Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Methods
2.2.1. Functional Traits
2.2.2. Functional Alpha Diversity
- Functional richness, FRic, quantifies the size of the ecological space occupied by a species within a community, thus reflecting the stability of the community and its ability to buffer environmental disturbances and resist ecological invasion [50]. FRic was calculated as follows. First, a species with an extreme character value was identified and used as the end point of the smallest convex shape in the N-dimensional character space. Then, the endpoints were connected to form a minimum convex polygon. Finally, the area or volume of the minimum convex polygon was calculated [48].
- Functional evenness, FEve, quantifies the evenness of the abundance of functional traits of species within a community that is distributed in functional space, thus reflecting the overall utilization of resources by species [50]. FEve was calculated as follows:
- Functional divergence, FDiv, quantifies the dispersion of species functional trait abundance within the community in the functional space, thus reflecting the degree of niche differentiation and resource competition among species within the community [51]. FDiv was calculated as follows:
- Community-weighted mean, CWM, quantifies the weighted average of functional traits of species within a community, thus reflecting the changes in dominant trait values of fish communities. CWM is very important for evaluating community dynamics [10]. CWM was calculated as follows:
2.2.3. Functional Beta Diversity
2.2.4. Data Analysis
3. Results
3.1. Fish Species Composition in the Huanghe River Estuary and Adjacent Seas
3.2. Functional Alpha Diversity and Dominant Community Trait Composition of Fishes in the Huanghe River Estuary and Adjacent Seas
3.3. Functional Beta Diversity of Fishes in the Huanghe River Estuary and Adjacent Seas
3.4. Relationship between Functional Diversity of Fishes and Environmental Factors in the Huanghe River Estuary and Adjacent Seas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Family | Species | Feeding Habit | Mouth Position | Mouth Relative Size | Trophic Level | Habitat | Migration Type | Body Shape | Maximum Body Length (cm) | Body Length at First Sexual Maturity (cm) | Age at First Sexual Maturity (a) | Generation Time (a) | Ecological Type of Eggs | Growth Coefficient (k) | Vulnerability | Resilience | Thermo- phily |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apogonidae | Apogon lineatus | B | Front | CB | 3.7 | De | OM | 2 | 9.00 | 6.8 | 0.8 | 1.0 | PAE | 0.50 | 12 | Hr | WW |
Callionymidae | Callionymus beniteguri | B | Front | S | 3.3 | De | ST | 3 | 13.96 | - | - | - | PE | 0.52 | 13 | Hr | T |
Clupeidae | Konosirus punctatus | H | Front | CS | 2.9 | Pe | OM | 2 | 32.00 | 18.1 | 2.9 | 3.2 | PE | 0.65 | 36 | Hr | T |
Sardinella zunasi | P | Front | CS | 3.4 | Pe | OM | 2 | 18.00 | 11.0 | 1.0 | 2.2 | PE | 0.50 | 22 | Hr | T | |
Cottidae | Trachidermus fasciatus | B–N | Front | B | 3.0 | De | OM | 10 | 17.00 | 10.9 | 1.0 | - | DAE | - | 10 | Lr | CT |
