Effects of Heat Stress on the Muscle Meat Quality of Rainbow Trout
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Facilities
2.2. Sample Collection
2.3. Antioxidant Capacity, Inflammatory Factors, and Heat Shock Proteins
2.4. Flesh Quality Measurements
2.5. Energy Substances of Metabolism
2.6. Headspace Solid-Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) Analysis
2.7. Histology Observation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of Heat Stress on Muscle Antioxidant Capacity, Inflammatory Factors, and Heat Shock Proteins
3.2. Histology
3.3. Physical Properties of Muscle
3.4. Chemical Composition
3.4.1. Nucleotides and Organic Acids
3.4.2. Mineral Content
3.4.3. Effects of Acute Heat Stress on Amino Acid Content in Muscle
3.5. Effects of Heat Stress on Volatile Substances in Muscle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024; FAO: Rome, Italy, 2024; ISBN 978-92-5-138763-4. [Google Scholar]
- Jonsson, B. Thermal Effects on Ecological Traits of Salmonids. Fishes 2023, 8, 337. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnestad, I. Effects of Temperature on Feeding and Digestive Processes in Fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Gillson, J.P.; Bašić, T.; Davison, P.I.; Riley, W.D.; Talks, L.; Walker, A.M.; Russell, I.C. A Review of Marine Stressors Impacting Atlantic Salmon Salmo Salar, with an Assessment of the Major Threats to English Stocks. Rev. Fish Biol. Fish. 2022, 32, 879–919. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Yin, T.; You, J.; Liu, R.; Huang, Q.; Shi, L.; Wang, L.; Liao, T.; Wang, W.; et al. Recent Understanding of Stress Response on Muscle Quality of Fish: From the Perspective of Industrial Chain. Trends Food Sci. Technol. 2023, 140, 104145. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, L.; Xiong, S.; You, J.; Liu, R.; Xu, D.; Huang, Q.; Ma, H.; Yin, T. A Comprehensive Review of the Mechanisms on Fish Stress Affecting Muscle Qualities: Nutrition, Physical Properties, and Flavor. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13336. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, B.; Sdiri, C.; Ben Souf, I.; Belhadj Slimen, I.; Ben Larbi, M.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Braun, T.P.; Marks, D.L. The Regulation of Muscle Mass by Endogenous Glucocorticoids. Front. Physiol. 2015, 6, 12. [Google Scholar] [CrossRef]
- Sierra, V.; Oliván, M. Role of Mitochondria on Muscle Cell Death and Meat Tenderization. Recent Pat. Endocr. Metab. Immune Drug Discov. 2013, 7, 120–129. [Google Scholar] [CrossRef]
- Li, Y.; Fu, B.; Zhang, J.; Wang, G.; Gong, W.; Tian, J.; Li, H.; Zhang, K.; Xia, Y.; Li, Z.; et al. Effects of Heat Stress on the Chemical Composition, Oxidative Stability, Muscle Metabolism, and Meat Quality of Nile Tilapia (Oreochromis niloticus). Food Chem. 2023, 426, 136590. [Google Scholar] [CrossRef]
