Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene
Abstract
:1. Introduction
1.1. Spin Relaxation in Graphene
1.2. Dirac-Rashba Model
1.3. Disorder Effects
2. Microscopic Linear Response Theory for Spin Relaxation
2.1. General Formalism
2.2. Diffusive Equations and SRTs
2.2.1. In-Plane Spin Dynamics
2.2.2. Out-of-Plane Spin Dynamics
2.3. SRT from the Conservation Laws in the DC Limit
2.4. Discussion
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Clean Green’s Function
Appendix B. Integrals and Expansion
Appendix C. Full Form of the Diffusion
- Subspace
- Subspace
Appendix D. Equations for Observables Instead of Vertices
References and Notes
- Huertas-Hernando, D.; Guinea, F.; Brataas, A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 2006, 74, 155426. [Google Scholar] [CrossRef]
- Konschuh, S.; Gmitra, M.; Fabian, J. Tight-binding theory of the spin-orbit coupling in graphene. Phys. Rev. B 2010, 82, 245412. [Google Scholar] [CrossRef]
- Pesin, D.; MacDonald, A.H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Kawakami, R.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.; Valenzuela, S.O. Graphene spintronics: Puzzling controversies and challenges for spin manipulation. J. Phys. D Appl. Phys. 2014, 47, 094011. [Google Scholar] [CrossRef]
- Lara-Avila, S.; Kubatkin, S.; Kashuba, O.; Folk, J.A.; Lüscher, S.; Yakimova, R.; Janssen, T.; Tzalenchuk, A.; Fal’ko, V. Influence of impurity spin dynamics on quantum transport in epitaxial graphene. Phys. Rev. Lett. 2015, 115, 106602. [Google Scholar] [CrossRef] [PubMed]
- Lundeberg, M.B.; Yang, R.; Renard, J.; Folk, J.A. Defect-mediated spin relaxation and dephasing in graphene. Phys. Rev. Lett. 2013, 110, 156601. [Google Scholar] [CrossRef] [PubMed]
- Raes, B.; Scheerder, J.E.; Costache, M.V.; Bonell, F.; Sierra, J.F.; Cuppens, J.; van de Vondel, J.; Valenzuela, S.O. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 2016, 7, 11444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, S.; Guimares, M.H.D.; Kaverzin, A.; van Wees, B.J.; Vera-Marun, I.J. Spin relaxation 1/f noise in graphene. Phys. Rev. B 2017, 95, 081403(R). [Google Scholar] [CrossRef]
- Johnson, M.; Silsbee, R.H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 1985, 55, 1790. [Google Scholar] [CrossRef] [PubMed]
- Jedema, F.J.; Filip, A.T.; van Wees, B.J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 2001, 410, 345. [Google Scholar] [CrossRef] [PubMed]
- Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; van Wees, B.J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Józsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P.J.; Veligura, A.; Jonkman, H.T.; van Wees, B.J. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 2009, 80, 241403(R). [Google Scholar] [CrossRef]
- Popinciuc, M.; Józsa, C.; Zomer, P.J.; Tombros, N.; Veligura, A.; Jonkman, H.T.; Van Wees, B.J. Electronic spin transport in graphene field-effect transistors. Phys. Rev. B 2009, 80, 214427. [Google Scholar] [CrossRef]
- Han, W.; Pi, K.; McCreary, K.M.; Li, Y.; Wong, J.J.; Swartz, A.G.; Kawakami, R.K. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 2010, 105, 167202. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-Y.; Balakrishnan, J.; Volmer, F.; Avsar, A.; Jaiswal, M.; Samm, J.; Ali, S.R.; Pachoud, A.; Zeng, M.; Popinciuc, M.; et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett. 2011, 107, 047206. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Kawakami, R. Spin relaxation in single-layer and bilayer graphene. Phys. Rev. Lett. 2011, 107, 047207. [Google Scholar] [CrossRef] [PubMed]
