Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Putative ωx Desaturases from the S. constricta Genome
2.2. Molecular Cloning of Putative S. constricta ωx Desaturases
2.3. Sequence Alignment and Phylogenetic Analysis
2.4. Functional Characterization of Putative S. constricta ωx Desaturases through Heterologous Expression in Yeast
2.5. FA Analysis by Gas Chromatography–Mass Spectrometry (GC–MS)
2.6. Spatio-Temporal Expression of Putative S. constricta ωx Desaturases
2.7. Statistical Analysis
3. Results
3.1. Sequence and Phylogenetic Characteristics of Putative S. constricta ωx Desaturase
3.2. Functional Activities of Putative S. constricta ωx Desaturases in Yeast
3.3. Expression Patterns of Putative S. constricta ωx Desaturases across Various Tissues and Developmental Stages
4. Discussion
4.1. Two ωx Desaturase Homologs Exist in the S. constricta Genome, Likely Resulting from Genome Duplication
4.2. S. constricta ωx Desaturase Homologs Are Evolutionarily Conserved but May Exhibit Reduced Desaturation Activities
4.3. Expression Patterns of S. constricta ωx Desaturase Homologs Indicate Their Potential Functional Roles in Fatty Acid Desaturation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stubbs, C.D.; Anthony, D.S. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta Rev. Biomembr. 1984, 779, 89–137. [Google Scholar] [CrossRef] [PubMed]
- Pisani, D.; Ailhaud, G. Involvement of polyunsaturated fatty acids in the control of energy storage and expenditure. OCL Oils. Fat. Crop. Li. 2019, 26, 37. [Google Scholar] [CrossRef]
- Calviello, G.; Serini, S.; Palozza, P. n-3 polyunsaturated fatty acids as signal transduction modulators and therapeutical agents in cancer. Curr. Signal Transd. T. 2006, 1, 255–271. [Google Scholar] [CrossRef]
- Hussein, N.; Ah-Sing, E.; Wilkinson, P.; Leach, C.; Griffin, B.A.; Millward, D.J. Long-chain conversion of [13C] linoleic acid and alpha-linolenic acid in response to marked changes in their dietary intake in men. J. Lipid Res. 2005, 46, 269–280. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.Y.; Li, S.K.; Zheng, H.P. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chem. 2020, 311, 125907. [Google Scholar] [CrossRef]
- Monroig, Ó.; Shu-Chien, A.C.; Kabeya, N.; Tocher, D.R.; Castro, L.F.C. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog. Lipid Res. 2022, 86, 101157. [Google Scholar] [CrossRef]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Tocher, D.R.; Castro, L.F.P.; Monroig, Ó. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef]
- Garrido, D.; Kabeya, N.; Hontoria, F.; Navarro, J.C.; Reis, D.B.; Martín, M.V.; Rodríguez, C.; Almansa, E.; Monroig, Ó. Methyl-end desaturases with ∆12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris. BBA-Mol. Cell Biol. Lipids 2019, 1864, 1134–1144. [Google Scholar] [CrossRef]
- Li, M.Z.; Mai, K.S.; He, G.; Ai, Q.H.; Zhang, W.B.; Xu, W.; Wang, J.; Liufu, Z.G.; Zhang, Y.J.; Zhou, H.H. Characterization of two Δ5 fatty acyl desaturases in abalone (Haliotis discus hannai Ino). Aquaculture 2013, 416–417, 48–56. [Google Scholar] [CrossRef]