- Fu, B.; Fang, C.; Li, Z.; Zeng, Z.; He, Y.; Chen, S.; Yang, H. The Effect of Heat Stress on Sensory Properties of Fresh Oysters: A Comprehensive Study Using E-Nose, E-Tongue, Sensory Evaluation, HS–SPME–GC–MS, LC–MS, and Transcriptomics. Foods 2024, 13, 2004. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Zhou, Y.; Liu, W.; Shi, C.C.; Li, L.; Dong, Y.; Gao, Q.; Dong, S. Variations in Flavor According to Fish Size in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2020, 526, 735398. [Google Scholar] [CrossRef]
- Zhou, C.-Q.; Zhou, P.; Ren, Y.-L.; Cao, L.-H.; Wang, J.-L. Physiological Response and miRNA-mRNA Interaction Analysis in the Head Kidney of Rainbow Trout Exposed to Acute Heat Stress. J. Therm. Biol. 2019, 83, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; You, X.; Sun, W.; Xiong, G.; Shi, L.; Qiao, Y.; Wu, W.; Li, X.; Wang, J.; Ding, A.; et al. Insight into Acute Heat Stress on Meat Qualities of Rainbow Trout (Oncorhynchus mykiss) during Short-Time Transportation. Aquaculture 2021, 543, 737013. [Google Scholar] [CrossRef]
- Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Van Der Werf, M.J.; Hankemeier, T. Simultaneous Quantitative Analysis of Metabolites Using Ion-Pair Liquid Chromatography−Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 6573–6582. [Google Scholar] [CrossRef]
- Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef]
- Bao, S.; Zhuo, L.; Qi, D.; Tian, H.; Wang, D.; Zhu, B.; Meng, Y.; Ma, R. Comparative Study on the Fillet Nutritional Quality of Diploid and Triploid Rainbow Trout (Oncorhynchus mykiss). Aquac. Rep. 2023, 28, 101431. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, G.; Ge, X.; Liu, B.; Xu, P.; Song, C.; Zhou, Q.; Zhang, H.; Zhang, W.; Shan, F.; et al. The Effects of Crowding Stress on the Growth, Physiological Response, and Gene Expression of the Nrf2-Keap1 Signaling Pathway in Blunt Snout Bream (Megalobrama amblycephala) Reared under in-Pond Raceway Conditions. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2019, 231, 19–29. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yang, F.-F.; Ling, R.-Z.; Liao, S.-A.; Miao, Y.-T.; Ye, C.-X.; Wang, A.-L. Effects of Ammonia Exposure on Apoptosis, Oxidative Stress and Immune Response in Pufferfish (Takifugu obscurus). Aquat. Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Li, B.; Ding, L.; Wei, X.; Wang, P.; Chen, Z.; Han, S.; Huang, T.; Wang, B.; et al. Physiological Responses to Heat Stress in the Liver of Rainbow Trout (Oncorhynchus mykiss) Revealed by UPLC-QTOF-MS Metabolomics and Biochemical Assays. Ecotoxicol. Environ. Saf. 2022, 242, 113949. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Sheng, L.; Zheng, Y. Field and Laboratory Investigations of the Thermal Influence on Tissue-Specific Hsp70 Levels in Common Carp (Cyprinus carpio). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2007, 148, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.; Wang, Y.N.; Kang, Y.J.; Wang, J.F.; Shi, H.N.; Huang, J.Q.; Jiang, L. Effects of Heat Stress on Serum Cortisol, Alkaline Phosphatase Activity and Heat Shock Protein 40 and 90β mRNA Expression in Rainbow Trout Oncorhynchus mykiss. Biologia 2016, 71, 109–115. [Google Scholar] [CrossRef]
- Lan, R.; Li, S.; Chang, Q.; Zhao, Z. Chitosan Oligosaccharides Protect Sprague Dawley Rats from Cyclic Heat Stress by Attenuation of Oxidative and Inflammation Stress. Animals 2019, 9, 1074. [Google Scholar] [CrossRef]
