, 109. [Google Scholar] [CrossRef]
- Cheng, X.; Li, M.; Leng, X.; Wen, H.; Wu, F.; Yu, L.; Jiang, M.; Lu, X.; Gao, W.; Zhang, W.; et al. Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Food Chem. 2021, 354, 129498. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.L.; Wang, X.F.; Zhu, X.D.; Gao, F.; Zhou, G.H. Attenuating effects of guanidinoacetic acid on preslaughter transport-induced muscle energy expenditure and rapid glycolysis of broilers. Poult. Sci. 2019, 98, 3223–3232. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tian, Z.; Yu, M.; Liu, Z.; Rong, T.; Ma, X. Effect of guanidine acetic acid on meat quality, muscle amino acids, and fatty acids in Tibetan pigs. Front. Vet. Sci. 2022, 9, 998956. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tian, Z.; Yu, M.; Deng, D.; Lu, H.; Song, M.; Ma, X.; Wang, L. Guanidine acetic acid supplementation altered plasma and tissue free amino acid profiles in finishing pigs. Porc. Health Manag. 2022, 8, 24. [Google Scholar] [CrossRef] [PubMed]
Ingredient (gr) | A (NFM_0) | B (NFM_0.6) | C (NFM_1.2) | D (FM_0) |
---|---|---|---|---|
Fish meal | 0.0 | 0.0 | 0.0 | 50.0 |
Poultry By-Product meal | 100.0 | 100.0 | 100.0 | 50.0 |
Soybean meal | 325.1 | 325.4 | 325.5 | 311.5 |
Corn Gluten meal | 200.0 | 200.0 | 200.0 | 200.0 |
Corn Yellow | 168.8 | 168.5 | 167.5 | 168.0 |
Rice Bran | 18.5 | 18.9 | 19.2 | 22.1 |
Pollard | 1.1 | 0.1 | 0.1 | 12.0 |
Cassava | 95.0 | 95.0 | 95.0 | 95.0 |
Distiller’s dried grains with solubles | 50.0 | 50.0 | 50.0 | 50.0 |
Crude Palm Oil | 35.0 | 35.0 | 35.0 | 35.0 |
CMC | 5.0 | 5.0 | 5.0 | 5.0 |
Vitamin HC | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral | 1.0 | 1.0 | 1.0 | 1.0 |
NTPB | 0.0 | 0.6 | 1.2 | 0.0 |
Total | 1000 | 1000 | 1000 | 1000 |
Dry matter (%) | 89.02 | 92.51 | 91.73 | 91.42 |
Crude Protein (%) | 34.05 | 34.09 | 33.69 | 33.31 |
Fat (%) | 6.20 | 7.87 | 6.98 | 6.31 |
Ash (%) | 6.67 | 6.65 | 6.59 | 6.57 |
Fiber (%) | 6.53 | 3.82 | 6.01 | 5.73 |
NFE (%) | 46.55 | 47.57 | 46.73 | 48.08 |
ME (kcal·kg−1) | 3.55 | 3.74 | 3.61 | 3.58 |
Diet | Initial Weight (g) | Final Weight (g) | SR (%) | FI | SGR (% BW·day−1) | FCR |
---|---|---|---|---|---|---|
A(NFM_0) | 16.20 ± 0.25 | 45.33 ± 0.51 a | 100 ± 0.00 a | 62.37 ± 0.59 a | 1.47 ± 0.02 a | 2.14 ± 0.04 a |
B (NFM_0.6) | 16.77 ± 0.58 | 49.82 ± 0.31 b | 100 ± 0.00 a | 68.77 ± 0.37 b | 1.55 ± 0.02 b | 2.08 ± 0.03 b |
C (NFM_1.2) | 16.40 ± 0.30 | 48.46 ± 0.62 b | 100 ± 0.00 a | 67.32 ± 0.69 b | 1.54 ± 0.02 b | 2.10 ± 0.03 b |
D (FM_0) | 15.68 ± 0.79 | 45.58 ± 0.43 a | 100 ± 0.00 a | 62.97 ± 0.89 a | 1.53 ± 0.06 b | 2.10 ± 0.04 b |
Diet | PRE (%) | FRE (%) | ERE (%) |
---|---|---|---|
A (NFM_0) | 24.66 ± 0.12 a | 27.40 ± 0.13 a | 13.77 ± 0.06 a |
B (NFM_0.6) | 27.12 ± 0.20 b | 29.93 ± 0.22 b | 15.83 ± 0.11 c |
C (NFM_1.2) | 27.06 ± 0.33 b | 29.78 ± 0.3 b | 15.67 ± 0.19 c |
D (FM_0) | 25.43 ± 0.45 a | 28.38 ± 0.57 a | 14.67 ± 0.27 b |
Diet | Glucose (mg·dL−1) | Urea (mg·dL−1) | Creatinine (mg·dL−1) |
---|---|---|---|
