Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique
Abstract
:1. Introduction
2. Results
2.1. Article Content
2.1.1. Deposition Behavior of the Fe-Doped ZnO Films
2.1.2. Crystal Structure of the Fe-Doped ZnO Films
2.1.3. Piezoelectric Properties of the Fe-Doped ZnO Films
3. Discussion
- (I)
- Under conditions of higher oxygen partial pressure:
- (II)
- Under conditions of lower oxygen partial pressure:
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Rai, R.S.; Bajpai, V.; Khan, M.I.; Elboughdiri, N.; Shanableh, A.; Luque, R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. Environ. Res. 2023, 221, 114807. [Google Scholar] [CrossRef] [PubMed]
- Steven, S.; Zumdahl, D.J.D. AE Chemical Principles, 8th ed.; Cengage: Boston, MA, USA, 2017. [Google Scholar]
- Abdallah, B.; Zetoun, W.; Tello, A. Deposition of ZnO thin films with different powers using RF magnetron sputtering method: Structural, electrical and optical study. Heliyon 2024, 10, e27606. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, A.C.; Yadav, B.S.; Jha, G.K.; Dhage, S.R. Room Temperature Sputtered Aluminum-Doped ZnO Thin Film Transparent Electrode for Application in Solar Cells and for Low-Band-Gap Optoelectronic Devices. ACS Omega 2022, 7, 14203–14210. [Google Scholar] [CrossRef]
- Sarma, B.K.; Rajkumar, P. Al-doped ZnO transparent conducting oxide with appealing electro-optical properties—Realization of indium free transparent conductors from sputtering targets with varying dopant concentrations. Mater. Today Commun. 2020, 23, 100870. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, M.; Peng, W.; He, Y. Review of bulk acoustic wave resonant optical detectors. Sens. Actuators A Phys. 2023, 355, 114333. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; E, M.; Liu, H.; Liu, Z.; Ding, W.; Li, D.; Cui, Y. Self-Powered Rapid Response Flexible Pressure Sensor for Wearable Application. Adv. Eng. Mater. 2023, 25, 2201678. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Jin, M.; Zhu, Y.; Zhang, N. The carbon dots modified ZnO films photodetector with broadband and fast photoresponse. Opt. Mater. 2023, 135, 113341. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Luo, J.T.; Fan, B.; Zeng, F.; Pan, F. Influence of Cr-doping on microstructure and piezoelectric response of AlN films. J. Phys. D Appl. Phys. 2009, 42, 235406. [Google Scholar] [CrossRef]
- Hirata, K.; Mori, Y.; Yamada, H.; Uehara, M.; Anggraini, S.A.; Akiyama, M. Significant Enhancement of Piezoelectric Response in AlN by Yb Addition. Materials 2021, 14, 309. [Google Scholar] [CrossRef] [PubMed]
- Iwazaki, Y.; Yokoyama, T.; Nishihara, T.; Ueda, M. Highly enhanced piezoelectric property of co-doped AlN. Appl. Phys. Express 2015, 8, 061501. [Google Scholar] [CrossRef]
- Startt, J.; Quazi, M.; Sharma, P.; Vazquez, I.; Poudyal, A.; Jackson, N.; Dingreville, R. Unlocking AlN Piezoelectric Performance with Earth-Abundant Dopants. Adv. Electron. Mater. 2023, 9, 2201187. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Chen, Y.-C.; Chen, Y.-C.; Kao, K.-S.; Chang, Y.-C. Fabrication of a 3.5-GHz Solidly Mounted Resonator by Using an AlScN Piezoelectric Thin Film. Coatings 2021, 11, 1151. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Chiang, H.-J.; Wu, C.-Z.; Lin, Y.; Shen, Y.-K. Analysis on Characteristics of ZnO Surface Acoustic Wave with and without Micro-Structures. Micromachines 2019, 10, 434. [Google Scholar] [CrossRef]
