Evaluating the Use of Grape Pomace in Cyprinus carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Farming and Management
2.2. Grape Pomace Preparation and Composition
2.3. Production of Carp Diets Based on Grape Pomace
2.4. Fish Growth Indices
2.5. Body Composition
2.6. Blood Parameters
2.7. Biochemical Parameters Assay
2.8. Microbiological Exam
2.9. Statistical Analysis
3. Results
3.1. Effect of Grape Pomace Inclusion in Carp Feed on Growth Parameters and Physiological Responses
3.2. Biochemical Composition of Carp Meat
3.3. Hematological Profile
3.4. Oxidative Status
3.5. Microbiological Exam
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://ec.europa.eu/eurostat/web/fisheries/database (accessed on 1 March 2024).
- Heuzé, V.; Tran, G. Grape Pomace. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2020. Available online: https://www.feedipedia.org/node/691 (accessed on 16 October 2020).
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape pomace skins and the effects of its inclusion in the technological properties of muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Pulgar, R.; Mandakovic, D.; Salgado, P.; Venegas, L.; Ortiz, D.; Peña-Neira, Á.; Wacyk, J. Micro-encapsulated grape pomace extract (MGPE) as a feed additive improves growth performance, antioxidant capacity, and shifts the gut microbiome of rainbow trout. Aquaculture 2021, 544, 737129. [Google Scholar] [CrossRef]
- Câmara, J.S.; Lourenço, S.; Silva, C.; Lopes, A.; Andrade, C.; Perestrelo, R. Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchem. J. 2020, 155, 104758. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef] [PubMed]
- Karamati Jabehdar, S.; Mirzaei Aghjehgheshlagh, F.; Navidshad, B.; Mahdavi, A.; Staji, H. In Vitro Antimicrobial Effect of Phenolic Extracts and Resistant Starch on Escherichia coli, Streptococcus spp., Bifidobacterium and Lactobacillus spp. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 137–146. [Google Scholar]
- Mendoza, L.; Yanez, K.; Vivanco, M.; Melo, R.; Cotoras, M. Characterization of Extracts from Winery by Products with Antifungal Activity against Botrytis cinerea. Ind. Crops Prod. 2013, 43, 360–364. [Google Scholar] [CrossRef]
- Ye, Z.; Harrison, R.; Cheng, V.J.; Bekhit, A.E.A. Wine making by-products. In Valorization of Wine Making By-Products; Bordiga, M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 73–116. [Google Scholar]
- Letaief, H. Wine making process. In Valorization of Wine Making By-Products; Bordiga, M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 27–72. [Google Scholar]
- Alipour, D.; Rouzbehan, Y. Effects of ensiling grape pomace and addition of polyethylene glycol on in vitro gas production and microbial biomass yield. Anim. Feed Sci. Technol. 2007, 137, 138–149. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Moumen, A.; Martín-García, A.I. By-products from viticulture and the wine industry: Potential as sources of nutrients for ruminants. J. Sci. Food Agric. 2008, 88, 597–604. [Google Scholar] [CrossRef]