Cynoglossidae | Cynoglossus joyeri | B | Lower | S | 4.3 | De | CM | 5 | 24.00 | 17.2 | 3.8 | 4.1 | PE | 0.20 | 40 | Mr | T |
Cynoglossus semilaevis | B | Lower | S | 3.7 | De | CM | 5 | 61.10 | 34.6 | 2.8 | 3.8 | PE | 0.26 | 44 | Mr | T | |
Engraulidae | Engraulis japonicus | P | Lower | B | 3.6 | Pe | OM | 2 | 18.00 | 10.0 | 1.0 | 4.0 | PE | 0.79 | 10 | Hr | T |
Setipinna taty | P | Lower | B | 3.6 | Pe | OM | 2 | 22.20 | 12.4 | 1.0 | - | PE | 0.57 | 17 | Hr | WW | |
Thrissa kammalensis | P | Lower | B | 3.4 | Pe | OM | 2 | 18.00 | 8.9 | 2.4 | 3.3 | PE | 0.56 | 32 | Mr | T | |
Thrissa mystax | P | Lower | B | 3.6 | Pe | OM | 2 | 19.00 | 13.0 | 1.0 | - | PE | 0.56 | 11 | Hr | WW | |
Gobiidae | Acanthogobius ommaturus | B | Front | CB | 3.4 | De | ST | 8 | 50.00 | 12.1 | 1.0 | 1.0 | AE | 0.20 | 50 | Lr | T |
Amblychaeturichthys hexanema | B | Front | S | 3.4 | De | ST | 4 | 17.40 | 11.4 | 1.9 | 2.5 | AE | 0.70 | 10 | Mr | T | |
Amoya pflaumi | B | Front | CS | 3.1 | De | ST | 8 | 12.00 | 8.9 | 1.0 | 1.4 | AE | 0.44 | 10 | Hr | WW | |
Chaeturichthys stigmatias | B | Front | S | 3.8 | De | ST | 4 | 28.20 | 11.8 | 2.7 | 2.9 | AE | 0.45 | 18 | Mr | T | |
Ctenotrypauchen chinensis | B | Front | S | 3.8 | De | ST | 2 | 19.20 | - | - | - | AE | - | 13 | Mr | T | |
Myersina filifer | B | Front | CS | 3.4 | De | ST | 2 | 13.20 | - | - | - | AE | - | 10 | Hr | WW | |
Odontamblyopus lacepedii | B | Front | CB | 3.9 | De | ST | 4 | 33.40 | 20.3 | 3.7 | 4.2 | AE | 0.19 | 31 | Mr | WW | |
Tridentiger barbatus | B | Front | S | 3.5 | De | ST | 8 | 10.40 | 7.3 | 1.5 | 2.0 | AE | 0.56 | 14 | Hr | T | |
Hexagrammidae | Hexagrammos otakii | P–B | Front | S | 3.8 | De | OM | 2 | 57.00 | 11.6 | 2.0 | 2.9 | AE | 0.36 | 34 | Mr | CT |
Mugilidae | Liza haematocheila | P | Lower | S | 2.5 | De | ST | 11 | 80.00 | 48.0 | 2.5 | 8.1 | PE | 0.31 | 58 | Mr | T |
Paralichthyidae | Paralichthys olivaceus | N | Front | M | 4.5 | De | CM | 5 | 103.00 | 40.0 | 2.0 | 7.3 | PE | 0.24 | 60 | Mr | T |
Pholididae | Enedrias fangi | P–B | Front | M | 3.2 | De | CM | 9 | 16.80 | 11.2 | 1.1 | 1.5 | O | 0.61 | 10 | Hr | CT |
Platycephalidae | Platycephalus indicus | B–N | Front | M | 3.6 | De | OM | 3 | 100.00 | 45.7 | 1.8 | 2.5 | PE | 0.30 | 35 | Mr | WW |
Pleuronectidae | Kareius bicoloratus | B | Front | S | 3.7 | De | CM | 5 | 50.00 | 31.6 | 3.7 | 4.8 | PE | 0.18 | 46 | Lr | CT |
Sciaenidae | Collichthys niveatus | P–B | Front | CS | 3.6 | De | CM | 2 | 17.00 | 8.8 | 1.0 | 4.0 | PE | 0.42 | 17 | Hr | T |
Johnius belengerii | B | Lower | CS | 3.3 | De | OM | 2 | 30.00 | 12.5 | 1.3 | 1.5 | PE | 0.53 | 20 | Hr | WW | |
Larimichthys polyactis | B–N | Front | M | 3.7 | De | OM | 2 | 40.00 | 18.1 | 1.0 | 3.0 | PE | 0.45 | 27 | Mr | T | |
Pennahia argentata | B | Lower | M | 4.1 | De | OM | 2 | 40.00 | 11.1 | 1.6 | 2.0 | PE | 0.42 | 34 | Hr | T | |
Scombridae | Scomberomorus niphonius | N | Front | CB | 4.8 | Pe | DM | 1 | 113.00 | 37.0 | 1.0 | 8.5 | PE | 0.53 | 34 | Mr | T |
Serranidae | Lateolabrax maculatus | N | Upper | M | 4.7 | De | CM | 2 | 102.00 | 52.7 | 2.0 | 5.2 | PE | 0.42 | 52 | Mr | T |
Sillaginidae | Sillago sihama | B | Front | S | 3.4 | De | OM | 6 | 31.00 | 16.7 | 1.4 | 1.5 | PE | 0.80 | 24 | Hr | WW |
