Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description
Abstract
:1. Introduction
2. Penaeus vannamei in the European Market—Shrimp Aquaculture in the EU
3. Indoor Aquaculture Systems: Advantages, Disadvantages, Innovations, and Economic Viability in the Mediterranean
4. Presence of Non-Indigenous Marine Shrimp Species in the Mediterranean—The Case of Penaeus vannamei
5. Description of an Experimental Penaeus vannamei Aquaculture Unit within a Greenhouse in Temperate Latitude (North Greece)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willer, D.F.; Aldridge, D.C. Microencapsulated diets to improve bivalve shellfish aquaculture for global food security. Glob. Food Secur. 2019, 23, 64–73. [Google Scholar] [CrossRef]
- Fisheries Global Information System (FAO-FIGIS)—Web Site. Fisheries Global Information System (FIGIS). FI Institutional Websites. In FAO Fisheries Division [Online]; Rome. Updated; Available online: https://www.fao.org/fishery/en/figis (accessed on 1 October 2023).
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- FAO. The State of the World Fisheries and Aquaculture 2020: Towards Blue Transformation; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2020; Available online: https://openknowledge.fao.org/items/b752285b-b2ac-4983-92a9-fdb24e92312b (accessed on 1 February 2024).
- Lennard, W.; Goddek, S. Aquaponics: The basics. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 2019, 652, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, M.; Thirumurthy, S.; Muralidhar, M.; Ravichandran, P. Impact of shrimp aquaculture development on important ecosystems in India. Glob. Environ. Chang. 2018, 52, 10–21. [Google Scholar] [CrossRef]
- Klinger, D.; Naylor, R. Searching for solutions in aquaculture: Charting a sustainable course. Annu. Rev. Environ. Res. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, H.; Dong, D.; Zhang, J.; Yang, X.; Li, X.; Song, X. Comparative life cycle assessment of whiteleg shrimp (Penaeus vannamei) cultured in recirculating aquaculture systems (RAS), biofloc technology (BFT) and higher-place ponds (HPP) farming systems in China. Aquaculture 2023, 574, 739625. [Google Scholar] [CrossRef]
- Treviño, M.; Murillo-Sandoval, P.J. Uneven consequences: Gendered impacts of shrimp aquaculture development on mangrove dependent communities. Ocean Coast. Manag. 2021, 210, 105688. [Google Scholar] [CrossRef]
- Tran, N.; Bailey, C.; Wilson, N.; Phillips, M. Governance of global value chains in response to food safety and certification standards: The case of shrimp from Vietnam. World Dev. 2013, 45, 325–336. [Google Scholar] [CrossRef]
- Albalat, A.; Zacarias, S.; Coates, C.J.; Neil, D.M.; Planellas, S.R. Welfare in farmed decapod crustaceans, with particular reference to Penaeus vannamei. Front. Mar. Sci. 2022, 9, 886024. [Google Scholar] [CrossRef]
- Xuan, B.B.; Sandorf, E.D.; Ngoc, Q.T.K. Stakeholder perceptions towards sustainable shrimp aquaculture in Vietnam. J. Environ. Manag. 2021, 290, 112585. [Google Scholar] [CrossRef]
- El Sayed, A.F.M. Use of biofloc technology in shrimp aquaculture: A comprehensive review, with emphasis on the last decade. Rev. Aquac. 2021, 13, 676–705. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Qual. 2017, 5, 92–109. [Google Scholar]
- Valenti, W.C.; Flickinger, D.L. Freshwater caridean culture. In Fishes and Aquaculture, 1st ed.; Lovrich, G., Thiel, M., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 207–231. [Google Scholar]
- Emerenciano, M.; Gaxiola, G.; Cuzon, G. Biofloc technology (BFT): A review for aquaculture application and animal food industry. Biomass Now-Cultiv. Util. 2013, 12, 301–328. [Google Scholar]
- Abakari, G.; Luo, G.; Kombat, E.O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquacult. Fish. 2021, 6, 441–447. [Google Scholar] [CrossRef]