- Zheng, T.; Song, Z.; Tao, Y.; Qiang, J.; Ma, J.; Lu, S.; Xu, P. Transport Stress Induces Innate Immunity Responses through TLR and NLR Signaling Pathways and Increases Mucus Cell Number in Gills of Hybrid Yellow Catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂). Fish Shellfish Immunol. 2022, 127, 166–175. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Yang, C. Exposure to Heat Stress Causes Downregulation of Immune Response Genes and Weakens the Disease Resistance of Micropterus Salmoides. Comp. Biochem. Physiol. 2022, 43, 101011. [Google Scholar] [CrossRef] [PubMed]
- Goll, D.E.; Thompson, V.F.; Taylor, R.G.; Christiansen, J.A. Role of the Calpain System in Muscle Growth. Biochimie 1992, 74, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; You, J.; Wang, L.; Shi, L.; Liao, T.; Huang, Q.; Xiong, S.; Yin, T. Insight into the Mechanism on Texture Change of Wuchang Bream Muscle during Live Transportation Using a UPLC-QTOF-MS Based Metabolomics Method. Food Chem. 2023, 398, 133796. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, Y.; Hu, A.; Xiong, G.; Wu, W.; Shi, L.; Chen, L.; Guo, X.; Qiao, Y.; Liu, C.; et al. Difference in Muscle Metabolism Caused by Metabolism Disorder of Rainbow Trout Liver Exposed to Ammonia Stress. Sci. Total Environ. 2024, 924, 171576. [Google Scholar] [CrossRef]
- Zhu, W.; Han, M.; Bu, Y.; Li, X.; Yi, S.; Xu, Y.; Li, J. Plant Polyphenols Regulating Myoglobin Oxidation and Color Stability in Red Meat and Certain Fish: A Review. Crit. Rev. Food Sci. Nutr. 2022, 64, 2276–2288. [Google Scholar] [CrossRef]
- Shao, Y.; Li, C.; Chen, X.; Zhang, P.; Li, Y.; Li, T.; Jiang, J. Metabolomic Responses of Sea Cucumber Apostichopus Japonicus to Thermal Stresses. Aquaculture 2015, 435, 390–397. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, M.; Xiong, G.; Sun, W.; Wu, W.; Ding, A.; Chen, S.; Wang, L.; Shi, L. Effects of Hypoxia on Meat Qualities and Muscle Metabolism in Rainbow Trout (Oncorhynchus mykiss) during Short-Time Transportation and Its Relief by Reoxygenation. Aquaculture 2023, 570, 739404. [Google Scholar] [CrossRef]
- Peng, L.; You, J.; Wang, L.; Xiong, S.; Huang, Q.; Yin, T. Effect of Respite Time before Live Transportation on Muscle Quality of Blunt Snout (Wuchang) Bream. Foods 2022, 11, 2254. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Zhang, Y.; Jin, Y.; Deng, Y.; Zhao, Y. Impact of High Hydrostatic Pressure on Non-Volatile and Volatile Compounds of Squid Muscles. Food Chem. 2016, 194, 12–19. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, G.; Cao, Z.; Liu, C. Comparison of Biochemical Composition and Non-Volatile Taste Active Compounds of Back and Abdominal Muscles in Three Marine Perciform Fishes, Chromileptes Altivelis, Epinephelus Akaara and Acanthopagrus Schlegelii. Molecules 2022, 27, 4480. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Monier, M.N.; Hoseinifar, S.H.; Faggio, C. Fish Response to Hypoxia Stress: Growth, Physiological, and Immunological Biomarkers. Fish Physiol. Biochem. 2019, 45, 997–1013. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef]
