Oligochitosan Mitigates Vibrio harveyi Infection in Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) by Modulating Immune Responses and Disease-Related Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. V. Harveyi Challenge
2.3. Experimental Design
2.4. Growth Performance
2.5. Biochemical Analysis
2.6. RNA Extraction, cDNA Synthesis, and Transcriptomic Sequencing Analyses
2.7. Expression of Immune-Related Genes Using qRT-PCR
2.8. Apoptosis Analysis
2.9. Statistical Analysis
3. Results
3.1. Changes in Growth Performance
3.2. Changes in Biochemical Activities
3.3. Changes in Gut Transcriptome Profiles
3.4. Changes in Immune Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Zhang, X.H.; He, X.; Austin, B. Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Defoirdt, T.; Ina-Salwany, M.Y.; Yusoff, F.M.; Shariff, M.; Ismail, S.I.; Natrah, I. Vibrio parahaemolyticus and Vibrio harveyi causing acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei (Boone, 1931) isolated from Malaysian shrimp ponds. Aquaculture 2019, 511, 734227. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Regenstein, J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2015, 48, 40–50. [Google Scholar] [CrossRef]
- Abdel-Ghany, H.M.; Salem, M.E.-S. Effects of dietary chitosan supplementation on farmed fish; a review. Rev. Aquac. 2020, 12, 438–452. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, Y.; Liu, W.; Xu, L.; Yang, Y.; Zhou, Z. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus × Oreochromis aureus. Fish Shellfish. Immunol. 2014, 40, 267–274. [Google Scholar] [CrossRef]
- Luo, L.; Cai, X.; He, C.; Xue, M.; Wu, X.; Cao, H. Immune response, stress resistance and bacterial challenge in juvenile rainbow trouts Oncorhynchus mykiss fed diets containing chitosan-oligosaccharides. Curr. Zool. 2009, 55, 416–422. [Google Scholar] [CrossRef]
- Wu, C.; Dai, Y.; Yuan, G.; Su, J.; Liu, X. Immunomodulatory effects and induction of apoptosis by different molecular weight chitosan oligosaccharides in head kidney macrophages from blunt snout bream (Megalobrama amblycephala). Front. Immunol. 2019, 10, 869. [Google Scholar] [CrossRef]
- Shi, F.; Qiu, X.; Nie, L.; Hu, L.; Babu, V.S.; Lin, Q.; Zhang, Y.; Chen, L.; Li, J.; Lin, L.; et al. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus). Fish Shellfish. Immunol. 2020, 106, 563–573. [Google Scholar] [CrossRef]
- Maekawa, S.; Wang, P.-C.; Chen, S.-C. Comparative study of immune reaction against bacterial infection from transcriptome analysis. Front. Immunol. 2019, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Bhassu, S.; Bing, R.Z.Y.; Alinejad, T.; Hassan, S.S.; Wang, J. A transcriptome study on Macrobrachium rosenbergii hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). J. Invertebr. Pathol. 2016, 136, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, L.; Jin, M.; Li, T.; Hui, K.; Ren, Q. Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge. Fish Shellfish. Immunol. 2017, 67, 27–39. [Google Scholar] [CrossRef]
- Ding, Z.; Jin, M.; Ren, Q. Transcriptome analysis of Macrobrachium rosenbergii intestines under the white spot syndrome virus and poly (I:C) challenges. PLoS ONE 2018, 13, e0204626. [Google Scholar] [CrossRef]
- Xu, H.; Xu, X.; Li, X.; Wang, L.; Cheng, J.; Zhou, Q.; Chen, S. Comparative transcriptome profiling of immune response against Vibrio harveyi infection in Chinese tongue sole. Sci. Data 2019, 6, 224. [Google Scholar] [CrossRef]
- Nankervis, L.; Cobcroft, J.M.; Nguyen, N.V.; Rimmer, M.A. Advances in practical feed formulation and adoption for hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) aquaculture. Rev. Aquac. 2022, 14, 288–307. [Google Scholar] [CrossRef]