- Pi, K.; Han, W.; McCreary, K.M.; Swartz, A.G.; Li, Y.; Kawakami, R.K. Manipulation of spin transport in graphene by surface chemical doping. Phys. Rev. Lett. 2010, 104, 187201. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Ki, D.K.; Jeong, D.; Lee, H.J.; Kettemann, S. Spin relaxation properties in graphene due to its linear dispersion. Phys. Rev. B 2011, 84, 075453. [Google Scholar] [CrossRef]
- Zomer, P.J.; Guimarães, M.H.D.; Tombros, N.; van Wees, B.J. Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys. Rev. B 2012, 86, 161416. [Google Scholar] [CrossRef]
- Drögeler, M.; Volmer, F.; Wolter, M.; Terrés, B.; Watanabe, K.; Taniguchi, T.; Güntherodt, G.; Stampfer, C.; Beschoten, B. Nanosecond Spin Lifetimes in Single- and Few-Layer Graphene–hBN Heterostructures at Room Temperature. Nano Lett. 2014, 14, 6050–6055. [Google Scholar] [CrossRef] [PubMed]
- Drögeler, M.; Franzen, C.; Volmer, F.; Pohlmann, T.; Banszerus, L.; Wolter, M.; Watanabe, K.; Taniguchi, T.; Stampfer, C.; Beschoten, B. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano Lett. 2016, 16, 3533–3539. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.H.C.; Guinea, F. Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett. 2009, 103, 026804. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Hernando, D.; Guinea, F.; Brataas, A. Spin-Orbit-Mediated Spin Relaxation in Graphene. Phys. Rev. Lett. 2009, 103, 146801. [Google Scholar] [CrossRef] [PubMed]
- Ertler, C.; Konschuh, S.; Gmitra, M.; Fabian, J. Electron spin relaxation in graphene: The role of the substrate. Phys. Rev. B 2009, 80, 041405(R). [Google Scholar] [CrossRef]
- Kochan, D.; Gmitra, M.; Fabian, J. Spin relaxation mechanism in graphene: Resonant scattering by magnetic impurities. Phys. Rev. Lett. 2014, 112, 116602. [Google Scholar] [CrossRef] [PubMed]
- Maassen, T.; Dejene, F.K.; Guimaraes, M.H.D.; Józsa, C.; Van Wees, B.J. Comparison between charge and spin transport in few-layer graphene. Phys. Rev. B 2011, 83, 115410. [Google Scholar] [CrossRef]
- Volmer, F.; Drögeler, M.; Maynicke, E.; von den Driesch, N.; Boschen, M.L.; Güntherodt, G.; Beschoten, B. Role of MgO barriers for spin and charge transport in Co/MgO/graphene nonlocal spin-valve devices. Phys. Rev. B 2013, 88, 161405(R). [Google Scholar] [CrossRef]
- Fedorov, D.V.; Gradhand, M.; Ostanin, S.; Maznichenko, I.V.; Ernst, A.; Fabian, J.; Mertig, I. Impact of electron-impurity scattering on the spin relaxation time in graphene: A first-principles study. Phys. Rev. Lett. 2013, 110, 156602. [Google Scholar] [CrossRef] [PubMed]
- Soriano, D.; van Tuan, D.; Dubois, S.M.-M.; Gmitra, M.; Cummings, A.W.; Kochan, D.; Ortmann, F.; Charlier, J.-C.; Fabian, J.; Roche, S. Spin transport in hydrogenated graphene. 2D Mater. 2015, 2, 022002. [Google Scholar] [CrossRef]
- Tuan, D.V.; Ortmann, F.; Soriano, D.; Valenzuela, S.O.; Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nat. Phys. 2014, 10, 857. [Google Scholar] [CrossRef]
- Tuan, D.V.; Ortmann, F.; Cummings, A.W.; Soriano, D.; Roche, S. Spin dynamics and relaxation in graphene dictated by electron-hole puddles. Sci. Rep. 2016, 6, 21046. [Google Scholar] [CrossRef] [PubMed]
- Cummings, A.W.; Roche, S. Effects of dephasing on spin lifetime in ballistic spin-orbit materials. Phys. Rev. Lett. 2016, 116, 086602. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, M.; Vera-Marun, I.J.; Maassen, T.; van Wees, B.J. Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices. Phys. Rev. B 2013, 87, 081402. [Google Scholar] [CrossRef]
- Guimarães, M.H.; Veligura, A.; Zomer, P.J.; Maassen, T.; Vera-Marun, I.J.; Tombros, N.; van Wees, B.J. Spin Transport in High-Quality Suspended Graphene Devices. Nano Lett. 2012, 12, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Ingla-Aynés, J.; Guimarães, M.H.D.; Meijerink, R.J.; Zomer, P.J.; van Wees, B.J. 24-μm spin relaxation length in boron nitride encapsulated bilayer graphene. Phys. Rev. B 2015, 92, 201410(R). [Google Scholar] [CrossRef]