- Larwence, A.; Hammouda, F.; Gaouas, Y.; Abada, S.; Benaik, R.; Ouchai, N. Valeur alimentaire des marcs de raisin. II—Effet d‘un traitement à la soude sur la valeur alimentaire chez le mouton de marc de raisin épuisé à la vapeur et ensilé. Ann. Zootech. 1983, 32, 371–382. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Torok, V.A.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.H.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Weber, F.; Ringseis, R.; Eder, K.; Dusel, G. Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Arch. Anim. Nut. 2015, 69, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, B.; Aberoumand, A.; Ziaei-nejad, S.; Seyyedi, S. Effects of diets containing grape pomace on the growth, nutrition indices, and the quality traits of common carp (Cyprinus carpio). Food Sci. Nutr. 2023, 11, 6660–6669. [Google Scholar] [CrossRef] [PubMed]
- Peña, E.; Badillo-Zapata, D.; Viana, M.T.; Correa-Reyes, G. Use of grape pomace in formulated feed for the rainbow trout fry, Oncorhynchus mykiss (Walbaum, 1792). J. World Aquacult. Soc. 2020, 51, 542–550. [Google Scholar] [CrossRef]
- Bullon, N.; Seyfoddin, A.; Hamid, N.; Manivannan, M.; Alfaro, A.C. Effects of insect meal and grape marc in the nutritional profle, growth, and digestibility of juvenile New Zealand farmed abalone. Aquac. Int. 2024, 32, 1507–1536. [Google Scholar] [CrossRef]
- Tarricone, S.; Iaffaldano, N.; Colonna, M.A.; Giannico, F.; Selvaggi, M.; Caputi Jambrenghi, A.; Cariglia, M.; Ragni, M. Effects of Dietary Red Grape Extract on the Quality Traits in Juvenile European Sea Bass (Dicentrarchus labrax L.). Animals 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Brinza, I.; Boiangiu, R.S.; Cioanca, O.; Hancianu, M.; Dumitru, G.; Hritcu, L.; Birsan, G.C.; Todirascu-Ciornea, E. Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants 2023, 12, 1534. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Jim, F.; Garamumhango, P.; Musara, C. Comparative Analysis of Nutritional Value of Oreochromis niloticus (Linnaeus), Nile Tilapia, Meat from Three Different Ecosystems. J. Food Qual. 2017, 2017, 6714347. [Google Scholar] [CrossRef]
- Lu, X.J.; Chen, J. Specific function and modulation of teleost monocytes/macrophages: Polarization and phagocytosis. Zool Res. 2019, 40, 146–150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munang’andu, H.M. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Indriani, F.; Puspitasari, I.; Setyastuti, T.A.; Santika, A. Haematological parameters of Catfish (Clarias sp.) fed by immunostimulant added with Cr+3—Yeast (Saccaromices cerevisiae) and Garlic. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 441, p. 012115. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Van Doan, H.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Rev. Fish. Sci. Aquac. 2021, 29, 198–217. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef] [PubMed]
- Zenteno-Savın, T.; Saldierna, R.; Ahuejote-Sandoval, M. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 301–308. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4865–4881. [Google Scholar] [CrossRef] [PubMed]
- Maryam, A.; Hosein, H. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother. Res. 2016, 30, 540–556. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, J.G.F.; Assis, V.L.; Almeida, A.J.P.O.; Basílio, I.J.L.D.; Luciano, M.N.; Meireles, B.R.L.A.; Cordeiro, Â.M.T.M.; Araújo, I.G.A.; Veras, R.C.; Ribeiro, T.P.; et al. Antioxidant and vasorelaxant activities induced by northeastern Brazilian fermented grape skins. BMC Complement. Altern. Med. 2017, 17, 376. [Google Scholar] [CrossRef] [PubMed]