Stromateidae | Pampus argenteus | P | Front | S | 3.3 | Pe | DM | 2 | 60.00 | 25.3 | 1.3 | 1.5 | PE | 0.56 | 31 | Mr | WW |
Syngnathidae | Syngnathus acus | P | Front | S | 3.3 | De | ST | 7 | 50.00 | 16.3 | - | - | O | - | 40 | Mr | T |
Tetraodontidae | Takifugu niphobles | P–B | Front | S | 3.4 | De | OM | 6 | 20.00 | 11.0 | 1.0 | - | DAE | 0.31 | 44 | Mr | CT |
Takifugu pseudommus | P–B | Front | S | 3.4 | De | OM | 6 | 35.00 | - | - | - | DAE | - | 33 | Mr | T | |
Trichiuridae | Eupleurogrammus muticus | B | Front | CB | 4.1 | De | OM | 9 | 87.00 | - | - | - | PE | - | 48 | Hr | WW |
Appendix B
Appendix C
References
- Niu, K.C.; Liu, Y.N.; Shen, Z.H.; He, F.L.; Fang, J.Y. Community assembly: The relative importance of neutral theory and niche theory. Biodivers. Sci. 2009, 17, 579–593. [Google Scholar] [CrossRef]
- Chen, S.B.; Ouyang, Z.Y.; Xu, W.H.; Xiao, Y. A review of beta diversity studies. Biodivers. Sci. 2010, 18, 323–335. [Google Scholar] [CrossRef]
- Violle, C.; Reich, P.B.; Pacala, S.W.; Enquist, B.J.; Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13690–13696. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 20, 279–338. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef]
- Si, X.F.; Zhao, Y.H.; Chen, C.W.; Ren, P.; Zeng, D.; Wu, L.B.; Ding, P. Beta-diversity partitioning: Methods, applications and perspectives. Biodivers. Sci. 2017, 25, 464–480. [Google Scholar] [CrossRef]
- Laureto, L.M.O.; Cianciaruso, M.V.; Samia, D.S.M. Functional diversity: An overview of its history and applicability. Nat. Conserv. 2015, 13, 112–116. [Google Scholar] [CrossRef]
- Swenson, N.G.; Erickson, D.L.; Mi, X.C.; Bourg, N.A.; Forero-Montaña, J.; Ge, X.J.; Howe, R.; Lake, J.K.; Liu, X.J.; Ma, K.P.; et al. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 2012, 93, 112–125. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Lamarque, P.; Colace, M.P.; Garden, D.; Girel, J.; Pellet, G.; Douzet, R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 2011, 99, 135–147. [Google Scholar] [CrossRef]
- Higgins, S.N.; Zanden, M.J.V. What a difference a species makes: A metaanalysis of dreissenid mussel impacts on freshwater ecosystems. Ecol. Monogr. 2010, 80, 179–196. [Google Scholar] [CrossRef]
- Villéger, S.; Grenouillet, G.; Brosse, S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob. Ecol. Biogeogr. 2013, 22, 671–681. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B.; Setl, H. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar]
- Zhang, X.Z.; Wang, J.; Xu, B.D.; Zhang, C.L.; Xue, Y.; Ren, Y.P. Spatio-temporal variations of functional diversity of fish communities in Haizhou Bay. Chin. J. Appl. Ecol. 2019, 30, 3233–3244. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, S.D.; Tang, Y.L.; Dong, X.Q.; Zhao, W.; Feng, J.; Yu, M.J. Species and functional diversity of fish communities in artificial reef area of Pipa Island Sea, Shandong. J. Fish. Sci. China 2023, 30, 1479–1495. [Google Scholar]
- Zhang, Y.X.; Shan, X.J.; Bian, X.D.; Wei, C.; Zhang, W.R.; Cui, P.D. Early life resources community structure and functional diversity to the Osteichthyes in the waters adjacent to the Changdao Islands. Prog. Fish. Sci. 2023, 44, 1–19. [Google Scholar] [CrossRef]