- Kumar, N. Dietary Zinc Promotes Immuno-Biochemical Plasticity and Protects Fish against Multiple Stresses. Fish Shellfish Immunol. 2017, 62, 184–194. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Li, Z.; Liang, H.-W.; Li, L.; Luo, X.-Z.; Zou, G.-W. Molecular Cloning and Differential Expression Patterns of Copper/Zinc Superoxide Dismutase and Manganese Superoxide Dismutase in Hypophthalmichthys molitrix. Fish Shellfish Immunol. 2011, 30, 473–479. [Google Scholar] [CrossRef]
- Marreiro, D.d.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Kumar, N.; Krishnani, K.K.; Singh, N.P. Effect of Zinc on Growth Performance and Cellular Metabolic Stress of Fish Exposed to Multiple Stresses. Fish Physiol. Biochem. 2020, 46, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.; Eryalçın, K.M.; Sivagurunathan, U.; Domínguez, D.; Hernández-Cruz, C.M.; Boglione, C.; Philip, A.J.P.; Izquierdo, M. Effects of the Dietary Supplementation of Copper on Growth, Oxidative Stress, Fatty Acid Profile and Skeletal Development in Gilthead Seabream (Sparus aurata) Larvae. Aquaculture 2023, 568, 739319. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, M.; Chen, C.; Wu, F.; Yang, J.; Tan, Q.; Xie, S.; Liang, X. Quantifying the Dietary Potassium Requirement of Juvenile Grass Carp (Ctenopharyngodon idellus). Aquaculture 2014, 430, 218–223. [Google Scholar] [CrossRef]
- Smith, M.W.; Ellory, J.C. Temperature-Induced Changes in Sodium Transport and Na+/K+-Adenosine Triphosphatase Activity in the Intestine of Goldfish (Carassius auratus L.). Comp. Biochem. Physiol. A Physiol. 1971, 39, 209–218. [Google Scholar] [CrossRef]
- Lin, C.-H.; Kuan, W.-C.; Liao, B.-K.; Deng, A.-N.; Tseng, D.-Y.; Hwang, P.-P. Environmental and Cortisol-Mediated Control of Ca2+ Uptake in Tilapia (Oreochromis mossambicus). J. Comp. Physiol. B 2016, 186, 323–332. [Google Scholar] [CrossRef]
- Dağdelen, Y.; Taşbozan, O. Determination of Growth and Nutritional Composition of Nile Tilapia (Oreochromis niloticus) Fed With L-Glutamic Acid Supplemented Feeds. Isr. J. Aquac. 2023, 75, 1–8. [Google Scholar] [CrossRef]
- Geda, F.; Declercq, A.M.; Remø, S.C.; Waagbø, R.; Lourenço, M.; Janssens, G.P.J. The Metabolic Response in Fish to Mildly Elevated Water Temperature Relates to Species-Dependent Muscular Concentrations of Imidazole Compounds and Free Amino Acids. J. Therm. Biol. 2017, 65, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Metabolism of Glutamate and Glutamine in Fish. Amino Acids 2020, 52, 671–691. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhao, J.; Wen, H.-S.; Li, Y.; Li, J.-F.; Li, L.-M.; Tao, Y.-X. The Impact of Acute Thermal Stress on the Metabolome of the Black Rockfish (Sebastes schlegelii). PLoS ONE 2019, 14, e0217133. [Google Scholar] [CrossRef]
- Baird, C.H.; Niederlechner, S.; Beck, R.; Kallweit, A.R.; Wischmeyer, P.E. L-Threonine Induces Heat Shock Protein Expression and Decreases Apoptosis in Heat-Stressed Intestinal Epithelial Cells. Nutrition 2013, 29, 1404–1411. [Google Scholar] [CrossRef]