- Braga, Í.F.M.; Araújo, M.T.; Brito, L.O.; Correia, E.D.S. Influence of BFT and water exchange systems on growth, ammonia tolerance, and water footprint in Macrobrachium rosenbergii nursery in intensive systems. Aquacult. Int. 2023, 31, 1775–1788. [Google Scholar] [CrossRef]
- Robles-Porchas, G.R.; Gollas Galván, T.; Martínez Porchas, M.; Martínez Cordova, L.R.; Miranda Baeza, A.; Vargas Albores, F. The nitrification process for nitrogen removal in biofloc system aquaculture. Rev. Aquac. 2020, 12, 2228–2249. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Gou, J.; Hou, J.; Li, D.; He, X. The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture 2018, 482, 103–110. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology. A Practical Guidebook, 3rd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2015. [Google Scholar]
- Dorothy, M.S.; Vungarala, H.; Sudhagar, A.; Reddy, A.K.; Rani Asanaru Majeedkutty, B. Growth, body composition and antioxidant status of Litopenaeus vannamei juveniles reared at different stocking densities in the biofloc system using inland saline groundwater. Aquacult. Res. 2021, 52, 6299–6307. [Google Scholar]
- Uawisetwathana, U.; Situmorang, M.L.; Arayamethakorn, S.; Haniswita; Suantika, G.; Panya, A.; Karoonuthaisiri, N.; Rungrassamee, W. Supplementation of ex-situ biofloc to improve growth performance and enhance nutritional values of the Pacific white shrimp rearing at low salinity conditions. Appl. Sci. 2021, 11, 4598. [Google Scholar] [CrossRef]
- Cardona, E.; Lorgeoux, B.; Geffroy, C.; Richard, P.; Saulnier, D.; Gueguen, Y.; Guillou, G.; Chim, L. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeusstylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture 2015, 448, 288–297. [Google Scholar] [CrossRef]
- Ballester, E.L.C.; Marzarotto, S.A.; Silva de Castro, C.; Frozza, A.; Pastore, I.; Abreu, P.C. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquacult. Res. 2017, 48, 4748–4755. [Google Scholar] [CrossRef]
- Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming Marine Shrimp in Recirculating Freshwater Systems; Harbor Branch Oceanographic Institution: Ft. Pierce, FL, USA, 1999; pp. 125–140. [Google Scholar]
- Peixoto, S., Jr.; Wasielesky, W., Jr.; Louzada, L., Jr. Comparative analysis of pink shrimp, Farfantepenaeus paulensis, and Pacific white shrimp, Litopenaeus vannamei, culture in extreme southern Brazil. J. Appl. Aquac. 2003, 14, 101–111. [Google Scholar] [CrossRef]
- Apostolidis, C.; Stergiou, K.I. Fish ingredients in online recipes do not promote the sustainable use of vulnerable taxa. Mar. Ecol. Prog. Ser. 2012, 465, 299–304. [Google Scholar] [CrossRef]
- Hicks, D.; Pivarnik, L.; McDermott, R. Consumer perceptions about seafood—An Internet survey. J. Food Serv. 2008, 19, 213–226. [Google Scholar] [CrossRef]
- Özkan Özden, N.E. Effect of different packing methods on the shelf life of marinated rainbow trout. Arch. Food Hyg. 2006, 57, 69–75. [Google Scholar]
- Sagun, O.K.; Sayğı, H. Consumption of fishery products in Turkey’s coastal regions. Br. Food J. 2021, 123, 3070–3084. [Google Scholar] [CrossRef]
- Almeida, C.; Karadzic, V.; Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Pol. 2015, 61, 87–94. [Google Scholar] [CrossRef]
- Pieniak, Z.; Verbeke, W.; Perez-Cueto, F.; Brunsø, K.; De Henauw, S. Fish consumption and its motives in households with versus without self-reported medical history of CVD: A consumer survey from five European countries. BMC Public Health 2008, 8, 306. [Google Scholar] [CrossRef]
- Briggs, M.; Funge-Smith, S.; Subasinghe, R.; Phillips, M. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP Publ. 2004, 10, 92. [Google Scholar]
- Lofstedt, A.; de Roos, B.; Fernandes, P.G. Less than half of the European dietary recommendations for fish consumption are satisfied by national seafood supplies. Eur. J. Nutr. 2021, 60, 4219–4228. [Google Scholar] [CrossRef]
- Volza. 2024. Available online: https://www.volza.com/p/vannamei-shrimp/import/import-in-greece/ (accessed on 1 February 2024).