- Swenson, N.G.; Anglada-Cordero, P.; Barone, J.A. Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B Biol. Sci. 2011, 278, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Si, X.F.; Baselga, A.; Leprieur, F.; Song, X.; Ding, P. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J. Anim. Ecol. 2016, 85, 409–418. [Google Scholar] [CrossRef]
- Harrison, S.; Ross, S.J.; Lawton, J.H. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 1992, 61, 151–158. [Google Scholar] [CrossRef]
- Williams, P.H. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc. R. Soc. B Biol. Sci. 1996, 263, 579–588. [Google Scholar] [CrossRef]
- Lennon, J.J.; Koleff, P.; Greenwood, J.J.D.; Gaston, K.J. The geographical structure of British bird distributions: Diversity, spatial turnover and scale. J. Anim. Ecol. 2001, 70, 966–979. [Google Scholar] [CrossRef]
- Greve, M.; Gremmen, N.J.M.; Gaston, K.J.; Chown, S.L. Nestedness of Southern Ocean island biotas: Ecological perspectives on a biogeographical conundrum. J. Biogeogr. 2005, 32, 155–168. [Google Scholar] [CrossRef]
- Wang, Y.P.; Bao, Y.X.; Yu, M.J.; Xu, G.F.; Ding, P. Nestedness for different reasons: The distributions of birds, lizards and small mammals on Islands of an inundated lake. Divers. Distrib. 2010, 16, 862–873. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- Podani, J.; Ricotta, C.; Schmera, D. A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol. Complex. 2013, 15, 52–61. [Google Scholar] [CrossRef]
- Li, X.T.; Xu, B.D.; Xue, Y.; Ren, Y.P.; Zhang, C.L. Variation in the β diversity of fish species in Haizhou Bay. J. Fish. Sci. China 2021, 28, 451–459. [Google Scholar]
- Li, X.T.; Xu, B.D.; Xue, Y.; Ren, Y.P.; Zhang, C.L. β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors. Haiyang Xuebao 2022, 44, 46–56. [Google Scholar]
- Zhang, X.M.; Su, H.X.; Li, S.W.; Yang, Y.Y.; Wang, T.T.; Xu, B.Q.; Li, F.; Wang, X.X. The Driving Factors of β-diversity and its Components Spatial Variation of Fish Community in Coastal Area of Yantai and Weihai. Oceanol. Et Limnol. Sin. 2023, 54, 1125–1133. [Google Scholar]
- Wang, J.Y.; Li, H.Y. Temporal and spatial differentiation characteristics of economy in the country Yellow River Basin and its influencing factors. Yellow River 2022, 44, 1–6. [Google Scholar]
- Zhao, J.J.; Liu, Y.; Zhu, Y.K.; Qin, S.L.; Wang, Y.H.; Miao, C.H. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, F.; Lv, Q.M.; Wang, Y.B.; Yu, J.B.; Gao, Y.J.; Ren, Z.H.; Zhang, X.M.; Lv, Z.B. Impact of the water–sediment regulation scheme on the phytoplankton community in the Yellow River estuary. J. Clean. Prod. 2021, 294, 40–57. [Google Scholar] [CrossRef]
- Fan, J.J. Alteration of Hydrologic Regime and Its Driving Factors of the Yellow River Basin. Master Thesis, Chinese Academy of Sciences, Beijing, China, 2023. [Google Scholar]
- Zhang, M.L.; Yu, G.L.; Wang, F.; Li, B.; Han, H.Z.; Qi, Z.H.; Wang, T.T. Terrestrial dissolved organic carbon consumption by heterotrophic bacterioplankton in the huanghe river estuary during water and sediment regulation. J. Oceanol. Limnol. 2019, 37, 1062–1070. [Google Scholar] [CrossRef]