- Bocsan, I.C.; Măgureanu, D.C.; Pop, R.M.; Levai, A.M.; Macovei, S.O.; Pătrașca, I.M.; Chedea, V.S.; Buzoianu, A.D. Biomedicines Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022, 10, 2337. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.F.; Baldissera, D.M.; Descovi, N.S.; Zeppenfeld, C.C.; Verdi, M.C.; Santos, C.V.R.; da Silva, S.A.; Baldisserotto, B. Grape pomace flour alleviates Pseudomonas aeruginosa-induced hepatic oxidative stress in grass carp by improving antioxidant defense. Microb. Pathog. 2019, 129, 271–276. [Google Scholar] [CrossRef]
- Odajima, N.; Betsuyaku, T.; Nagai, K.; Moriyama, C.; Wang, D.H.; Takigawa, T.; Ogino, K.; Nishimura, M. The role of catalase in pulmonary fibrosis. Respir. Res. 2010, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Flohé, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Sukhovskaya, I.V.; Borvinskaya, E.V.; Smirnov, L.P.; Kochneva, A.A. Role of Glutathione in Functioning of the System of Antioxidant Protection in Fish (Review). Inland Water Biol. 2017, 10, 97–102. [Google Scholar] [CrossRef]
- Almabrok, A.A.; Amhamed, I.D.; Mohamed, G.A.; Bilen, S.; Altief, T.A.S. Effect of Tilia tomentosa methanolic extract on growth performance, digestive enzyme activity, immune response and haematological indices of common carp (Cyprinus carpio). Mar. Sci. Technol. Bull. 2018, 7, 12–20. [Google Scholar] [CrossRef]
- Akbas, E.; Kilercioglu, M.; Onder, O.N.; Koker, A.; Soyler, B.; Oztop, M.H. Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization. J. Funct. Foods 2017, 28, 19–27. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant. Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Hafez, A.; Nassef, E.; Fahmy, M.; Elsabagh, M.; Bakr, A.; Hegazi, E. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environ. Sci. Pollut. Res. 2020, 27, 19108–19114. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Palma, C.; Ferreira-Pego, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregorio, J.; Palma, L.; Nicolai, M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Di Luca, A.; Martino, C.; Bennato, F.; Marone, E.; Grotta, L.; Cichelli, A.; Martino, G. Dietary Supplementation of Dried Grape Pomace Increases the Amount of Linoleic Acid in Beef, Reduces the Lipid Oxidation and Modifies the Volatile Profile. Animals 2019, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Antequera, F.P.; Molina-Roque, L.; de las Heras, V.; Mancera, J.M.; Martos-Sitcha, J.A.; Moyano, F.J. Feed supplementation with winery by-products improves the physiological status of juvenile Liza aurata during a short-term feeding trial and hypoxic challenge. Aquac. Rep. 2023, 31, 101667. [Google Scholar] [CrossRef]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.D.; Balcázar, J.L. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol. Med. Microbiol. 2008, 52, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef] [PubMed]
- Hemre, G.I.; Mommsen, T.P.; Krogdahl, Å. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2002, 8, 175–194. [Google Scholar] [CrossRef]