- Eitel, R.E. Novel Piezoelectric Ceramics: Development of High Temperature, High Performance Piezoelectrics on the Basis of Structure; The Pennsylvania State University: University Park, PA, USA, 2003. [Google Scholar]
- Hutson, A.R. Piezoelectricity and Conductivity in ZnO and CdS. Phys. Rev. Lett. 1960, 4, 505–507. [Google Scholar] [CrossRef]
- Karanth, D.; Fu, H. Large electromechanical response in ZnO and its microscopic origin. Phys. Rev. B 2005, 72, 064116. [Google Scholar] [CrossRef]
- Luo, J.T.; Zhu, X.Y.; Chen, G.; Zeng, F.; Pan, F. Influence of the Mn concentration on the electromechanical response d33 of Mn-doped ZnO films. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2010, 4, 209–211. [Google Scholar] [CrossRef]
- Shiau, J.-S.; Brahma, S.; Huang, J.-L.; Liu, C.-P. Fabrication of flexible UV-B photodetectors made of MgxZn1-xO films on PI substrate for enhanced sensitivity by piezophototronic effect. Appl. Mater. Today 2020, 20, 100705. [Google Scholar] [CrossRef]
- Yang, Y.C.; Song, C.; Wang, X.H.; Zeng, F.; Pan, F. Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−xCrxO films. J. Appl. Phys. 2008, 103, 074107. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Brahma, S.; Huang, J.-L.; Liu, C.-P. Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Mater. Sci. Semicond. Process 2022, 146, 106703. [Google Scholar] [CrossRef]
- Yadav, H.; Sinha, N.; Goel, S.; Kumar, B. Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloy. Compd. 2016, 689, 333–341. [Google Scholar] [CrossRef]
- Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A. Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide. Sci. Rep. 2017, 7, 41957. [Google Scholar] [CrossRef] [PubMed]
- Kingery, W.D.; Chiang, Y.M.; Birnie, D.P. David Kingery. Physical Ceramics: Principles for Ceramic Science and Engineering; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Luo, J.T.; Yang, Y.C.; Zhu, X.Y.; Chen, G.; Zeng, F.; Pan, F. Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys. Rev. B 2010, 82, 014116. [Google Scholar] [CrossRef]
- García-Gancedo, L.; Pedrós, J.; Zhu, Z.; Flewitt, A.J.; Milne, W.I.; Luo, J.K.; Ford, C.J.B. Room-temperature remote-plasma sputtering of c-axis oriented zinc oxide thin films. J. Appl. Phys. 2012, 112, 014907. [Google Scholar] [CrossRef]
- Manzano, C.V.; Alegre, D.; Caballero-Calero, O.; Alén, B.; Martín-González, M.S. Synthesis and luminescence properties of electrodeposited ZnO films. J. Appl. Phys. 2011, 110, 043538. [Google Scholar] [CrossRef]
- Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; Sallet, V. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method. Mater. Res. Bull. 2015, 70, 719–727. [Google Scholar] [CrossRef]
- Srinivasulu, T.; Saritha, K.; Reddy, K.T.R. Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 2017, 3, 76–85. [Google Scholar] [CrossRef]
- Otis, G.; Ejgenberg, M.; Mastai, Y. Solvent-Free Mechanochemical Synthesis of ZnO Nanoparticles by High-Energy Ball Milling of ε-Zn(OH)2 Crystals. Nanomaterials 2021, 11, 238. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Tanahashi, M.; Ito, M.; Murao, M.; Iga, A. Effect of Al-doping on the Grain Growth of ZnO. Jpn. J. Appl. Phys. 1997, 36, L573. [Google Scholar] [CrossRef]
- Le, M.-T.; Sohn, Y.U.; Lim, J.; Choi, G.S. Effect of Sputtering Power on the Nucleation and Growth of Cu Films Deposited by Magnetron Sputtering. Mater. Trans. 2010, 51, 116–120. [Google Scholar] [CrossRef]