- Mu, B.; Cui, T.W.; Qin, P.; Gong, J.L.; Xiao, Y.F.; Zheng, R.E. Remote sensing retrieval and temporal-spatial distribution characteristics of particulate organic carbon concentration in seawater near Yellow River estuary. Acta Opt. Sin. 2017, 37, 33–43. [Google Scholar] [CrossRef]
- Cui, B.S.; Hua, Y.Y.; Wang, C.F.; Liao, X.L.; Tan, X.J.; Tao, W.D. Estimation of ecological water requirements based on habitat response to water level in huanghe river delta, China. Chin. Geogr. Sci. 2010, 20, 318–329. [Google Scholar] [CrossRef]
- Gu, Y.Z.; Xu, C.L.; Zhang, Z.H.; Bi, N.S.; Zhao, L.L.; Liu, Y.F.; Zhou, B. Response of fresh water from Yellow River to marine ecological regulation. Yellow River 2019, 41, 68–75. [Google Scholar]
- Zhang, D. Longitudinal Pattern and Formation Mechanism in α and β Diversity of Taxonomic and Functional of Stream Fish Assemblages in the Xin’an River. Ph.D. Thesis, Anhui Normal University, Wuhu, China, 2018. [Google Scholar]
- FishBase. Available online: https://fishbase.se/search.php (accessed on 15 February 2024).
- Zhang, J.X.; Wang, J.; Niu, M.X.; Zuo, T.; Chang, W.; Chen, R.S. Biological characteristics of Liza haematocheila in the shallow coastal waters of the Yellow River estuary. Prog. Fish. Sci. 2023, 44, 20–29. [Google Scholar] [CrossRef]
- Niu, M.X.; Zuo, T.; Wang, J.; Chen, R.S.; Zhang, J.X. Egg and larval distribution of Liza haematocheila and their relationship with environmental factors in the coastal waters of the Yellow River Estuary. J. Fish. Sci. China 2022, 29, 377–387. [Google Scholar]
- Bi, X.X. Studies on the Morphology and Genetics of Trachidermus fasciatus Populations. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2018. [Google Scholar]
- Fan, H.Y.; Ji, Y.P.; Zhang, S.H.; Yuan, C.T.; Gao, T.X. Research of Fishery Biology of the Neritic Fish Synechogobius ommaturus in the Area of the Huanghe Delta. Period. Ocean Univ. China 2005, 35, 733–736. [Google Scholar] [CrossRef]
- Zhang, L.C. Study on the Community Structure and Fishery Biological Characteristics of Gobioidei in Laizhou Bay. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2019. [Google Scholar]
- Mu, X.X.; Zhang, C.; Zhang, C.L.; Xu, B.D.; Xue, Y.; Tian, Y.J.; Ren, Y.P. The fisheries biology of the spawning stock of Scomberomorus niphonius in the Bohai and Yellow Seas. J. Fish. Sci. China 2018, 25, 1308–71316. [Google Scholar] [CrossRef]
- Qu, J.Y.; Yang, G.M.M.; Fang, Z.; Chen, X.J. A Review of Research Advancement on Fisheries Biology of Japanese Mackerel Scomberomorus niphonius. Fish. Sci. 2021, 40, 643–650. [Google Scholar] [CrossRef]
- Xu, S.Y. Study on Morphology and Genetics of Setipinna tenuifilis. Master Dissertation, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Han, Q.P.; Wu, Q.; Shan, X.J.; Jin, X.S.; Su, C.C. Stock assessment of Setipinna taty in Shandong inshore waters based on lengthbased model and ensemble model. J. Fish. China 2024, 1–11. Available online: https://link.cnki.net/urlid/31.1283.s.20240115.1908.004 (accessed on 16 January 2024).