- Kumlu, M.; Kinay, E.; Yilmaz, H.A.; Beksari, A.; Eroldogan, O.T.; Sariipek, M. Response of Fatty Acid Composition of the Green Tiger Shrimp Penaeus semisulcatus During the Overwintering Period. Turk. J. Fish. Aquat. Sci. 2019, 19, 661–667. [Google Scholar] [CrossRef]
- Leung, P.S.; Moss, S.M. Economic assessment of a prototype biosecure shrimp growout facility. In Controlled and Biosecure Production Systems, Proceedings of a Special Session: Integration of Shrimp and Chickens Models; Bullis, R.A., Pruder, G.D., Eds.; The Oceanic Institute: Waimanalo, HI, USA, 1999; pp. 97–106. [Google Scholar]
- de Almeida, M.S.; Carrijo-Mauad, J.R.; Gimenes, R.M.; Gaona, C.A.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W., Jr.; Fóes, G.K. Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquac. Int. 2021, 29, 723–741. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2013; pp. 1–11. [Google Scholar]
- Tien, N.N.; Matsuhashi, R.; Chau, V.T.T.B. A sustainable energy model for shrimp farms in the Mekong Delta. Energy Procedia 2019, 157, 926–938. [Google Scholar] [CrossRef]
- Araneda, M.; Pérez, E.P.; Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: Condition state based on length and weight. Aquaculture 2008, 283, 13–18. [Google Scholar] [CrossRef]
- Van Wyk, P. Production of Litopenaeus vannamei in recirculating aquaculture systems: Management and design considerations. In Proceedings of the 6th International Conference in Recirculating Aquaculture, Blacksburg, VA, USA, 20–23 July 2006; pp. 38–47. [Google Scholar]
- Kumaran, M.; Anand, P.R.; Kumar, J.A.; Ravisankar, T.; Paul, J.; Vimala, D.D.; Raja, K.A. Is Pacific white shrimp (Penaeus vannamei) farming in India is technically efficient?—A comprehensive study. Aquaculture 2017, 468, 262–270. [Google Scholar] [CrossRef]
- Van Wyk, P.M. Designing efficient indoor shrimp production systems: A bioeconomic approach. In The New Wave: Proceedings of the Special Session on Sustainable Shrimp Farming; Browdy, C.I., Jory, D., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2001; pp. 44–56. [Google Scholar]
- Nisar, U.; Zhang, H.; Navghan, M.; Zhu, Y.; Mu, Y. Comparative analysis of profitability and resource use efficiency between Penaeus monodon and Litopenaeu svannamei in India. PLoS ONE 2021, 16, e0250727. [Google Scholar] [CrossRef]
- Yi, D.; Reardon, T.; Stringer, R. Shrimp aquaculture technology change in Indonesia: Are small farmers included? Aquaculture 2018, 493, 436–445. [Google Scholar] [CrossRef]
- Boyd, C.E.; McNevin, A.A.; Racine, P.; Tinh, H.Q.; Minh, H.N.; Viriyatum, R.; Paungkaew, D.; Engle, C. Resource use assessment of shrimp, Litopenaeusvannamei and Penaeus monodon, production in Thailand and Vietnam. J. World Aquac. Soc. 2017, 48, 201–226. [Google Scholar] [CrossRef]
- Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture 2004, 241, 179–194. [Google Scholar] [CrossRef]
- Lotz, J.M. Viruses, biosecurity and specific pathogen-free stocks in shrimp aquaculture. World J. Microbiol. Biotechnol. 1997, 13, 405–413. [Google Scholar] [CrossRef]
- Ray, A.J.; Lotz, J.M. Shrimp (Litopenaeus vannamei) production and stable isotope dynamics in clear water recirculating aquaculture systems versus biofloc systems. Aquac. Res. 2017, 48, 4390–4398. [Google Scholar] [CrossRef]