- Mohamad, N.; Mohd Roseli, F.A.; Azmai, M.N.A.; Saad, M.Z.; Md Yasin, I.S.; Zulkiply, N.A.; Nasruddin, N.S. Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia. J. Aquat. Anim. Health 2019, 31, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.M.; Shi, C.Y.; Fan, C.; Jia, D.; Wang, S.Q.; Xie, G.S.; Li, G.Y.; Mo, Z.L.; Huang, J. Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus × Epinephelus lanceolatus. J. Fish Dis. 2017, 40, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Huang, Y.; Lu, Z.; Zou, C.; Tan, X.; Su, Y.; Tang, K.; Qin, Z.; Lin, L. Effects of oligochitosan on the growth, immune responses and gut microbes of hybrid groupers (Epinephelus fuscoguttatus ♀× Epinephelus lanceolatu ♂). J. Fish. China 2022, 46, 1689–1700. [Google Scholar]
- Shi, F.; Chen, Z.; Huang, Y.; Lin, L.; Qin, Z. Hepatoprotective effects of oligochitosan on hybrid groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) against Vibrio harvey infection via suppressing apoptosis-related pathways. Aquac. Int. 2024, 32, 5833–5849. [Google Scholar] [CrossRef]
- Shi, F.; Zi, Y.; Lu, Z.; Li, F.; Yang, M.; Zhan, F.; Li, Y.; Li, J.; Zhao, L.; Lin, L.; et al. Bacillus subtilis H2 modulates immune response, fat metabolism and bacterial flora in the gut of grass carp (Ctenopharyngodon idellus). Fish Shellfish. Immunol. 2020, 106, 8–20. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-Time quantitative PCR and the 2−ΔΔCT method. Methods 2011, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.; Zhang, X.H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Rahimnejad, S.; Yuan, X.; Wang, L.; Lu, K.; Song, K.; Zhang, C. Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. Fish Shellfish. Immunol. 2018, 80, 405–415. [Google Scholar] [CrossRef]
- Lin, S.; Mao, S.; Guan, Y.; Lin, X.; Luo, L. Dietary administration of chitooligosaccharides to enhance growth, innate immune response and disease resistance of Trachinotus ovatus. Fish Shellfish. Immunol. 2012, 32, 909–913. [Google Scholar] [CrossRef]
- Zhang, B. Dietary chitosan oligosaccharides modulate the growth, intestine digestive enzymes, body composition and nonspecific immunity of loach Paramisgurnus dabryanus. Fish Shellfish. Immunol. 2019, 88, 359–363. [Google Scholar] [CrossRef]
- Su, P.; Han, Y.; Jiang, C.; Ma, Y.; Pan, J.; Liu, S.; Zhang, T. Effects of chitosan-oligosaccharides on growth performance, digestive enzyme and intestinal bacterial flora of tiger puffer (Takifugu rubripes Temminck et Schlegel, 1850). J. Appl. Ichthyol. 2017, 33, 458–467. [Google Scholar] [CrossRef]
- Lim, C.; Yildirim-Aksoy, M.; Li, M.H.; Welker, T.L.; Klesius, P.H. Influence of dietary levels of lipid and vitamin E on growth and resistance of Nile tilapia to Streptococcus iniae challenge. Aquaculture 2009, 298, 76–82. [Google Scholar] [CrossRef]
- Nikapitiya, C.; Dananjaya, S.H.S.; De Silva, B.C.J.; Heo, G.J.; Oh, C.; De Zoysa, M.; Lee, J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish Shellfish. Immunol. 2018, 76, 240–246. [Google Scholar] [CrossRef]
- Abu-Elala, N.M.; Mohamed, S.H.; Zaki, M.M.; Eissa, A.E. Assessment of the immune-modulatory and antimicrobial effects of dietary chitosan on Nile tilapia (Oreochrmis niloticus) with special emphasis to its bio-remediating impacts. Fish Shellfish. Immunol. 2015, 46, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, R.; Kim, J.S.; Balasundaram, C.; Heo, M.S. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol. 2012, 131, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Duy, N.N.; Phu, D.V.; Quoc, L.A.; Lan, N.T.K.; Hai, P.D.; Nguyen, N.V.; Hien, N.Q. Effect of oligochitosan and oligo-beta-glucan supplementation on growth, innate immunity, and disease resistance of striped catfish (Pangasianodon hypophthalmus). Biotechnol. Appl. Biochem. 2017, 64, 564–571. [Google Scholar]
