Topological Superconductivity of the Unconventional Type, S = 1, Sz = 0, in a Layer of Adatoms
Abstract
:1. Introduction
2. The 2D Model
3. Topological Invariant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, N.; Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 2000, 61, 10267. [Google Scholar] [CrossRef]
- Kitaev, A.Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 2001, 44, 131. [Google Scholar] [CrossRef]
- Wong, L.M.C.; Law, K.T. Majorana Kramers doublets in dx2−y2-wave superconductors with Rashba spin-orbit coupling. Phys. Rev. B 2012, 86, 184516. [Google Scholar] [CrossRef]
- Chen, W.; Schnyder, A.P. Majorana edge states in superconductor-noncollinear magnet interfaces. Phys. Rev. B 2015, 92, 214502. [Google Scholar] [CrossRef]
- Gilad, M.; Binghai, Y.; Franz, M.; Yuval, O. Chiral Majorana modes via proximity to a twisted cuprate bilayer. Phys. Rev. B 2022, 106, 205424. [Google Scholar]
- Pan, H.; Sarma, S.D. Majorana nanowires, Kitaev chains, and spin models. Phys. Rev. B 2023, 107, 035440. [Google Scholar] [CrossRef]
- Lutchyn, R.M.; Sau, J.D.; Sarma, S.D. Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett. 2010, 105, 077001. [Google Scholar] [CrossRef] [PubMed]
- Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires. Phys. Rev. Lett. 2010, 105, 177002. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.C.B.; Correa, J.H.; Ricco, L.S.; Seridonio, A.C.; Figueira, M.S. Spin-polarized Majorana zero modes in double zigzag honeycomb nanoribbons. Phys. Rev. B 2022, 105, 205115. [Google Scholar] [CrossRef]
- Bernevig, B.A.; Felser, C.; Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 2022, 603, 41. [Google Scholar] [CrossRef]
- Culser, D.; Keser, A.C.; Li, Y.; Tkachov, G. Transport in two-dimensional topological materials: Recent developments in experiment and theory. 2D Mater 2020, 7, 022007. [Google Scholar] [CrossRef]
- Mandal, M.; Drucker, N.C.; Siriviboon, P.; Nguyen, T.; Boonkird, A.; Lamichhane, T.N.; Okabe, R.; Chotrattanapituk, A.; Li, M. Topological Superconductors from a Materials Perspective. Chem. Mater. 2023, 35, 6184. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [Google Scholar] [CrossRef]
- Das Sarma, S.; Freedman, M.; Nayak, C. Majorana zero modes and topological quantum computation. NPJ Quantum Inf. 2015, 1, 15001. [Google Scholar] [CrossRef]
- Alicea, J.; Oreg, Y.; Refael, G.; von Oppen, F.; Fisher, M.P.A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 2011, 7, 412. [Google Scholar] [CrossRef]
- Di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A.K.; De Fazio, D.; Yoon, D.; Amado, M.; et al. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Nat. Commun. 2017, 8, 14024. [Google Scholar] [CrossRef]
- Tewari, S.; Stanescu, T.D.; Sau, J.D.; Sarma, S.D. Topological minigap in quasi-one-dimensional spin-orbit-coupled semiconductor Majorana wires. Phys. Rev. B 2012, 86, 024504. [Google Scholar] [CrossRef]
- Stanescu, T.D.; Tewari, S. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys. Condens. Matter 2013, 25, 233201. [Google Scholar] [CrossRef] [PubMed]
- Black-Schaffer, A.M.; Balatsky, A.V. Proximity-induced unconventional superconductivity in topological insulators. Phys. Rev. B 2013, 87, 220506(R). [Google Scholar] [CrossRef]
- Caldas, H.; Batista, F.S.; Continentino, M.A.; Deus, F.; Nozadze, D. A two-band model for p-wave superconductivity. Ann. Phys. 2017, 384, 211. [Google Scholar] [CrossRef]
- Deus, F.; Continentino, M.A.; Caldas, H. Induced p-wave superconductivity without spin-orbit interactions. Ann. Phys. 2015, 362, 208. [Google Scholar] [CrossRef]
- Yang, Y.J.; Gu, B.; Su, G.; Feng, Y.P. Two-dimensional topological superconductivity candidate in a van der Waals layered material. Phys. Rev. B 2021, 103, 104503. [Google Scholar]
- Santos, E.S.; Ribeiro, R.C.B.; Caldas, H.; Continentino, M.A. Hybridization induced triplet superconductivity with Sz = 0. Phys. Rev. B 2024, 109, 134503. [Google Scholar]
- Mizukami, Y.; Shishido, H.; Shibauchi, T.; Shimozawa, M.; Yasumoto, S.; Watanabe, D.; Yamashita, M.; Ikeda, H.; Terashima, T.; Kontani, H.; et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 2011, 7, 849. [Google Scholar] [CrossRef]
- Liebhaber, E.; Rütten, L.M.; Reecht, G. Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor. Nat. Commun. 2022, 13, 2160. [Google Scholar] [CrossRef] [PubMed]
- Altland, A.; Zirnbauer, M.R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 1997, 55, 1142. [Google Scholar] [CrossRef]
- Chou, P.H.; Chen, C.H.; Liu, S.W.; Chung, C.H.; Mou, C.Y. Geometry-induced topological superconductivity. Phys. Rev. B 2021, 103, 014508. [Google Scholar] [CrossRef]
- Schnyder, A.P.; Ryu, S.; Furusaki, A.; Ludwig, A.W.W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 2008, 78, 195125. [Google Scholar] [CrossRef]
- Kotetes, P. Classification of engineered topological superconductors. New J. Phys. 2013, 15, 105027. [Google Scholar] [CrossRef]
- Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef]
- Volovik, G.E. Quantum Phase Transitions from Topology in Momentum Space. In Quantum Analogues: From Phase Transitions to Black Holes and Cosmology; Unruh, W.G., Schützhold, R., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 718, p. 31. [Google Scholar]
- Vu, D.; Zhang, R.; Sarma, S. Time-reversal-invariant C2-symmetric higher-order topological superconductors. Phys. Rev. R 2020, 2, 043223. [Google Scholar] [CrossRef]
- Mashkoori, M.; Björnson, K.; Black-Schaffer, A.M. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters. Sci. Rep. 2017, 7, 44107. [Google Scholar] [CrossRef] [PubMed]
- Ono, S. Refined symmetry indicators for topological superconductors in all space groups. Sci. Adv. 2020, 6, 8367. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.; Continentino, M.A. Topological Superconductivity of the Unconventional Type, S = 1, Sz = 0, in a Layer of Adatoms. Condens. Matter 2025, 10, 2. https://doi.org/10.3390/condmat10010002
Silva E, Continentino MA. Topological Superconductivity of the Unconventional Type, S = 1, Sz = 0, in a Layer of Adatoms. Condensed Matter. 2025; 10(1):2. https://doi.org/10.3390/condmat10010002
Chicago/Turabian StyleSilva, Edine, and Mucio A. Continentino. 2025. "Topological Superconductivity of the Unconventional Type, S = 1, Sz = 0, in a Layer of Adatoms" Condensed Matter 10, no. 1: 2. https://doi.org/10.3390/condmat10010002
APA StyleSilva, E., & Continentino, M. A. (2025). Topological Superconductivity of the Unconventional Type, S = 1, Sz = 0, in a Layer of Adatoms. Condensed Matter, 10(1), 2. https://doi.org/10.3390/condmat10010002