- Kong, X.; Tan, B.; Yin, Y.; Gao, H.; Li, X.; Jaeger, L.A.; Bazer, F.W.; Wu, G. L-Arginine Stimulates the mTOR Signaling Pathway and Protein Synthesis in Porcine Trophectoderm Cells. J. Nutr. Biochem. 2012, 23, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine Metabolism and Nutrition in Growth, Health and Disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Guillén, C.; Jerez-Cepa, I.; Lopes, A.; Mancera, J.M.; Engrola, S. Effects of Early-Life Amino Acids Supplementation on Fish Responses to a Thermal Challenge. J. Comp. Physiol. B 2024, 194, 827–842. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, G.; Pham, C.V.; Koyanagi, K.; Song, Y.; Sudo, R.; Lauwereyns, J.; Cockrem, J.F.; Furuse, M.; Chowdhury, V.S. An Acute Increase in Water Temperature Can Increase Free Amino Acid Concentrations in the Blood, Brain, Liver, and Muscle in Goldfish (Carassius auratus). Fish Physiol. Biochem. 2019, 45, 1343–1354. [Google Scholar] [CrossRef]
- Liu, C. Effects of High Hydrostatic Pressure (HHP) and Storage Temperature on Bacterial Counts, Color Change, Fatty Acids and Non-Volatile Taste Active Compounds of Oysters (Crassostrea ariakensis). Food Chem. 2022, 372, 131247. [Google Scholar] [CrossRef]
- Guan, W.; Nong, W.; Wei, X.; Zhu, M.; Mao, L. Impacts of a Novel Live Shrimp (Litopenaeus vannamei) Water-Free Transportation Strategy on Flesh Quality: Insights through Stress Response and Oxidation in Lipids and Proteins. Aquaculture 2021, 533, 736168. [Google Scholar] [CrossRef]
- Feng, H.; Timira, V.; Zhao, J.; Lin, H.; Wang, H.; Li, Z. Insight into the Characterization of Volatile Compounds in Smoke-Flavored Sea Bass (Lateolabrax maculatus) during Processing via HS-SPME-GC-MS and HS-GC-IMS. Foods 2022, 11, 2614. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, L.K.; Wen, A.Y.; Wang, L.X.; Jin, G.M. Dietary Glutamine Supplementation Improves Growth Performance, Meat Quality and Colour Stability of Broilers under Heat Stress. Br. Poult. Sci. 2009, 50, 333–340. [Google Scholar] [CrossRef]
- Purriños, L.; Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Development of Volatile Compounds during the Manufacture of Dry-Cured “Lacón”, a Spanish Traditional Meat Product. J. Food Sci. 2011, 76, C89–C97. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Song, H. Variation of Aroma Components during Frozen Storage of Cooked Beef Balls by SPME and SAFE Coupled with GC-O-MS. J. Food Process. Preserv. 2021, 45, e15036. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.; Sun, Y.; Cao, J. Study on the Volatile Compounds Generated from Lipid Oxidation of Chinese Bacon (Unsmoked) during Processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600512. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of Relative Odor Activity Value (ROAV) to Link Aroma Profiles to Volatile Compounds: Application to Fresh and Dried Eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Xu, K. Evaluation of the Freshness of Rainbow Trout (Oncorhynchus mykiss) Fillets by the NIR, E-Nose and SPME-GC-MS. RSC Adv. 2022, 12, 11591–11603. [Google Scholar] [CrossRef] [PubMed]
