Length–Weight Relationship and Spatiotemporal Distribution Pattern of Three Schizothoracinae Fishes Along the Nujiang River in the Qinghai–Tibetan Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Material Collection
2.2. Environmental Factors
2.3. Data Analysis
2.3.1. LWR
2.3.2. PCOA, NMDS, and ANOSIM Analysis
2.3.3. RDA
3. Results
3.1. Length–Weight Relationship
3.2. LMM Analysis
3.3. Distribution Analysis
3.4. Relations Between Schizothoracine Fishes Populations and Environmental Factors
4. Discussion
4.1. Growth Characteristics of the Three Schizothoracinae Fishes and Environmental Impacts
4.2. Three Schizothoracinae Fishes Spatiotemporal Distribution Pattern Under Environmental Stress in QTP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Wang, M.; Yang, L.; Li, J.; Liang, Q. Hydrochemical characteristics and controlling factors of surface water in upper Nujiang River, Qinghai-Tibet Plateau. Minerals 2022, 12, 490. [Google Scholar] [CrossRef]
- He, D.K.; Chen, Y.F.; Chen, Y.Y.; Chen, Z.M. Molecular phylogeny of the specialized schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 2004, 49, 39–48. [Google Scholar] [CrossRef]
- He, D.K.; Chen, Y.F. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J. Biogeogr. 2006, 33, 1448–1460. [Google Scholar] [CrossRef]
- Zhang, C.G.; He, D.W. Tibetan fish resources. Bull. Biol. 1997, 32, 9–10. [Google Scholar]
- Chen, Y.Y.; Chen, Y.F.; Liu, H.Z. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line. Acta Hydrobiol. Sin. 1996, 2, 97–103. [Google Scholar] [CrossRef]
- Ng, H.H.; Jiang, W.S.; Chen, X.Y. Glyptothorax lanceatus, a new species of sisorid catfish (Teleostei: Siluriformes) from southwestern China. Zootaxa 2012, 3250, 54–62. [Google Scholar] [CrossRef]
- Kong, D.P.; Chen, X.Y.; Yang, J.X. Two new species of the sisorid Genus Oreoglanis Smith from Yunnan, China (Teleostei: Sisoridae). Environ. Biol. Fish. 2007, 78, 223–230. [Google Scholar]
- Chen, W.; Ma, X.; Shen, Y.; Mao, Y.; He, S. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci. Rep. 2015, 5, 17437. [Google Scholar] [CrossRef]
- Anene, A. Condition factor of four Cichlid species of a man-made lake in Imo State, Southeastern Nigeria. Turkish J. Fish. Aquat. Sci. 2005, 5, 43–47. [Google Scholar]
- Kohler, N.E.; Casey, J.G.; Turner, P.A. Length–weight relationships for 13 species of sharks from the western North Atlantic. Fish. Bull. 1995, 93, 412–418. [Google Scholar]
- Lai, H.L.; Helser, T. Linear mixed-effects models for weight-length relationships. Fish. Res. 2004, 70, 377–387. [Google Scholar] [CrossRef]
- Morey, G.; Moranta, J.; Massuti, E.; Grau, A.; Linde, M.; Riera, F.; Morales-Nin, B. Weight-length relationships of littoral to lower slope fishes from the Western Mediterranean. Fish. Res. 2003, 62, 89–96. [Google Scholar] [CrossRef]
- Obasohan, E.E.; Obasohan, E.E.; Imasuen, J.A.; Isidahome, C.E. Preliminary studies of the length-weight relationships and condition factor of five species from Ibiekuma stream, Ekpoma, Edo state, Nigeria. J. Agricu. Res. Dev. 2012, 2, 61–69. [Google Scholar]