- Liu, H.L.; Guo, Z.C.; Zheng, H.P.; Wang, S.Q.; Wang, Y.J.; Liu, W.H.; Zhang, G.F. Functional characterization of a Δ5-like fatty acyl desaturase and its expression during early embryogenesis in the noble scallop Chlamys nobilis Reeve. Mol. Biol. Rep. 2014, 41, 7437–7445. [Google Scholar] [CrossRef]
- Monroig, Ó.; Navarro, J.C.; Dick, J.R.; Alemany, F.; Tocher, D.R. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. Mar. Biotech. 2012, 4, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Zhang, H.K.; Zheng, H.P.; Wang, S.Q.; Guo, Z.C.; Zhang, G.F. PUFA biosynthesis pathway in marine scallop. J. Agric. Food Chem. 2014, 62, 12384–12391. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Zheng, H.P.; Wang, S.Q.; Wang, Y.J.; Li, S.K.; Liu, W.H.; Zhang, G.F. Cloning and functional characterization of a polyunsaturated fatty acid elongase in a marine bivalve noble scallop. Aquaculture 2013, 416–417, 146–151. [Google Scholar] [CrossRef]
- Zhang, H.K.; Liu, H.L.; Cheng, D.; Liu, H.L.; Zheng, H.P. Molecular cloning and functional characterisation of a polyunsaturated fatty acid elongase in a marine bivalve Crassostrea angulata. J. Food Nutr. Res. 2018, 6, 89–95. [Google Scholar] [CrossRef]
- Monroig, Ó.; Guinot, D.; Hontoria, F.; Tocher, D.R.; Navarro, J.C. Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase. Aquaculture 2012, 360–361, 45–53. [Google Scholar] [CrossRef]
- Monroig, Ó.; De Llanos, R.; Varó, I.; Hontoria, F.; Tocher, D.R.; Puig, S.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in Octopus vulgaris: Molecular cloning and functional characterisation of a stearoyl-CoA desaturase and an elongation of very long-chain fatty acid 4 protein. Mar. Drugs 2017, 15, 82. [Google Scholar] [CrossRef]
- Monroig, Ó.; Hontoria, F.; Varó, I.; Tocher, D.R.; Navarro, J.C. Investigating the essential fatty acids in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda): Molecular cloning and functional characterisation of fatty acyl desaturase and elongase. Aquaculture 2016, 450, 38–47. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics. FAO Yearbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 30. [Google Scholar]
- Ran, Z.S.; Li, Z.Z.; Yan, X.J.; Liao, K.; Kong, F.; Zhang, L.; Cao, J.Y.; Zhou, C.X.; Zhu, P.; He, S.; et al. Chromosome- level genome assembly of the razor clam Sinonovacula constricta (Lamarck, 1818). Mol. Ecol. Resour. 2019, 19, 1647–1658. [Google Scholar] [CrossRef]
- Ran, Z.S.; Chen, H.; Ran, Y.; Yu, S.S.; Li, S.; Xu, J.L.; Liao, K.; Yu, X.J.; Zhong, Y.Y.; Ye, M.W.; et al. Fatty acid and sterol changes in razor clam Sinonovacula constricta (Lamarck 1818) reared at different salinities. Aquaculture 2017, 473, 493–500. [Google Scholar] [CrossRef]
- Voss, A.; Reinhart, M.; Sankar, S.; Sprecher, H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 1991, 266, 19995–20000. [Google Scholar] [CrossRef]