- Sinrod, A.J.; Shah, I.M.; Surek, E.; Barile, D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023, 9, e20499. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Colobatiu, L.; Tabaran, A.; Mihaiu, R.; Mihaiu, M. Prevalence and Characterisation of Clostridium perfringens Isolates in Food-Producing Animals in Romania. Microorganisms 2023, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Chacar, S.; Itani, T.; Hajal, J.; Saliba, Y.; Louka, N.; Faivre, J.F.; Maroun, R.; Fares, N. The impact of long-term intake of phenolic compounds-rich grape pomace on rat gut microbiota. J. Food Sci. 2018, 83, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Barbacariu, C.-A.; Rimbu, C.M.; Burducea, M.; Dirvariu, L.; Miron, L.-D.; Boiangiu, R.S.; Dumitru, G.; Todirascu-Ciornea, E. Comparative Study of Flesh Quality, Blood Profile, Antioxidant Status, and Intestinal Microbiota of European Catfish (Silurusglanis) Cultivated in a Recirculating Aquaculture System (RAS) and Earthen Pond System. Life 2023, 13, 1282. [Google Scholar] [CrossRef] [PubMed]
- Barbacariu, C.A.; Rimbu, C.M.; Dirvariu, L.; Burducea, M.; Boiangiu, R.S.; Todirascu-Ciornea, E.; Dumitru, G. Evaluation of DDGS as a Low-Cost Feed Ingredient for Common Carp (Cyprinus carpio Linneus) Cultivated in a Semi-Intensive System. Life 2022, 12, 1609. [Google Scholar] [CrossRef] [PubMed]
Parameters | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 |
---|---|---|---|---|---|---|---|---|
Temperature (°C) | 21.50 | 20.60 | 18.90 | 17.40 | 17.40 | 16.80 | 16.40 | 14.60 |
Oxigen | 8.03 | 9.15 | 8.82 | 9.29 | 8.74 | 9.64 | 9.96 | 9.80 |
pH | 8.10 | 8.00 | 8.00 | 8.10 | 8.10 | 8.10 | 8.00 | 8.00 |
NH3 (Amonia) | 0.01 | 0.05 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 |
NH4+ (Ammonium) | 0.02 | 0.06 | 0.02 | 0.00 | 0.04 | 0.03 | 0.02 | 0.00 |
NO2− (Nitrites) | 0.12 | 0.05 | 0.01 | 0.01 | 0.03 | 0.14 | 0.05 | 0.01 |
NO3− (Nitrates) | 5.00 | 27.80 | 13.00 | 16.60 | 10.6 | 9.00 | 3.20 | 2.70 |
TH (Total Hardness) | 8.00 | 8.10 | 8.20 | 7.80 | 7.60 | 7.6.00 | 7.20 | 7.40 |
Ca | 96.00 | 88.00 | 100.00 | 82.00 | 84.00 | 98.00 | 102.00 | 98.00 |
Mg | 60.00 | 74.00 | 76.00 | 78.00 | 72.00 | 80.00 | 80.00 | 72.00 |
Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SO42− (Sulfate) | 139.00 | 126.00 | 122.00 | 105.00 | 110.00 | 129.00 | 122.00 | 128.00 |
TP (Total Phosphorus) | 0.01 | 0.01 | 0.02 | 0.01 | 0.03 | 0.02 | 0.01 | 0.01 |
GP Material | Moisture (%) | Protein (%) | Fat (%) | Ash (%) | p (%) | Fiber (%) | Starch (%) | Sugar (%) | Ca (%) |
---|---|---|---|---|---|---|---|---|---|
Dried | 9.02 | 16.33 | 6.73 | 10.77 | 0.74 | 8.75 | 18.73 | 9.72 | 0.40 |
Fresh | 20.61 | 18.26 | 9.34 | 0.67 | 1.36 | 4.71 | 13.43 | 4.66 | 6.09 |
Bioactive compounds and antioxidant activity | |||||||||
Polyphenols (mg/g d.w.) | Flavonoids (mg/g d.w.) | Antioxidant activity (DPPH % inhibition) | |||||||
Dried | 83.07 | 13.53 | 81.87 |
Ingredient (%) | Control (GP 0%) | V1 (GP 5%) | V2 (GP 10%) |
---|---|---|---|
Sunflower meal | 45 | 45 | 44.5 |
Peas | 20 | 20 | 20 |
Maise | 17 | 12.3 | 7.6 |
Barley | 5,5 | 5 | 5 |
DDGS | 10 | 10 | 10 |
Soybean oil | 2.5 | 2.7 | 2.9 |
Grape pomace | 0 | 5 | 10 |
Proximate composition (%) | |||
Moisture | 11.44 | 11.06 | 11.08 |
Protein | 22.45 | 22.16 | 22.89 |
Fat | 6.24 | 6.01 | 6.37 |
Ash | 9.03 | 9.87 | 9.50 |
p | 0.89 | 0.97 | 0.95 |
Fiber | 8.66 | 8.41 | 8.24 |
Starch | 25.37 | 25.27 | 25.7 |
Sugar | 4.14 | 4.66 | 4.63 |
Ca | 2.74 | 3.03 | 3.12 |
Parameter | Control (GP 0%) | V1 (GP 5%) | V2 (GP 10%) | Anova (p-Value) |