- Louvado, A.; Cleary, D.F.; Pereira, L.F.; Coelho, F.J.; Pousão-Ferreira, P.; Ozório, R.O.; Gomes, N.C. Humic substances modulate fish bacterial communities in a marine recirculating aquaculture system. Aquaculture 2021, 544, 737121. [Google Scholar] [CrossRef]
- Gaona, C.A.; de Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W., Jr. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquac. Res. 2017, 48, 1070–1079. [Google Scholar] [CrossRef]
- Kumaran, M.; Sundaram, M.; Mathew, S.; Anand, P.R.; Ghoshal, T.K.; Kumararaja, P.; Anandaraja, R.; Anand, S.; Vijayan, K.K. Is Pacific white shrimp (Penaeus vannamei) farming in India sustainable? A multidimensional indicators-based assessment. Environ. Dev. Sustain. 2021, 23, 6466–6480. [Google Scholar] [CrossRef]
- Hasan, N.A.; Haque, M.M.; Hinchliffe, S.J.; Guilder, J. A sequential assessment of WSD risk factors of shrimp farming in Bangladesh: Looking for a sustainable farming system. Aquaculture 2020, 526, 735348. [Google Scholar] [CrossRef]
- Begum, S.; Adnan, M.; McClean, C.J.; Cresser, M.S. A critical re-evaluation of controls on spatial and seasonal variations in nitrate concentrations in river waters throughout the River Derwent catchment in North Yorkshire, UK. Environ. Monitor. Assess. 2016, 188, 305. [Google Scholar] [CrossRef]
- Rego, M.A.; Sabbag, O.J.; Soares, R.B.; Peixoto, S. Technical efficiency analysis of marine shrimp farming (Litopenaeus vannamei) in biofloc and conventional systems: A case study in northeastern Brazil. An. Acad. Bras. Cienc. 2018, 90, 3705–3716. [Google Scholar] [CrossRef]
- Noguera-Muñoz, F.A.; García García, B.; Ponce-Palafox, J.T.; Wicab-Gutierrez, O.; Castillo-Vargasmachuca, S.G.; García García, J. Sustainability assessment of white shrimp (Penaeus vannamei) production in super-intensive system in the municipality of San Blas, Nayarit, Mexico. Water 2021, 13, 304. [Google Scholar] [CrossRef]
- Pinto, P.H.; Rocha, J.L.; do Vale Figueiredo, J.P.; Carneiro, R.F.; Damian, C.; de Oliveira, L.; Seiffert, W.Q. Culture of marine shrimp (Litopenaeus vannamei) in biofloc technology system using artificially salinized freshwater: Zootechnical performance, economics and nutritional quality. Aquaculture 2020, 520, 734960. [Google Scholar] [CrossRef]
- Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky, W., Jr. Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. J. World Aquac. Soc. 2011, 42, 726–733. [Google Scholar] [CrossRef]
- Kumlu, M.; Kumlu, M.; Turkmen, S. Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). J. Therm. Biol. 2010, 35, 302–304. [Google Scholar] [CrossRef]
- Seidman, E.R.; Issar, G. The culture of Penaeus semisulcatus in Israel. J. World Aquac. Soc. 1988, 19, 237–247. [Google Scholar] [CrossRef]
- Crab, R.; Kochva, M.; Verstraete, W.; Avnimelech, Y. Bio-flocs technology application in overwintering of tilapia. Aquacult. Eng. 2009, 40, 105–112. [Google Scholar] [CrossRef]
- McAbee, B.J.; Browdy, C.L.; Rhodes, R.J.; Stokes, A.D. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Glob. Aquac. Advocate 2003, 6, 40–43. [Google Scholar]
- Islam, M.; Ahmed, M.; Habibullah-Al-Mamun, M.; Raknuzzaman, M.; Ali, M.M.; Eaton, D.W. Health risk assessment due to heavy metal exposure from commonly consumed fish and vegetables. Environ. Syst. Decis. 2016, 36, 253–265. [Google Scholar] [CrossRef]