- Nieto-Navaro, J.T.; Zetina-Rejn, M.; Arreguin-Sanchez, F.; Arcos-Huitron, N.E.; Peña-Messina, E. Length-weight relationships of demersal fish from the eastern coast of the mouth of the gulf of California. J. Fish. Aquat. Sci. 2010, 5, 494–502. [Google Scholar]
- Petrakis, G.; Stergiou, K.I. Weight length relationships for 33 fish species in Greek waters. Fish. Res. 1995, 21, 465–469. [Google Scholar] [CrossRef]
- Dulcic, J.; Kraljevic, M. Weight-length relationships for 40 fish species in the eastern Adriatic (Crotian waters). Fish. Res. 1996, 28, 243–251. [Google Scholar] [CrossRef]
- State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods; China Environmental Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Aggrey, S.E. Logistic nonlinear mixed effects model for estimating growth parameters. Poultry Sci. 2009, 88, 276–280. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- Stewart, K.M. Changes in condition and maturation of the Oreochromis niloticus L. population of Ferguson’s Gulf, Lake Turkana, Kenya. J. Fish Biol. 1988, 33, 181–188. [Google Scholar] [CrossRef]
- Olurin, K.B.; Aderibigbe, O.A. Length-weight relationship and condition factor of pond reared juvenile Oreochromis niloticus. World J. Zool. 2006, 1, 82–85. [Google Scholar]
- Famoofo, O.O.; Abdul, W.O. Biometry, condition factors and length-weight relationships of sixteen fish species in Iwopin fresh-water ecotype of Lekki Lagoon, Ogun State, Southwest Nigeria. Heliyon 2020, 6, e02957. [Google Scholar] [CrossRef] [PubMed]
- Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Philip, K.P.; Mathew, K. Length-weight relationship and relative condition factor in Princanthus hamrur. Fish. Technol. 1996, 33, 79–83. [Google Scholar]
- Primavera, J.H.; Parado-Estepa, F.D.; Lebata, J.L. Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture 1998, 164, 67–75. [Google Scholar] [CrossRef]
- Li, F.; Yang, D.; He, Y.; Yao, D.; Yao, J.; Zhu, T. Age and growth of Ptychobarbus kaznakovi in the Zengqu River. Freshw. Fish. 2016, 46, 39–44. [Google Scholar]
- He, D.K.; Xiong, W.; Sui, X.Y.; Jia, Y.T.; Chen, Y.F. Length-weight relationships of three cyprinid fishes from headwater of the Nujiang River, China. J. Appl. Ichthyol. 2015, 31, 411–412. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Liu, Y.; Dong, Y.; Li, M.; An, Y.; Shi, F.; Beazley, R. Effects of the interaction among climate, terrain and human activities on biodiversity on the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 794, 148497. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Zhu, F.; Li, Z.; Liu, S.; Duan, X.; Chen, D.; Yang, R. Comparative study of three species of schizothoracine on feeding and digestive organs in upper Nujiang River. Chin. J. Zool. 2019, 54, 207–221. [Google Scholar]