- Mills, P.; Sullivan, J.L. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 1983, 16, 723. [Google Scholar] [CrossRef]
- Liu, C.; Meng, D.; Pang, H.; Wu, X.; Xie, J.; Yu, X.; Chen, L.; Liu, X. Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 2012, 324, 3356–3360. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Taabouche, A.; Bouabellou, A.; Kermiche, F.; Hanini, F.; Sedrati, C.; Bouachiba, Y.; Benazzouz, C. Preparation and characterization of Al-doped ZnO piezoelectric thin films grown by pulsed laser deposition. Ceram. Int. 2016, 42, 6701–6706. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Chen, J.-Y.; Yang, T.-P.; Huang, C.-W.; Chiu, C.-H.; Yeh, P.-H.; Wu, W.-W. Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications. Nano Energy 2014, 8, 291–296. [Google Scholar] [CrossRef]
- Kumar, B.; Kim, S.-W. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 2012, 1, 342–355. [Google Scholar] [CrossRef]
- Bui, Q.C.; Salem, B.; Roussel, H.; Mescot, X.; Guerfi, Y.; Jiménez, C.; Consonni, V.; Ardila, G. Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response. J. Alloys Compd. 2021, 870, 159512. [Google Scholar] [CrossRef]
- Jun, M.-C.; Park, S.-U.; Koh, J.-H. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 2012, 7, 639. [Google Scholar] [CrossRef]
- Amala Rani, A.; Ernest, S. Structural, morphological, optical and compositional characterization of spray deposited Ga doped ZnO thin film for Dye-Sensitized Solar Cell application. Superlattices Microstruct. 2014, 75, 398–408. [Google Scholar] [CrossRef]
- Song, J.; Sun, J.; Lian, Y.; Tao, W.; Xie, Y.; Yang, Y. High-performance antireflection nanostructure arrays on aluminum-doped zinc oxide film fabricated with femtosecond laser near-field processing. Appl. Surf. Sci. 2023, 615, 156353. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F. Advances in ZnO-based materials for light emitting diodes. Curr. Opin. Chem. Eng. 2014, 3, 51–55. [Google Scholar] [CrossRef]
- Zayed, M.; Ahmed, A.M.; Shaban, M. Synthesis and characterization of nanoporous ZnO and Pt/ZnO thin films for dye degradation and water splitting applications. Int. J. Hydrogen Energy 2019, 44, 17630–17648. [Google Scholar] [CrossRef]
- Ćwik, K.; Zawadzki, J.; Zybała, R.; Ożga, M.; Witkowski, B.; Wojnar, P.; Wolska-Pietkiewicz, M.; Jędrzejewska, M.; Lewiński, J.; Borysiewicz, M.A. Magnetron Sputtering as a Solvent-Free Method for Fabrication of Nanoporous ZnO Thin Films for Highly Efficient Photocatalytic Organic Pollution Degradation. Compounds 2024, 4, 534–547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-C.; Brahma, S.; Wu, S.; Huang, J.-L.; Lee, A.C.H. Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique. Condens. Matter 2025, 10, 6. https://doi.org/10.3390/condmat10010006
Cheng Y-C, Brahma S, Wu S, Huang J-L, Lee ACH. Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique. Condensed Matter. 2025; 10(1):6. https://doi.org/10.3390/condmat10010006
Chicago/Turabian StyleCheng, Ya-Chih, Sanjaya Brahma, Sean Wu, Jow-Lay Huang, and Alex C. H. Lee. 2025. "Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique" Condensed Matter 10, no. 1: 6. https://doi.org/10.3390/condmat10010006
APA StyleCheng, Y.-C., Brahma, S., Wu, S., Huang, J.-L., & Lee, A. C. H. (2025). Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique. Condensed Matter, 10(1), 6. https://doi.org/10.3390/condmat10010006