- Ullah, A.K.M.A.; Akter, M.; Musarrat, M.; Quraishi, S.B. Evaluation of possible human health risk of heavy metals from the consumption of two marine fish species Tenualosa ilisha and Dorosoma cepedianum. Biol. Trace Elem. Res. 2019, 191, 485–494. [Google Scholar] [CrossRef]
- Baki, M.A.; Hossain, M.M.; Akter, J.; Quraishi, S.B.; Shojib, M.F.H.; Ullah, A.A.; Khan, M.F. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 2018, 159, 153–163. [Google Scholar] [CrossRef]
- Stamatis, N.; Kamidis, N.; Pigada, P.; Stergiou, D.; Kallianiotis, A. Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in Albacore (Thunnus alalunga, Bonnaterre, 1788) from the Aegean Sea, Greece. Int. J. Environ. Res. Public Health 2019, 16, 821. [Google Scholar] [CrossRef]
- Korkmaz, C.; Ay, Ö.; Ersoysal, Y.; Köroğlu, M.A.; Erdem, C. Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: Evaluation of their effects on human health. J. Food Compos. Anal. 2019, 81, 1–9. [Google Scholar] [CrossRef]
- Dhar, P.K.; Tonu, N.T.; Dey, S.K.; Chakrabarty, S.; Uddin, M.N.; Haque, M.R. Health risk assessment and comparative studies on some fish species cultured in traditional and biofloc fish farms. Biol. Trace Elem. Res. 2023, 201, 3017–3030. [Google Scholar] [CrossRef] [PubMed]
- Tarkan, A.S.; Tricarico, E.; Vilizzi, L.; Bilge, G.; Ekmekçi, F.G.; Filiz, H.; Giannetto, D.; İlhan, A.; Killi, N.; Kirankaya, Ş.G.; et al. Risk of invasiveness of non-native aquatic species in the eastern Mediterranean region under current and projected climate conditions. Eur. Zool. J. 2021, 88, 1130–1143. [Google Scholar] [CrossRef]
- Kourantidou, M.; Cuthbert, R.N.; Haubrock, P.J.; Novoa, A.; Taylor, N.G.; Leroy, B.; Capinha, C.; Renault, D.; Angulo, E.; Diagne, C.; et al. Economic costs of invasive alien species in the Mediterranean basin. NeoBiota 2021, 67, 427–458. [Google Scholar] [CrossRef]
- Zenetos, A.; Gofas, S.; Morri, C.; Rosso, A.; Violanti, D.; Raso, J.G.; Çinar, M.E.; Almogi-Labin, A.; Ates, A.S.; Azzurro, E.; et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD) Part 2 Introduction trends and pathways. Mediterr. Mar. Sci. 2012, 13, 328–352. [Google Scholar] [CrossRef]
- Levitt, Y.; Grave, S.D.; Shenkar, N. First record of an invasive shrimp from the family Processidae (Crustacea, Decapoda) in the Mediterranean Sea. Mediterr. Mar. Sci. 2014, 15, 650–653. [Google Scholar] [CrossRef]
- Galil, B.S. The alien crustaceans in the Mediterranean Sea: An historical review. In In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts; Galil, B.S., Clark, P.F., Carlton, J.T., Eds.; Springer Series in Invasion Ecology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 377–401. [Google Scholar]
- Torres, A.P.; Santos, A.D.; Cuesta, J.A.; Massutí, E.; Alemany, F.; Reglero, P. First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Palaemonidae) in the western Mediterranean. Mediterr. Mar. Sci. 2012, 13, 278–282. [Google Scholar] [CrossRef]
- Cuesta, J.A.; Bettoso, N.; Comisso, G.; Froglia, C.; Mazza, G.; Rinaldi, A.; Rodríguez-Romero, A.; Scovacricchi, T. Record of an established population of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Palaemonidae) in the Mediterranean Sea: Confirming a prediction. Mediterr. Mar. Sci. 2014, 15, 569–573. [Google Scholar] [CrossRef]
- Deval, M.C.; Kaya, Y.; Güven, O.; Gökoğlu, M.; Froglia, C. An unexpected find of the western atlantic shrimp, Farfantepenaeus aztecus (Ives, 1891) (Decapoda, Penaeidae) in Antalya bay, Eastern Mediterranean Sea. Crustaceana 2010, 83, 1531–1537. [Google Scholar] [CrossRef]