- Li, R.; Yang, X.; Li, Q.; Ye, S.; Li, H. Enhanced immune response and resistance to edwardsiellosis following dietary chitooligosaccharide supplementation in the olive flounder (Paralichthys olivaceus). Fish Shellfish. Immunol. 2015, 47, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, E.; Giménez, G.; Fernández, I.; Kotzamanis, Y.; Estévez, A. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 2009, 287, 381–387. [Google Scholar] [CrossRef]
- Liu, J.; Mai, K.; Xu, W.; Zhang, Y.; Zhou, H.; Ai, Q. Effects of dietary glutamine on survival, growth performance, activities of digestive enzyme, antioxidant status and hypoxia stress resistance of half-smooth tongue sole (Cynoglossus semilaevis Günther) post larvae. Aquaculture 2015, 446, 48–56. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- He, Q.; Feng, W.; Chen, X.; Xu, Y.; Zhou, J.; Li, J.; Xu, P.; Tang, Y. H2O2-induced oxidative stress responses in Eriocheir sinensis: Antioxidant defense and immune gene expression dynamics. Antioxidants 2024, 13, 524. [Google Scholar] [CrossRef]
- Lu, J.; Qi, C.; Limbu, S.M.; Han, F.; Yang, L.; Wang, X.; Qin, J.G.; Chen, L. Dietary mannan oligosaccharide (MOS) improves growth performance, antioxidant capacity, non-specific immunity and intestinal histology of juvenile Chinese mitten crabs (Eriocheir sinensis). Aquaculture 2019, 510, 337–346. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef]
- Awad, E.; Austin, B.; Lyndon, A.R. Effect of dietary supplements on digestive enzymes and growth performance of rainbow trout (Oncorhynchus mykiss, Walbaum). J. Am. Sci. 2012, 8, 858–864. [Google Scholar]
- Hu, T.; Liu, C.H.; Lei, M.; Zeng, Q.; Li, L.; Tang, H.; Zhang, N. Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct. Target. Ther. 2024, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Jing, X.; Zhang, C.; Hou, Y.; Li, Z.; Yang, X.; Zhou, X.; Xu, P.; Tang, Y.; Zhu, J. Interaction between the intestinal microbial community and transcriptome profile in Common Carp (Cyprinus carpio L.). Front. Microbiol. 2021, 12, 659602. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Li, X.; Yue, X.; Gouife, M.; Huang, K.; Chen, S.; Ma, R.; Jiang, J.; Zhou, S.; Jin, S. Transcriptome profiling and differential expression analysis of the immune-related genes during the acute phase of infection with Photobacterium damselae subsp. damselae in silver pomfret (Pampus argenteus). Fish Shellfish. Immunol. 2022, 131, 342–348. [Google Scholar] [CrossRef]
- Sun, F.; Peatman, E.; Li, C.; Liu, S.; Jiang, Y.; Zhou, Z.; Liu, Z. Transcriptomic signatures of attachment, NF-κB suppression and IFN stimulation in the catfish gill following columnaris bacterial infection. Dev. Comp. Immunol. 2012, 38, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Kim, C.H.; Song, E.J.; Kang, M.J.; Kim, J.C.; Oh, S.M.; Lee, K.B.; Park, J.H. Nucleotide-binding oligomerization domain 2 (Nod2) is dispensable for the innate immune responses of macrophages against Yersinia enterocolitica. J. Microbiol. 2012, 50, 489–495. [Google Scholar] [CrossRef]
- Wu, J.; Niu, J.; Li, M.; Miao, Y. Keratin 1 maintains the intestinal barrier in ulcerative colitis. Genes Genom. 2021, 43, 1389–1402. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Guan, W.; Zhang, X.; Guan, S.; Zeng, Q.; Cheng, G.; Cui, W. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish Shellfish. Immunol. 2017, 68, 84–91. [Google Scholar] [CrossRef]
- Tran, H.B.; Chen, S.; Chaung, H.; Cheng, T. Molecular cloning of IL-6, IL-10, IL-11, IFN-ɤ and modulation of pro- and anti-inflammatory cytokines in cobia (Rachycentron canadum) after Photobacterium damselae subsp. piscicida infection. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2019, 230, 10–18. [Google Scholar] [CrossRef]