---|---|---|---|---|
CF | 2.15 ± 0.17 | 2.03 ± 0.13 | 2.04 ± 0.08 | 0.776 |
IBW (g) | 63.91 ± 2.58 | 68.60 ± 2.39 | 65.60 ± 2.69 | 0.426 |
FBW (g) | 106.20 ± 5.01 | 115.40 ± 5.12 | 106.06 ± 5.21 | 0.341 |
WG (g) | 42.30 ± 2.39 | 46.80 ± 4.08 | 40.46 ± 1.62 | 0.397 |
PER (g/g) | 0.50 ± 0.03 | 0.45 ± 0.04 | 0.52 ± 0.02 | 0.394 |
FCR (g/g) | 2.41 ± 0.89 | 2.54 ± 1.05 | 2.54 ± 1.06 | 0.994 |
HIS (%) | 0.55 ± 0.10 ab | 0.73 ± 0.05 a | 0.40 ± 0.02 b | 0.032 |
VSI (%) | 16.52 ± 1.61 | 14.96 ± 2.19 | 14.06 ± 0.18 | 0.565 |
Diets | Moisture | Protein | Fat | Ash | Collagen | Salt |
---|---|---|---|---|---|---|
Control (GP 0%) | 72.3 ± 0.31 a | 13.8 ± 0 b | 6.97 ± 0.17 c | 1.53 ± 0.03 b | 0.8 ± 0.12 b | 2.83 ± 0.18 ns |
V1 (GP 5%) | 69.4 ± 0.17 b | 12.83 ± 0.15 c | 13.23 ± 0.2 a | 2.1 ± 0.15 ab | 1.27 ± 0.03 a | 2.43 ± 0.15 ns |
V2 (GP 10%) | 72.27 ± 0.35 a | 14.5 ± 0.23 a | 8.13 ± 0.17 b | 2.6 ± 0.17 a | 0.2 ± 0.06 c | 2.57 ± 0.28 ns |
Parameter | Control (GP 0%) | V1 (GP 5%) | V2 (GP 10%) | Anova (p-Value) |
---|---|---|---|---|
WBC (×109/L) | 51.95 ± 3.18 | 49.67 ± 1.7 | 47.03 ± 3.28 | 0.492 |
LYM (×109/L) | 38.02 ± 5.87 | 18.43 ± 6.97 | 34.00 ± 2.57 | 0.072 |
MON (×109/L) | 0.23 ± 0.03 b | 1.22 ± 0.12 a | 0.88 ± 0.13 a | 0.00 |
NEU (×109/L) | 3.72 ± 0.55 | 3.25 ± 0.46 | 3.41 ± 0.32 | 0.769 |
EOS (×109/L) | 0.65 ± 0.12 | 0.64 ± 0.04 | 0.59 ± 0.03 | 0.829 |
BAS (×109/L) | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.188 |
RBC (×1012/L) | 1.65 ± 0.10 | 1.67 ± 0.19 | 1.71 ± 0.06 | 0.945 |
HGB (g/dL) | 8.8 ± 0.42 | 9.53 ± 0.14 | 9.18 ± 0.34 | 0.327 |
HCT (%) | 27.33 ± 1.00 | 28.74 ± 3.96 | 29.15 ± 0.99 | 0.858 |
MCV (fL) | 166.00 ± 4.78 | 171.25 ± 5.45 | 170.75 ± 4.66 | 0.721 |
PLT (×109/L) | 42.00 ± 3.49 | 43.75 ± 4.27 | 35.5 ± 8.37 | 0.588 |
MPV (fL) | 9.58 ± 0.14 b | 10.95 ± 0.22 a | 11.15 ± 0.28 a | 0.001 |
PCT (%) | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.01 | 0.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbacariu, C.-A.; Dîrvariu, L.; Șerban, D.A.; Rîmbu, C.M.; Horhogea, C.E.; Dumitru, G.; Todirașcu-Ciornea, E.; Lungoci, C.; Burducea, M. Evaluating the Use of Grape Pomace in Cyprinus carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status. Fishes 2024, 9, 219. https://doi.org/10.3390/fishes9060219
Barbacariu C-A, Dîrvariu L, Șerban DA, Rîmbu CM, Horhogea CE, Dumitru G, Todirașcu-Ciornea E, Lungoci C, Burducea M. Evaluating the Use of Grape Pomace in Cyprinus carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status. Fishes. 2024; 9(6):219. https://doi.org/10.3390/fishes9060219
Chicago/Turabian StyleBarbacariu, Cristian-Alin, Lenuța Dîrvariu, Dana Andreea Șerban, Cristina Mihaela Rîmbu, Cristina Elena Horhogea, Gabriela Dumitru, Elena Todirașcu-Ciornea, Constantin Lungoci, and Marian Burducea. 2024. "Evaluating the Use of Grape Pomace in Cyprinus carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status" Fishes 9, no. 6: 219. https://doi.org/10.3390/fishes9060219
APA StyleBarbacariu, C. -A., Dîrvariu, L., Șerban, D. A., Rîmbu, C. M., Horhogea, C. E., Dumitru, G., Todirașcu-Ciornea, E., Lungoci, C., & Burducea, M. (2024). Evaluating the Use of Grape Pomace in Cyprinus carpio Nutrition: Effects on Growth, Biochemistry, Meat Quality, Microbiota, and Oxidative Status. Fishes, 9(6), 219. https://doi.org/10.3390/fishes9060219