- Villeger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A trait-based test for habitat filtering: Convex hull volume. Ecology 2006, 87, 1465–11471. [Google Scholar] [CrossRef]
- Shuai, F.M.; Li, X.H.; Chen, F.C.; Li, Y.F.; Yang, J.P.; Li, J.; Wu, Z. Functional diversity of freshwater fishes and methods of measurement. Acta Ecol. Sin. 2017, 37, 5228–5237. [Google Scholar]
- Dong, J.Y.; Sun, X.; Zhan, Q.P.; Zhang, Y.Y.; Zhang, X.M. Patterns and drivers of beta diversity of subtidal macrobenthos community on the eastern coast of Laizhou Bay. Biodivers. Sci. 2022, 30, 21388. [Google Scholar] [CrossRef]
- Dong, J.Y.; Zhao, L.L.; Sun, X.; Hu, C.Y.; Wang, Y.H.; Li, W.T.; Zhang, P.D.; Zhang, X.M. Response of macrobenthic communities to heavy metal pollution in Laoshan Bay, China: A trait-based method. Mar. Pollut. Bull. 2021, 167, 112292. [Google Scholar] [CrossRef]
- Li, S.W.; Zhang, X.M.; Su, H.X.; Chen, S.; Chen, W.; Li, F.; Wang, T.T.; Sun, Z.N.; Weng, X.N. Taxonomic diversity of the macrobenthos and its relationship with environmental factors in the Huanghe River (Yellow River) estuary and adjacent seas, China. J. Sea Res. 2023, 194, 102402. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 1995, 76, 606–627. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Gifford, M.E.; Joseph, E.O. Ecological speciation in Gambusia fishes. Evolution 2007, 61, 2056–2074. [Google Scholar]
- Pease, A.A.; González-Díaz, A.A.; Rodiles-Hernández, R.; Winemiller, K.O. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshw. Biol. 2012, 57, 1060–1075. [Google Scholar] [CrossRef]
- Villeger, S.; Brosse, S.; Mouchet, M.; Mouillot, D.; Vanni, M.J. Functional ecology of fish: Current approaches and future challenges. Aquat. Sci. 2017, 79, 783–801. [Google Scholar] [CrossRef]
- Yin, M.C. Fish Ecology; China Agriculture Press: Beijing, China, 1995; pp. 54–96. [Google Scholar]
- Taylor, C.M.; Warren, M.L. Dynamics in species composition of stream fish assemblage: Environmental variability and nested subsets. Ecology 2001, 82, 2320–2330. [Google Scholar] [CrossRef]
- McGarvey, D.J.; Hughes, R.M. Longitudinal zonation of Pacific Northwest (USA) fish assemblages and the species–discharge relationship. Copeia 2008, 2008, 311–321. [Google Scholar]
- Oikonomou, A.; Stefanidis, K. α- and β-diversity patterns of macrophytes and freshwater fishes are driven by different factors and processes in lakes of the unexplored Southern Balkan biodiversity hotspot. Water 2020, 12, 1984. [Google Scholar] [CrossRef]
- Lansac-Tôha, F.M.; Heino, J.; Quirino, B.A.; Moresco, G.A.; Peláez, O.; Meira, B.R.; Rodrigues, L.C.; Jati, S.; Lansac-Tha, F.A.; Velho, L.F.M. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. Sci. Total Environ. 2019, 691, 1271–1281. [Google Scholar] [CrossRef]
- Xu, S.S. Decline Mechanisms of Fishery Resources in the Bohai Sea under Anthropogenic Activities. Ph.D. Thesis, The Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2011. [Google Scholar]
- Tylianakis, J.M.; Klein, A.M.; Tscharntke, T. Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 2008, 86, 3296–3302. [Google Scholar]
Classification of Function | Type of Functional Traits | Variable Type | Functional Trait |
---|---|---|---|
Food acquisition | Feeding habits | Ordered categorical variables | Herbivorous (H), Planktivorous (P), Planktivorous and Benthivorous (P–B), Benthivorous (B), Benthivorous and Nektivorous (B–N), Nektivorous (N) |
Mouth position | Ordered categorical variables | Lower, Front, Upper | |