- Froglia, C.; Scanu, M. Notes on the Spreading of Penaeus aztecus Ives 1891 (Decapoda, Penaeidae) in the Mediterranean Sea and on Its Repeated Misidentifications in the Region. Biology 2023, 12, 793. [Google Scholar] [CrossRef]
- Kevrekidis, K. The occurrence of the Atlantic penaeid prawn Farfantepenaeus aztecus (Ives, 1891) in the Thermaikos Gulf (Aegean Sea, Eastern Mediterranean): Considerations on the potential establishment and impact on the autochthonous Melicertus kerathurus (Forskål, 1775). Crustaceana 2014, 87, 1606–1619. [Google Scholar]
- Nikolopoulou, I.; Baxevanis, A.D.; Kampouris, T.E.; Abatzopoulos, T.J. Farfantepenaeus aztecus (Ives, 1891) (Crustacea: Decapoda: Penaeidae) in? Aegean: First record in Greece by morphological and genetic features. J. Biol. Res. 2013, 20, 367. [Google Scholar]
- Feidi, I. Will the new large-scale aquaculture projects make Egypt self sufficient in fish supplies? Mediter. Fish. Aquac. Res. 2018, 1, 31–41. [Google Scholar]
- Alcivar-Warren, A.D.; Meehan-Meola, S.; Won Park, X.Z.; Delaney, M.; Zuniga, G. Shrimp Map: A low-density, microsatellite-based linkage map of the Pacific whiteleg shrimp, Litopenaeus vannamei: Identification of sex-linked markers in linkage group 4. J. Shel. Res. 2007, 26, 1259–1277. [Google Scholar] [CrossRef]
- Pérez-Farfante, I.; Kensley, B. Penaeoid and Sergestoid Shrimps and Prawns of the World. Keys and Diagnoses for the Families and Genera; Memories du Museum National D’Historie Naturelle: Paris, France, 1997; p. 233. [Google Scholar]
- Chavanich, S.; Voranop, V.; Senanan, W.; Panutrakul, S. Ecological impacts of Pacific whiteleg shrimp (Litopenaeus vannamei) aquaculture on native shrimps and crabs in Bangpakong watershed. In Aquaculture Management Strategies for the Pacific Whiteleg Shrimp (Litopenaeus vannamei) in the Bangpakong River Basin and the East Coast of Thailand; Panutrakul, S., Senanan, W., Eds.; Burapha University: Saen Suk, Thailand, 2008; pp. 139–153. [Google Scholar]
- Panutrakul, S.; Senanan, W.; Chavanich, S.; Tangkrock-Olan, N.; Viyakarn, V. Ability of Litopenaeus vannamei to survive and compete with local marine shrimp species in the Bangpakong River, Thailand. In Tropical Deltas and Coastal Zones: Community, Environment and Food Production at the Land-Water Interface; Hoanh, C.T., Zsuster, B.W., Suan-Pheng, K., Ismail, A.M., Noble, A.D., Eds.; CABI Publishing: Wallingford, UK; pp. 80–92. [CrossRef]
- Wakida-Kusunoki, A.T.; Amador-del Angel, L.E.; Alejandro, P.C.; Brahms, C.Q. Presence of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in the Southern Gulf of Mexico. Aquat. Invasions. 2011, 6, S139–S142. [Google Scholar] [CrossRef]
- Perez-Enriquez, R.; Robledo, D.; Houston, R.D.; Llera-Herrera, R. SNP markers for the genetic characterization of Mexican shrimp broodstocks. Genomics 2018, 110, 423–429. [Google Scholar] [CrossRef]
- Balboa, W.A.; King, T.L.; Hammerschmidt, P.C. Occurrence of Pacific White Shrimp in Lower Laguna Madre, Texas. In Proceedings of the Annual Conference Southeast Association Fish and Wildlife Agencies 1991, Hot Springs, AR, USA, 6–11 September 1991; pp. 288–292. Available online: https://seafwa.org/journal/1991/occurrence-pacific-white-shrimp-lower-laguna-madre-texas (accessed on 15 October 2023).