- Handeland, S.O.; Imsland, A.K.; Stefansson, S.O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Fortin, M.C.; Medeiros, A.S.; Gajewski, K.; Barley, E.M.; Larocque-Tobler, I.; Porinchu, D.F.; Wilson, S.E. Chironomid-environment relations in northern north America. J. Paleolimnol. 2015, 54, 223–237. [Google Scholar] [CrossRef]
- Kaylor, M.J.; Justice, C.; Armstrong, J.B.; Staton, B.A.; Burns, L.A.; Sedell, E.; White, S.M. Temperature, emergence phenology and consumption drive seasonal shifts in fish growth and production across riverscapes. J. Anim. Ecol. 2021, 90, 1727–1741. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Kay, M.C.; Colgate, J.; Qi, R.; Lenihan, H.S. Small-Scale Spatial Variation in Population Dynamics and fishermen response in a coastal marine fishery. PLoS ONE 2012, 7, e52837. [Google Scholar] [CrossRef] [PubMed]
- Baayen, R.H.; Davidson, D.J.; Bates, D.M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 2008, 59, 390–412. [Google Scholar] [CrossRef]
- Weisberg, S.; Spangler, G.; Richmond, L.S. Mixed effects models for fish growth. Can. J. Fish. Aquat. Sci. 2010, 67, 269–277. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Tian, S.; Gao, C.; Ma, Q.; Liu, Z. Growth heterogeneity of bigeye tuna (Thunnus obesus) in the Indian Ocean explored by the mixed effects model. J. Fish. Sci. China 2020, 27, 88–96. [Google Scholar]
- Ma, Q.Y.; Jiao, Y.; Ren, Y.P. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys polyactis) along the north coast of China. PLoS ONE 2017, 12, e0171811. [Google Scholar] [CrossRef]
- Zhong, S.J.; Ma, Q.Y.; Liu, S.D.; Wang, S.J.; Ren, Y.P. Linear mixed-effects models for estimating spatiotemporal variations of length-weight relationships for Lophius litulon. J. Fish. Sci. China 2018, 25, 1299–1307. [Google Scholar] [CrossRef]
- Wang, X.; Xue, Y.; Ren, Y. Length-weight relationships of 43 fish species from Haizhou Bay, central Yellow Sea. J. Appl. Ichthyol. 2013, 29, 1183–1187. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Sears, M.W.; Raskin, E.; Angilletta, M.J.J. The world is not flat: Defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 2011, 51, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.Q.; Tang, M.; Liao, J.H.; Liang, S.Y.; Gan, L.T.; Hua, K.J.; Chen, Y.; Li, H.; Chen, W.; Merilä, J. Effects of temperature on growth and development of amphibian larvae across an altitudinal gradient in the Tibetan Plateau. Anim. Biol. 2020, 70, 239–250. [Google Scholar] [CrossRef]
- Fernandes, T.; McMeans, B.C. Coping with the cold: Energy storage strategies for surviving winter in freshwater fish. Ecography 2019, 42, 2037–2052. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Webster, M.M.; Hart, P.J.B. Intraspecific food competition in fishes. Fish Fish. 2006, 7, 231–261. [Google Scholar] [CrossRef]
- Liu, M.D.; Chen, D.Q.; Duan, X.B. Ichthyofauna compositionand distribution of fishes in Yunnan section of Lancang River. J. Fish. Sci. China 2011, 18, 156–170. [Google Scholar]