Relative mouth size | Ordered categorical variables | Small (S), Comparatively small (CS), Medium (M), Comparatively big (CB), Big (B) | |
Trophic level | Continuous variable | 2.5~4.8 | |
Locomotion | Habitat | Unordered categorical variable | Demersal (De), Pelagic (Pe) |
Migration type | Ordered categorical variables | Settlement type (ST), Coastal migratory (CM), Offshore migratory (OM), Distantly migrating (DM) | |
Body shape | Unordered categorical variable | Fusiform (1), Compressiform (2), Depressiform (3), Anguilliform (4), Asymmetry (5), Sub-cylinder (6), Slightness (7), Cylindrical anterior part and compressed posterior part (8), Band shape (9), Depressed anterior part and compressed posterior part (10), Sub-cylindrical anterior part and compressed posterior part (11) | |
Maximum body length (cm) | Continuous variable | 9.0~113.0 | |
Reproduction | Body length at first sexual maturity (cm) | Continuous variable | 6.8~52.7 |
Age at first sexual maturity (a) | Continuous variable | 0.8~3.8 | |
Generation time (a) | Continuous variable | 1.0~8.5 | |
Ecological type of eggs | Unordered categorical variable | Pelagic eggs (PE), Adhesive eggs (AE), Demersal adhesive eggs (DAE), Pelagic adhesive eggs (PAE), Ovoviviparous (O) | |
Population dynamics | Growth coefficient (k) | Continuous variable | 0.18~0.80 |
Resilience | Ordered categorical variables | Low resilience (Lr), Medium resilience (Mr), High resilience (Hr) | |
Vulnerability | Continuous variable | 10~60 | |
Ecological adaptation | Thermophily | Unordered categorical variable | Cold temperate (CT), Warm temperate (T), Warm water (WW) |
Year | Normality Test | t-Test | |||
---|---|---|---|---|---|
Kolmogorov–Smirnov Z | P (Two-Tailed Test) | t-Value | df | P (Two-Tailed Test) | |
2022 | 0.781 | 0.575 | 0.009 | 104 | 0.993 |
2023 | 0.895 | 0.400 | −0.016 | 104 | 0.987 |
2022–2023 | - | - | 4.894 | 104 | <0.001 *** |
Diversity Index | Fβsor | NH4–N | TP | pH | Geographic Distance | |||||
---|---|---|---|---|---|---|---|---|---|---|
Coefficient | p | Coefficient | p | Coefficient | p | Coefficient | p | Coefficient | p | |
FRic | −0.1157 | 0.0001 *** | −0.1550 | 0.0371 * | 0.7977 | 0.0249 * | - | - | - | - |
FEve | - | - | −0.0400 | 0.0161 * | - | - | - | - | - | - |
FDiv | - | - | - | - | - | - | - | - | - | - |
Fβsor | - | - | 0.0317 | 0.0376 * | - | - | - | - | - | - |
Fβsim | - | - | - | - | - | - | −0.0393 | 0.0066 ** | −0.0510 | 0.046 * |
Fβsne | - | - | - | - | 0.1134 | 0.0318 * | 0.0301 | 0.0379 * | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Huang, Y.; Li, F.; Liu, Y.; Ma, H.; Zhang, X.; Wang, X.; Chen, W.; Cui, G.; Wang, T. Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China. Fishes 2024, 9, 222. https://doi.org/10.3390/fishes9060222
Li S, Huang Y, Li F, Liu Y, Ma H, Zhang X, Wang X, Chen W, Cui G, Wang T. Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China. Fishes. 2024; 9(6):222. https://doi.org/10.3390/fishes9060222
Chicago/Turabian StyleLi, Shaowen, Yufang Huang, Fan Li, Yanfen Liu, Hongliang Ma, Xiaomin Zhang, Xiuxia Wang, Wei Chen, Guangxin Cui, and Tiantian Wang. 2024. "Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China" Fishes 9, no. 6: 222. https://doi.org/10.3390/fishes9060222
APA StyleLi, S., Huang, Y., Li, F., Liu, Y., Ma, H., Zhang, X., Wang, X., Chen, W., Cui, G., & Wang, T. (2024). Functional Alpha and Beta Diversity of Fish Communities and Their Relationship with Environmental Factors in the Huanghe River (Yellow River) Estuary and Adjacent Seas, China. Fishes, 9(6), 222. https://doi.org/10.3390/fishes9060222