A (NFM_0) | 52.00 ± 0.82 a | 1.90 ± 0.11 a | 0.24 ± 0.01 a |
B (NFM_0.6) | 56.50 ± 0.96 c | 3.25 ± 0.13 b | 0.31 ± 0.01 c |
C (NFM_1.2) | 55.25 ± 0.48 bc | 3.19 ± 0.12 b | 0.29 ± 0.03 b |
D (FM_0) | 53.50 ± 1.91 ab | 3.00 ± 0.11 b | 0.28 ± 0.01 b |
Diet | HSI (%) | VSI (%) | Meat Texture (gF) |
---|---|---|---|
A(NFM_0) | 0.68 ± 0.01 a | 5.66 ± 0.08 a | 1465.84 ± 20.6 a |
B (NFM_0.6) | 0.67 ± 0.01 a | 5.65 ± 0.07 a | 1830.38 ± 8.8 d |
C (NFM_1.2) | 0.67 ± 0.04 a | 5.65 ± 0.10 a | 1779.40 ± 19.8 c |
D (FM_0) | 0.69 ± 0.01 a | 5.67 ± 0.02 a | 1555.07 ± 6.6 b |
Amino Acid | A (NFM_0) | B (NFM_0.6) | C (NFM_1.2) | D (FM_0) |
---|---|---|---|---|
L-Serine | 0.69 ± 0.13 | 0.69 ± 0.04 | 0.71 ± 0.04 | 0.74 ± 0.08 |
L-Glutamin Acid | 2.43 ± 0.03 | 2.23 ± 0.07 | 2.25 ± 0.10 | 2.25 ± 0.05 |
L-Phenylalanine | 0.73 ± 0.07 | 0.74 ± 0.04 | 0.74 ± 0.05 | 0.82 ± 0.08 |
L-Isoleucine | 0.76 ± 0.05 | 0.72 ± 0.05 | 0.71 ± 0.08 | 0.78 ± 0.01 |
L-Valine | 0.85 ± 0.07 | 0.80 ± 0.10 | 0.81 ± 0.08 | 0.87 ± 0.06 |
L-Alanine | 1.08 ± 0.08 | 1.17 ± 0.16 | 1.20 ± 0.08 | 1.13 ± 0.03 |
L-Arginine | 1.21 ± 0.06 | 1.28 ± 0.05 | 1.27 ± 0.05 | 1.36 ± 0.04 |
L-Glycine | 1.32 ± 0.06 | 1.66 ± 0.04 | 1.73 ± 0.08 | 1.55 ± 0.04 |
L-Lysine | 1.39 ± 0.15 | 1.25 ± 0.06 | 1.28 ± 0.08 | 1.27 ± 0.17 |
L-Aspartic Acid | 1.39 ± 0.06 | 1.28 ± 0.06 | 1.33 ± 0.16 | 1.31 ± 0.06 |
L-Leucine | 1.33 ± 0.08 | 1.28 ± 0.01 | 1.26 ± 0.11 | 1.38 ± 0.03 |
L-Tyrosine | 0.58 ± 0.04 | 0.50 ± 0.16 | 0.49 ± 0.03 | 0.56 ± 0.17 |
L-Proline | 0.80 ± 0.00 | 0.99 ± 0.05 | 1.00 ± 0.07 | 0.88 ± 0.04 |
L-Threonine | 0.79 ± 0.06 | 0.78 ± 0.06 | 0.78 ± 0.07 | 0.87 ± 0.04 |
L-Histidine | 0.36 ± 0.11 | 0.39 ± 0.04 | 0.37 ± 0.11 | 0.41 ± 0.06 |
∑ EAA | 7.99 ± 0.35 | 7.71 ± 0.33 | 7.68 ± 0.34 | 8.31 ± 0.35 |
∑ NEAA | 7.71 ± 0.63 | 8.01 ± 0.54 | 8.21 ± 0.55 | 7.85 ± 0.54 |
TAA | 15.69 ± 0.50 | 15.72 ± 0.48 | 15.89 ± 0.49 | 16.16 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuniarti, A.; Mahariawan, I.M.D.; Kusuma, W.E.; Hidayat, B.R.; Hariati, A.M. Growth, Feed Efficiency, and Health Status of Tilapia sp. Fed with New Technology Promoter Binder Fortified Diet. Fishes 2024, 9, 443. https://doi.org/10.3390/fishes9110443
Yuniarti A, Mahariawan IMD, Kusuma WE, Hidayat BR, Hariati AM. Growth, Feed Efficiency, and Health Status of Tilapia sp. Fed with New Technology Promoter Binder Fortified Diet. Fishes. 2024; 9(11):443. https://doi.org/10.3390/fishes9110443
Chicago/Turabian StyleYuniarti, Ating, I Made D. Mahariawan, Wahyu E. Kusuma, Bagus R. Hidayat, and Anik M. Hariati. 2024. "Growth, Feed Efficiency, and Health Status of Tilapia sp. Fed with New Technology Promoter Binder Fortified Diet" Fishes 9, no. 11: 443. https://doi.org/10.3390/fishes9110443
APA StyleYuniarti, A., Mahariawan, I. M. D., Kusuma, W. E., Hidayat, B. R., & Hariati, A. M. (2024). Growth, Feed Efficiency, and Health Status of Tilapia sp. Fed with New Technology Promoter Binder Fortified Diet. Fishes, 9(11), 443. https://doi.org/10.3390/fishes9110443