C | CO | HS |
---|---|---|
Cortisol (pg/mL) | 806.42 ± 77.63 | 1000.45 ± 55.88 * |
Catecholamine (ng/mL) | 250.54 ± 22.96 | 320.03 ± 20.67 * |
MDA (nmol/mL) | 2.2 ± 0.24 | 2.89 ± 0.26 * |
GSH (U/mL) | 529.1 ± 29.22 * | 476.72 ± 23.65 |
T-AOC (ng/mL) | 16.02 ± 0.99 * | 14.59 ± 0.99 |
SOD (U/mL) | 193.94 ± 14.03 * | 171.06 ± 12.66 |
HSP-70 (pg/mL) | 226.64 ± 29.74 | 357.06 ± 38.25 * |
HSP-90 (pg/mL) | 226.59 ± 42.09 | 320.09 ± 38.56 * |
IL-1β (pg/mL) | 54.84 ± 7.01 | 69.5 ± 6.33 * |
TNF-α (pg/mL) | 170.57 ± 35.83 | 293.75 ± 29.53 * |
IL-6 (pg/mL) | 23.77 ± 4.23 | 36.21 ± 2.56 * |
IL-10 (pg/mL) | 405.52 ± 38.99 * | 272.06 ± 29.1 |
TGF-α (pg/mL) | 107.41 ± 15.73 | 140.9 ± 18.34 * |
Physical Property | CO | HS |
---|---|---|
Shear force | 14.30 ± 2.49 | 12.57 ± 1.08 |
Expressible moisture % | 21.65 ± 1.41 | 22.83 ± 1.59 |
pH | 6.52 ± 0.03 * | 6.47 ± 0.02 |
L* | 38.45 ± 1.29 | 37.15 ± 0.78 |
a* | 8.68 ± 0.13 * | 8.32 ± 0.12 |
b* | 14.25 ± 0.81 | 14.93 ± 0.84 |
Experimental Group | CO | HS |
---|---|---|
Nucleotides (mg/100 g) | ||
CMP | 0.66 ± 0.05 | 0.90 ± 0.06 * |
UMP | 0.90 ± 0.06 | 1.36 ± 0.04 * |
GMP | 3.01 ± 0.15 * | 0.31 ± 0.02 |
IMP | 126.39 ± 4.34 * | 2.35 ± 0.09 |
AMP | 1.43 ± 0.09 * | 0.11 ± 0.01 |
Organic acids | ||
Lactic acid | 237.39 ± 6.38 * | 93.97 ± 0.78 |
Fumaric acid | 0.43 ± 0.01 | 0.63 ± 0.01 * |
Experimental Group | CO | HS |
---|---|---|
Mn | 0.06 ± 0.00 | 0.12 ± 0.001 * |
Fe | 1.57 ± 0.08 | 3.07 ± 0.03 * |
Cu | 0.116 ± 0.01 | 0.266 ± 0.00 * |
Zn | 1.75 ± 0.06 | 2.17 ± 0.06 * |
Se | 0.02 ± 0.0 | 0.02 ± 0.00 |
K | 466.33 ± 3.77 * | 406.33 ± 1.53 |
Ca | 15.83 ± 0.35 * | 11.97 ± 0.21 |
Na | 24.63 ± 0.38 | 32.97 ± 0.25 * |
Mg | 32.53 ± 0.25 * | 29.5 ± 0.24 |
FAA | CO | HS |
---|---|---|
Asp | 8.43 ± 0.81 | 7.08 ± 0.49 |
Glu | 13 ± 1 * | 9.13 ± 0.25 |
Gly | 49.33 ± 2.31 | 47.2 ± 1.67 |
Ala | 18.73 ± 0.35 * | 17.5 ± 0.61 |
Cys | 0.88 ± 0.04 | 1.02 ± 0.12 |
Arg | 7.63 ± 0.21 | 9.33 ± 0.5 * |
Tyr | 9.7 ± 0.26 | 9.37 ± 0.35 |
Ser | 6.83 ± 0.45 * | 4.23 ± 0.38 |
Val | 4.53 ± 1.23 | 8.13 ± 1.03 * |
Lys | 14.4 ± 2.76 | 11.53 ± 0.76 |
His | 3.43 ± 0.21 | 2.93 ± 0.42 |
IIe | 1.467 ± 0.21 | 1.92 ± 0.02 * |
Leu | 4.52 ± 0.32 | 8.61 ± 1.06 * |
Phe | 6.1 ± 0.35 | 11.08 ± 1.11 * |
Thr | 7.57 ± 0.81 | 11.47 ± 1.18 * |
Total amino acids | 156.57 ± 3.77 | 160.55 ± 4.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, C.; Zhang, Y.; Zhao, X. Effects of Heat Stress on the Muscle Meat Quality of Rainbow Trout. Fishes 2024, 9, 459. https://doi.org/10.3390/fishes9110459
Li Y, Zhou C, Zhang Y, Zhao X. Effects of Heat Stress on the Muscle Meat Quality of Rainbow Trout. Fishes. 2024; 9(11):459. https://doi.org/10.3390/fishes9110459
Chicago/Turabian StyleLi, Yalan, Changqing Zhou, Yong Zhang, and Xingxu Zhao. 2024. "Effects of Heat Stress on the Muscle Meat Quality of Rainbow Trout" Fishes 9, no. 11: 459. https://doi.org/10.3390/fishes9110459
APA StyleLi, Y., Zhou, C., Zhang, Y., & Zhao, X. (2024). Effects of Heat Stress on the Muscle Meat Quality of Rainbow Trout. Fishes, 9(11), 459. https://doi.org/10.3390/fishes9110459