- Lowa, C.; Wadsworthb, S.; Burrellsc, C.; Secombes, C.J. Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture 2003, 221, 23–40. [Google Scholar] [CrossRef]
- Muanprasat, C.; Chatsudthipong, V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 2017, 170, 80–97. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Spindola, H.; de Sousa, V.; Santos-Silva, A.; Pintado, M.E.; Malcata, F.X.; Carvalho, J.E. Anti-inflammatory activity of chitooligosaccharides in vivo. Mar. Drugs 2010, 8, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Slifer, Z.M.; Blikslager, A.T. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 2020, 21, 972. [Google Scholar] [CrossRef]
- Soderholm, A.T.; Pedicord, V.A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology 2019, 158, 267–280. [Google Scholar] [CrossRef]
- Snyder, A.G.; Oberst, A. The antisocial network: Cross talk between cell death programs in host defense. Annu. Rev. Immunol. 2021, 39, 77–101. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Chen, H.; Xu, L.; Wang, Q.; Feng, J. Gut–liver immune response and gut microbiota profiling reveal the pathogenic mechanisms of Vibrio harveyi in Pearl Gentian Grouper (Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀). Front. Immunol. 2020, 11, 607754. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhuang, X.; Luo, W.; Liao, M.; Huang, L.; Cui, Q.; Huang, J.; Yan, C.; Jiang, Z.; Liu, Y.; et al. Andrographolide promote the growth and immunity of Litopenaeus vannamei, and protects shrimps against Vibrio alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. Front. Immunol. 2022, 13, 990297. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′-3′) |
---|---|---|
IL-1β | Forward | TACGATGCCTATGTGGTC |
Reverse | CTCTGCTTTATGCTGTCC | |
IL-8 | Forward | GCCGTCAGTGAAGGGAGTCTAG |
Reverse | ATCGCAGTGGGAGTTTGCA | |
IL-10 | Forward | TTCGACGAGCTCAAGAGTGAG |
Reverse | TGCCGTTTAGAAGCCAGATACA | |
CAT | Forward | GCGTTTGGTTACTTTGAGGTGA |
Reverse | GAGAAGCGGACAGCAATAGGT | |
GPx | Forward | TACCCTACCAAGTCCTCCAACC |
Reverse | AACAAACACCCGACACCCA | |
CLDN-3α | Forward | ACTCTATGCTCGCCCTCTCT |
Reverse | TGGATGCCTCGTCGTCA | |
OCLN | Forward | TCAGAACATCCAGGGCAATC |
Reverse | CCACCATCAGACCCAAAACT | |
ZO-2 | Forward | CAAGATTCTCCTCCGACCA |
Reverse | AACATCATTACCTCCTGCCA | |
ZO-3 | Forward | GAGCCAATCTACTCCCTTCC |
Reverse | CTGGTCTCCCTCTTTCATCC | |
β-actin | Forward | TACGAGCTGCCTGACGGACA |
Reverse | GGCTGTGATCTCCTTCTGC | |
18S rRNA | Forward | GCAATTATTCCCCATGAACG |
Reverse | GGTCGATCGAGGTCCTCAAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Ma, L.; Chen, Z.; Zhao, H.; Zou, C.; Lin, L.; Qin, Z. Oligochitosan Mitigates Vibrio harveyi Infection in Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) by Modulating Immune Responses and Disease-Related Pathways. Fishes 2024, 9, 506. https://doi.org/10.3390/fishes9120506
Shi F, Ma L, Chen Z, Zhao H, Zou C, Lin L, Qin Z. Oligochitosan Mitigates Vibrio harveyi Infection in Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) by Modulating Immune Responses and Disease-Related Pathways. Fishes. 2024; 9(12):506. https://doi.org/10.3390/fishes9120506
Chicago/Turabian StyleShi, Fei, Lixin Ma, Zhilong Chen, Hao Zhao, Cuiyun Zou, Li Lin, and Zhendong Qin. 2024. "Oligochitosan Mitigates Vibrio harveyi Infection in Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) by Modulating Immune Responses and Disease-Related Pathways" Fishes 9, no. 12: 506. https://doi.org/10.3390/fishes9120506
APA StyleShi, F., Ma, L., Chen, Z., Zhao, H., Zou, C., Lin, L., & Qin, Z. (2024). Oligochitosan Mitigates Vibrio harveyi Infection in Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) by Modulating Immune Responses and Disease-Related Pathways. Fishes, 9(12), 506. https://doi.org/10.3390/fishes9120506