- Buisson, L.; Blanc, L.; Grenouillet, G. Modelling stream fish species distribution in a river network: The relative effects of temperature versus physical factors. Ecol. Freshw. Fish 2008, 17, 244–257. [Google Scholar] [CrossRef]
- Huet, M. Profiles and biology of Western European streams as related to fish management. T. Am. Fish. Soc. 1959, 88, 156–163. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Farrell, A.P. Physiology and climate change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.; Ferrel, A.; Seibel, B.; Pörtner, H.O.; Huey, R.B. Climate change tightens a metabolic constraint on marine habitats. Science 2015, 348, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Bozinovic, F.; Pörtner, H. Physiological ecology meets climate change. Ecol. Evol. 2015, 5, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Heino, J. Concordance of species richness patterns among multiple freshwater taxa: A regional perspective. Biodivers. Conserv. 2002, 11, 137–147. [Google Scholar] [CrossRef]
- Brazner, J.C.; Tanner, D.K.; Detenbeck, N.E.; Batterman, S.L.; Stark, S.L.; Jagger, L.A.; Snarski, V.M. Regional, watershed, and site-specific environmental influences on fish assemblage structure and function in western Lake Superior tributaries. Can. J. Fish. Aquat. Sci. 2005, 62, 1254–1270. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
Abbreviation | Sampling Sites | Longitude and Latitude | Elevation (m) | River Morphology | |
---|---|---|---|---|---|
°N | °E | ||||
CWL | Chawalong Township | 28.44818 | 98.46026 | 1749 | Broad valley |
BS | Basu County | 30.09977 | 97.23578 | 2664 | Broad valley |
LL | Luolong County | 30.81108 | 96.32362 | 3100 | Canyon in mountains |
BB | Bianba County | 31.28114 | 94.47794 | 3632 | Canyon in mountains |
BR | Biru County | 31.4878 | 93.77231 | 3836 | Canyon in mountains |
NQ | Naqu City | 31.45665 | 92.35575 | 4375 | Shallow valleys in plateau |
ZG | Zuogong County | 29.73331 | 97.75565 | 3816 | Canyon in mountains |
Sampling Sites | a | b | Adj. R2 | Sample Size (n) | |||
---|---|---|---|---|---|---|---|
Value | Std | Value | Std | Sig. | |||
S. nukiangensis | |||||||
CWL | 3.627 × 10−5 | 1.182 × 10−5 | 2.821 | 0.061 | ** | 0.97350 | 75 |
BS | 2.166 × 10−4 | 7.352 × 10−5 | 2.479 | 0.063 | ** | 0.93400 | 142 |
LL | 1.781 × 10−5 | 2.427 × 10−6 | 2.914 | 0.024 | ** | 0.98632 | 107 |
BB | 5.793 × 10−5 | 2.552 × 10−5 | 2.761 | 0.076 | ** | 0.98845 | 28 |
BR | 3.529 × 10−5 | 1.290 × 10−5 | 2.845 | 0.062 | ** | 0.98440 | 51 |
Spring | 9.529 × 10−5 | 2.455 × 10−5 | 2.672 | 0.044 | ** | 0.98988 | 51 |
Autumn | 1.554 × 10−5 | 3.423 × 10−6 | 2.979 | 0.038 | 0.96288 | 319 | |
P. kaznakovi | |||||||
BS | 1.287 × 10−5 | 1.479 × 10−5 | 2.983 | 0.214 | ** | 0.95056 | 25 |
LL | 1.806 × 10−5 | 2.338 × 10−6 | 2.912 | 0.023 | ** | 0.98506 | 124 |
BB | 1.113 × 10−5 | 2.440 × 10−6 | 3.004 | 0.040 | 0.97842 | 145 | |
BR | 6.000 × 10−6 | 8.349 × 10−7 | 3.110 | 0.025 | ** | 0.97788 | 318 |