- Barbieri, E.; Côa, F.; Rezende, K.F.O. The exotic species Litopenaeus vannamei (Boone, 1931) occurrence in Cananeia, Iguape and Ilha Comprida lagoon estuary complex. Bol. Inst. Pesca 2016, 42, 479–485. [Google Scholar] [CrossRef]
- Loebmann, D.; Mai, A.C.G.; Lee, J.T. The invasion of five alien species in the Delta do Parnaíba Environmental Protection Area, Northeastern Brazil. Rev. Biol. Trop. 2010, 58, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Binh, L.; Yen, M.; Luyen, N. Preliminary impact assessment of alien aquatic species on biodiversity as well as invasion of native fishes in aquaculture and some management measures. In Proceedings of the 13th World Lake Conference. Rehabilitate the Lake Ecosystem: Global Challenges and the Chinese Innovations, Wuhan, China, 1–5 November 2009. [Google Scholar] [CrossRef]
- Luu, L.T.; Thanh, N.V. Vietnam national report on alien species. In International Mechanisms for the Control and Responsible Use of Alien Species in Aquatic Ecosystems; Bartley, D.M., Bhujel, R.C., Funge-Smith, S., Olin, P.G., Phillips, M.J., Eds.; Report of an Ad Hoc Expert Consultation; Food and Agriculture Organization of the United Nations: Xishuangbanna, China, 2005; pp. 123–126. [Google Scholar]
- Roshith, C.; Suresh, V.; Koushlesh, S.; Manna, R.K.; Sharma, S.K.; Sibinamol, S.; Saha, A.; Mandi, R.C.; Vijayakumar, M.E.; Chowdhury, A.R.; et al. Litopenaeus vannamei (Boone, 1931), the Pacific whiteleg shrimp in River Cauvery. Curr. Sci. 2018, 115, 1436–1437. [Google Scholar]
- Panutrakul, S.; Senanan, W. Abundance of introduced Pacific whiteleg shrimp Penaeus vannamei (Boone, 1931) along the east coast of Thailand. Aquat. Invasions 2021, 16, 1187–1192. [Google Scholar] [CrossRef]
- Appelbaum, S.; Garada, J.; Mishra, J.K. Growth and survival of the white leg shrimp (Litopenaeus vannamei) reared intensively in the brackish water of the Israeli Negev desert. Isr. J. Aquac.—Bamidgeh 2002, 54, 41–48. [Google Scholar] [CrossRef]
- Parnes, S.; Mills, E.; Segall, C.; Raviv, S.; Davis, C.; Sagi, A. Reproductive readiness of the shrimp Litopenaeus vannamei grown in a brackish water system. Aquaculture 2004, 236, 593–606. [Google Scholar] [CrossRef]
- Fernández de Alaiza García Madrigal, R.; da Silva, U.D.; Tavares, C.P.; Ballester, E.L. Use of native and non-native shrimp (Penaeidae, Dendrobranchiata) in world shrimp farming. Rev. Aquac. 2018, 10, 899–912. [Google Scholar] [CrossRef]
- Walker, D.A.; Suazo, M.C.; Emerenciano, M.G. Biofloc technology: Principles focused on potential species and the case study of Chilean river shrimp Cryphiops caementarius. Rev. Aquac. 2020, 12, 1759–1782. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Furtado, P.S.; Campos, B.R.; Serra, F.P.; Klosterhoff, M.; Romano, L.A.; Wasielesky, W. Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeusvannamei, reared with biofloc technology (BFT). Aquac. Int. 2015, 23, 315–327. [Google Scholar] [CrossRef]
- Wyban, J.; Walsh, W.A.; Godin, D.M. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 1995, 138, 267–279. [Google Scholar] [CrossRef]
- Ponce-Palafox, J.; Martinez-Palacios, C.A.; Ross, L.G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 1997, 157, 107–115. [Google Scholar] [CrossRef]
- Lara, G.; Hostins, B.; Bezerra, A.; Poersch, L.; Wasielesky, W., Jr. The effects of different feeding rates and re-feeding of Litopenaeusvannamei in a biofloc culture system. Aquac. Eng. 2017, 77, 20–26. [Google Scholar] [CrossRef]