- Ran, Z.S.; Xu, J.L.; Liao, K.; Li, S.; Chen, S.B.; Yan, X.J. Biosynthesis of polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of Δ5 and Δ6 fatty acid desaturases. J. Agric. Food Chem. 2018, 66, 4592–4601. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.S.; Xu, J.L.; Liao, K.; Monroig, Ó.; Navarro, J.C.; Oboh, A.; Jin, M.; Zhou, Q.C.; Zhou, C.X.; Tocher, D.R.; et al. Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of four fatty acyl elongases and a novel desaturase capacity. BBA-Mol. Cell Biol. Lipids 2019, 1864, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Yoshizawa, A.C.; Okuda, S.; Kuma, K.; Goto, S.; Kanehisa, M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2008, 49, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, S. Primer premier 5. Biotech Softw. Internet Rep. Comput. Softw. J. Sci. 2000, 6, 270–272. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Ran, Z.S.; Kong, F.; Xu, J.L.; Liao, K.; Xu, X.R.; Shi, P.; Chen, K.; Zhou, C.X.; Yan, X.J. Fad and Elovl expressions, fatty acid compositions, and feed effects of three representative microalgae in Sinonovacula constricta (Lamarck 1818) at early developmental stages. Aquaculture 2020, 521, 735101. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Takeuchi, T.; Koyanagi, R.; Gyoja, F.; Kanda, M.; Hisata, K.; Fujie, M.; Goto, M.; Yamasaki, S.; Nagai, K.; Morino, Y.; et al. Bivalve-specific gene expansion in the pearl oyster genome: Implications of adaptation to a sessile lifestyle. Zool. Lett. 2016, 2, 3. [Google Scholar] [CrossRef]
- Hu, Z.; Song, H.; Feng, J.; Zhou, C.; Yang, M.J.; Shi, P.; Yu, Z.L.; Li, Y.R.; Guo, Y.J.; Li, H.Z.; et al. Massive heat shock protein 70 genes expansion and transcriptional signatures uncover hard clam adaptations to heat and hypoxia. Front. Mar. Sci. 2022, 9, 898669. [Google Scholar] [CrossRef]
- Breuer, G.; Evers, W.A.; de Vree, J.H.; Kleinegris, D.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 2013, 80, 50628. [Google Scholar]
Aim | Primer | Sequence (5′→3′) |
---|---|---|
ORF Cloning | orf_Sc ωx_a/b_F | ATGGATAGAAAACAGCGGGAC |
orf_Sc ωx_a/b_R | TTATTTATAGACATGAACATCCTGATCA | |
Recombinant pYES2 | pY_Sc ωx_a/b_F (HindIII) | CCAAGCTTGCCACCATGGATAGAAAACAGCGGGACA |
pY_Sc ωx_a/b_F (EcoRI) | CGGAATTCTTATTTATAGACATGAACATCCTGATCAT | |
qPCR | q_Sc ωx_a_F | GAGTACCTGATGCCTACAGTATCGTA |
q_Sc ωx_b_F | GAGTACCTGATGCCTACAGTATCGTT | |
q_Sc ωx_a/b_R | ATCGTTCAGCAGGTCATACCTG | |
q_Sc β-actin_F | CCATCTACGAAGGTTACGCCC | |
q_Sc β-actin_R | TCGTAGTGAAGGAGTAGCCTCTTTC |
Identity (%) | ||
---|---|---|
S. constricta ωx_a/b | O. vulgaris ω3 (QBC98328.1) | 49.56%/49.85% |
O. vulgaris Δ12 Fad (QBC98329.1) | 51.97%/51.97% | |
P. vulgata ω3 (ATV93528.1) | 50.83%/50.56% | |
P. vulgata Δ12 Fad (ATV93529.1) | 51.52%/51.52% | |
C. elegans ω3 (NP_001023560.1) | 31.83%/31.21% | |
C. elegans Δ12 Fad (CAB05304.1) | 33.23%//32.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Fang, X.; Yang, D.; Xu, J.; Ran, Z. Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression. Fishes 2024, 9, 359. https://doi.org/10.3390/fishes9090359
Chen X, Fang X, Yang D, Xu J, Ran Z. Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression. Fishes. 2024; 9(9):359. https://doi.org/10.3390/fishes9090359
Chicago/Turabian StyleChen, Xinyi, Xiang Fang, Dongzi Yang, Jilin Xu, and Zhaoshou Ran. 2024. "Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression" Fishes 9, no. 9: 359. https://doi.org/10.3390/fishes9090359
APA StyleChen, X., Fang, X., Yang, D., Xu, J., & Ran, Z. (2024). Discovery of Methyl-End Desaturases in Razor Clam Sinonovacula constricta (Lamarck 1818) and Their Spatio-Temporal Expression. Fishes, 9(9), 359. https://doi.org/10.3390/fishes9090359