NQ | 8.175 × 10−6 | 5.340 × 10−6 | 3.055 | 0.110 | 0.95361 | 38 | |
ZG | 2.726 × 10−5 | 9.762 × 10−6 | 2.843 | 0.066 | ** | 0.98107 | 56 |
Spring | 8.545 × 10−6 | 7.119 × 10−7 | 3.051 | 0.015 | ** | 0.99240 | 238 |
Autumn | 9.899 × 10−6 | 1.111 × 10−6 | 3.021 | 0.019 | 0.98504 | 413 | |
S. thermalis | |||||||
LL | 3.481 × 10−5 | 1.968 × 10−5 | 2.809 | 0.113 | ** | 0.97658 | 32 |
BR | 1.293 × 10−5 | 4.953 × 10−6 | 2.990 | 0.071 | 0.97305 | 98 | |
NQ | 1.548 × 10−5 | 3.189 × 10−6 | 2.971 | 0.038 | 0.97327 | 454 | |
ZG | 1.39 × 10−5 | 1.068 × 10−6 | 2.992 | 0.014 | 0.98819 | 349 | |
Spring | 7.810 × 10−5 | 2.189 × 10−5 | 2.674 | 0.049 | ** | 0.93502 | 398 |
Autumn | 1.833 × 10−5 | 4.502 × 10−6 | 2.942 | 0.043 | 0.96318 | 460 |
Model Abbreviation | Model (Log10-Transformed) | Random Effect | S. nukiangensis | P. kaznakovi | S. thermalis |
---|---|---|---|---|---|
WLR | W = a × L^b ln(W) = ln(a) + b × ln(L) | None | 0.0999641 | 0.0520337 | 0.0655127 |
I.R | W = (a × exp(ReR.I)) × L^b ln(W) = (ln(a) + ReR.I) + b × ln(L) | Region | 0.0977282 | 0.0492677 | 0.0639772 |
I.S | W = (a × exp(ReS.I)) × L^b ln(W) = (ln(a) + ReS.I) + b × ln(L) | Season | 0.0991763 | 0.0518604 | 0.0655127 |
I.R&S | W = (a × exp(ReR.I)) × exp(ReS.I) × L^b ln(W) = (ln(a) + ReR.I + ReS.I) + b × ln(L) | Region + Season | 0.0975144 | 0.0492253 | 0.0637690 |
S.R | W = a × L^(b + exp(ReR.S)) ln(W) = ln(a) + (b + ReR.S) × ln(L) | Region | 0.0991154 | 0.0493031 | 0.0639683 |
S.S | W = a × L^(b + exp(ReS.S)) ln(W) = ln(a) + (b + ReS.S) × ln(L) | Season | 0.0991154 | 0.0518821 | 0.0655127 |
S.R&S | W = a × L^(b + exp(ReR.S) + exp(ReS.S)) ln(W) = ln(a) + (b + ReR.S + ReS.S) × ln(L) | Region + Season | 0.0973583 | 0.0492933 | 0.0637777 |
I&S.R | W = (a × exp(ReR.I)) × L^(b + exp(ReR.S)) ln(W) = (ln(a) + ReR.I) + (b + ReR.S) × ln(L) | Region | 0.0971276 | 0.0478646 | 0.0630079 |
I&S.S | W = (a × exp(ReS.I)) × L^(b + exp(ReS.S)) ln(W) = (ln(a) + ReS.I) + (b + ReS.S) × ln(L) | Season | 0.0990382 | 0.0517763 | 0.0654740 |
I&S.R&S | W = (a × exp(ReR.I)) × exp(ReS.I) × L^(b + exp(ReR.S) + exp(ReS.S)) ln(W) = (ln(a) + ReR.I + ReS.I) + (b + ReR.S + ReS.S) × ln(L) | Region + Season | 0.0968849 | 0.0477507 | 0.0629002 |
Sampling Sites | S. nukiangensis | P. kaznakovi | S. thermalis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount (ind) | Biomass (g) | CPUE (g/(h × m2)) | Average Weight (g) | Amount (ind) | Biomass (g) | CPUE (g/(h × m2)) | Average Weight (g) | Amount (ind) | Biomass (g) | CPUE (g/(h × m2)) | Average Weight (g) | |
CWL | 393 | 9718.7 | 0.1125 | 24.73 | NA | NA | NA | NA | NA | NA | NA | NA |
BS | 340 | 34,304.7 | 0.3970 | 100.896 | 75 | 6020.5 | 0.0697 | 80.274 | 48 | 962.5 | 0.0111 | 20.053 |
LL | 164 | 13,522.1 | 0.1565 | 82.452 | 199 | 13,784 | 0.1595 | 69.267 | 53 | 3063.8 | 0.0355 | 57.808 |
BB | 42 | 13,828.7 | 0.1601 | 329.256 | 257 | 22,002.8 | 0.2547 | 85.614 | 37 | 547.1 | 0.0063 | 78.159 |