- Kumar, V.S.; Pandey, P.K.; Anand, T.; Bhuvaneswari, G.R.; Dhinakaran, A.; Kumar, S. Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ Manag. 2018, 215, 206–215. [Google Scholar] [CrossRef]
- Lara, G.; Krummenauer, D.; Abreu, P.C.; Poersch, L.H.; Wasielesky, W. The use of different aerators on Litopenaeus vannamei biofloc culture system: Effects on water quality, shrimp growth and biofloc composition. Aquac. Int. 2017, 25, 147–162. [Google Scholar] [CrossRef]
- Baloi, M.; Arantes, R.; Schveitzer, R.; Magnotti, C.; Vinatea, L. Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac. Eng. 2013, 52, 39–44. [Google Scholar] [CrossRef]
- Otoshi, C.A.; Naguwa, S.S.; Falesch, F.C.; Moss, S.M. Shrimp behavior may affect culture performance at super-intensive stocking densities. Glob. Aquac. Advocate 2007, 2, 67–69. [Google Scholar]
- Amir, N.; Errami, A.; Seung-Woo, L. Technical, Economical, Environmental feasibility of Solar PV System for Sustainable Shrimp Aquaculture: A Case Study of a Circular Shrimp Pond in Indonesia. In Proceedings of the 2022 IEEE 8th Information Technology International Seminar (ITIS), Surabaya, Indonesia, 19–21 October 2022; pp. 102–107. [Google Scholar]
- Boyd, C.E.; Davis, R.P.; McNevin, A.A. Comparison of resource use for farmed shrimp in Ecuador, India, Indonesia, Thailand, and Vietnam. Aquac. Fish Fish. 2021, 1, 3–15. [Google Scholar] [CrossRef]
- Kim, Y.; Zhang, Q. Economic and environmental life cycle assessments of solar water heaters applied to aquaculture in the US. Aquaculture 2018, 495, 44–54. [Google Scholar] [CrossRef]
- McCusker, S.; Warberg, M.B.; Davies, S.J.; Valente, C.D.; Johnson, M.P.; Cooney, R.; Wan, A.H. Biofloc technology as part of a sustainable aquaculture system: A review on the status and innovations for its expansion. Aquac. Fish Fish. 2023, 3, 331–352. [Google Scholar] [CrossRef]
- Hoang, T.; Lee, S.Y.; Keenan, C.P.; Marsden, G.E. Effect of temperature on spawning of Penaeus merguiensis. J. Therm. Biol. 2002, 27, 433–437. [Google Scholar] [CrossRef]
- Prates, E.; Holanda, M.; Pedrosa, V.F.; Monserrat, J.M.; Wasielesky, W. Compensatory growth and energy reserves changes in the Pacific white shrimp (Litopenaeus vannamei) reared in different temperatures and under feed restriction in biofloc technology system (BFT). Aquaculture 2023, 562, 738821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, D.K.; Alvanou, M.V.; Lattos, A.; Ouroulis, K.; Giantsis, I.A. Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes 2024, 9, 208. https://doi.org/10.3390/fishes9060208
Papadopoulos DK, Alvanou MV, Lattos A, Ouroulis K, Giantsis IA. Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes. 2024; 9(6):208. https://doi.org/10.3390/fishes9060208
Chicago/Turabian StylePapadopoulos, Dimitrios K., Maria V. Alvanou, Athanasios Lattos, Kosmas Ouroulis, and Ioannis A. Giantsis. 2024. "Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description" Fishes 9, no. 6: 208. https://doi.org/10.3390/fishes9060208
APA StylePapadopoulos, D. K., Alvanou, M. V., Lattos, A., Ouroulis, K., & Giantsis, I. A. (2024). Tropical Shrimp Biofloc Aquaculture within Greenhouses in the Mediterranean: Preconditions, Perspectives, and a Prototype Description. Fishes, 9(6), 208. https://doi.org/10.3390/fishes9060208