BR | 78 | 29,001.2 | 0.3357 | 371.81 | 547 | 27,478.5 | 0.3180 | 50.235 | 130 | 6173.9 | 0.0715 | 47.492 |
NQ | NA | NA | NA | NA | 57 | 29,666.4 | 0.3434 | 520.464 | 578 | 91,139.5 | 1.0549 | 157.681 |
ZG | 13 | 97.77 | 0.0011 | 7.521 | 142 | 8405 | 0.0973 | 59.19 | 697 | 23,217.3 | 0.2687 | 33.31 |
Sampling Sites | CWL | BS | LL | BB | BR | NQ | ZG |
---|---|---|---|---|---|---|---|
CWL | 0.294 | 0.369 * | 0.177 | 0.065 | 0.802 ** | 0.679 ** | |
BS | 0.012 | 0.470 * | −0.130 | 0.356 * | 0.580 ** | 0.606 * | |
LL | 0.266 | −0.056 | 0.463 ** | 0.328 * | 0.620 * | 0.720 ** | |
BB | −0.147 | 0.75 ** | 0.468 * | 0.133 | 0.630 ** | 0.520 *** | |
BR | 0.339 * | −0.156 | 0.222 | 0.598 ** | 0.717 ** | 0.681 ** | |
NQ | 0.598 * | 0.220 * | 0.280 * | 0.689 ** | 0.565 ** | −0.017 | |
ZG | 0.139 | 0.507 ** | 0.402 ** | 0.809 ** | 0.633 ** | 0.191 |
Environmental Factors | Name in Figure 8 | Fish Amount | Fish Biomass | ||
---|---|---|---|---|---|
Correlation with Species Distribution (R2) | Sig. (P) | Correlation with Species Distribution (R2) | Sig. (P) | ||
Altitude | Altitude | 0.8996 | 0.001 *** | 0.7805 | 0.001 *** |
Water temperature | Temperature | 0.6165 | 0.001 *** | 0.2375 | 0.126 |
Dissolved oxygen | DO | 0.1273 | 0.348 | 0.1186 | 0.367 |
Flow velocity | FV | 0.1042 | 0.409 | 0.3838 | 0.016 * |
pH | pH | 0.1306 | 0.326 | 0.0582 | 0.626 |
Total nitrogen | TN | 0.2250 | 0.123 | 0.0752 | 0.543 |
Total phosphorus | TP | 0.0526 | 0.663 | 0.1004 | 0.454 |
Permanganate index | CODMn | 0.1163 | 0.374 | 0.0541 | 0.633 |
Nitrate | NO3 | 0.2601 | 0.077 | 0.0203 | 0.857 |
Phosphate | PO3 | 0.1204 | 0.369 | 0.0414 | 0.711 |
Ammonium | NH4 | 0.1417 | 0.287 | 0.0193 | 0.872 |
Chemical oxygen demand | COD | 0.3998 | 0.022 | 0.3851 | 0.019 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Xu, W.; Zhu, F.; Duan, X.; Liu, S.; Chen, D. Length–Weight Relationship and Spatiotemporal Distribution Pattern of Three Schizothoracinae Fishes Along the Nujiang River in the Qinghai–Tibetan Plateau, China. Fishes 2024, 9, 465. https://doi.org/10.3390/fishes9110465
Liu M, Xu W, Zhu F, Duan X, Liu S, Chen D. Length–Weight Relationship and Spatiotemporal Distribution Pattern of Three Schizothoracinae Fishes Along the Nujiang River in the Qinghai–Tibetan Plateau, China. Fishes. 2024; 9(11):465. https://doi.org/10.3390/fishes9110465
Chicago/Turabian StyleLiu, Mingdian, Weitong Xu, Fengyue Zhu, Xinbin Duan, Shaoping Liu, and Daqing Chen. 2024. "Length–Weight Relationship and Spatiotemporal Distribution Pattern of Three Schizothoracinae Fishes Along the Nujiang River in the Qinghai–Tibetan Plateau, China" Fishes 9, no. 11: 465. https://doi.org/10.3390/fishes9110465
APA StyleLiu, M., Xu, W., Zhu, F., Duan, X., Liu, S., & Chen, D. (2024). Length–Weight Relationship and Spatiotemporal Distribution Pattern of Three Schizothoracinae Fishes Along the Nujiang River in the Qinghai–Tibetan Plateau, China. Fishes, 9(11), 465. https://doi.org/10.3390/fishes9110465