- Bychkov, Y.A.; Rashba, E.I. Properties of a 2D electron gas with lifted spectral degeneracy. JEPT Lett. 1984, 39, 78. [Google Scholar]
- Wu, M.W.; Jiang, J.H.; Weng, M.Q. Spin dynamics in semiconductors. Phys. Rep. 2010, 493, 61–236. [Google Scholar] [CrossRef]
- Huang, C.; Chong, Y.D.; Cazalilla, M.A. Direct coupling between charge and spin polarization by extrinsic mechanisms in graphene. Phys. Rev. B 2016, 94, 085414. [Google Scholar] [CrossRef]
- Huang, C.; Chong, Y.D.; Cazalilla, M.A. Anomalous Nonlocal Resistance and Spin-Charge Conversion Mechanisms in Two-Dimensional Metals. Phys. Rev. Lett. 2017, 119, 136804. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, H.; Neto, A.H.C.; Guinea, F. Elliot-Yafet mechanism in graphene. Phys. Rev. Lett. 2012, 108, 206808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, M.W. Electron spin relaxation in graphene with random Rashba field: Comparison of the D’yakonov–Perel’and Elliott–Yafet-like mechanisms. New J. Phys. 2012, 14, 033015. [Google Scholar] [CrossRef]
- Milletarì, M.; Offidani, M.; Ferreira, A.; Raimondi, R. Covariant conservation laws and the spin Hall effect in Dirac-Rashba systems. Phys. Rev. Lett. 2017, 119, 246801. [Google Scholar] [CrossRef] [PubMed]
- Offidani, M.; Milletarì, M.; Raimondi, R.; Ferreira, A. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, O.V. Spin-Hall conductivity in a two-dimensional Rashba electron gas. Phys. Rev. B 2005, 71, 245327. [Google Scholar] [CrossRef]
- Raimondi, R.; Gorini, C.; Schwab, P.; Dzierzawa, M. Quasiclassical approach to the spin Hall effect in the two-dimensional electron gas. Phys. Rev. B 2006, 74, 035340. [Google Scholar] [CrossRef]
- Raimondi, R.; Schwab, P.; Gorini, C.; Vignale, G. Spin-orbit interaction in a two-dimensional electron gas: A SU(2) formulation. Ann. Phys. 2012, 524, 153–162. [Google Scholar] [CrossRef]
- Maleki, A.; Raimondi, R. Inverse Spin Galvanic Effect in the Presence of Impurity Spin-Orbit Scattering: A Diagrammatic Approach. Condens. Matter 2017, 2, 17. [Google Scholar]
- Gorini, C.; Sheikhabadi, A.M.; Shen, K.; Tokatly, I.V.; Vignale, G.; Raimondi, R. Theory of current-induced spin polarization in an electron gas. Phys. Rev. B 2017, 95, 205424. [Google Scholar] [CrossRef]
- The ordering of the basis is (A, B)t, where A = (A↑, A↓) includes up and down spin states on sublattice site A (similarly for B). We use natural units where ℏ ≡ 1 ≡ e, unless stated otherwise.
- Schwab, P.; Raimondi, R.; Gorini, C. Spin-charge locking and tunneling into a helical metal. EPL 2011, 93, 67004. [Google Scholar] [CrossRef]
- Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J.H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J.G.; Ong, N.P.; et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 2009, 460, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosco, V.; Benfatto, L.; Cappelluti, E.; Grimaldi, C. Unconventional dc transport in Rashba electron gases. Phys. Rev. Lett. 2016, 116, 166602. [Google Scholar] [CrossRef] [PubMed]
- Milletarì, M.; Ferreira, A. Quantum diagrammatic theory of the extrinsic spin Hall effect in graphene. Phys. Rev. B 2016, 94, 134202. [Google Scholar] [CrossRef]
- Ferreira, A.; Viana-Gomes, J.; Nilsson, J.; Mucciolo, E.R.; Peres, N.M.R.; Neto, A.H.C. Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 2011, 83, 165402. [Google Scholar] [CrossRef]
- Ferreira, A.; Rappoport, T.G.; Cazalilla, M.A.; Neto, A.H.C. Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys. Rev. Lett. 2014, 112, 066601. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Cullen, W.G.; Jang, C.; Fuhrer, M.S.; Williams, E.D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805. [Google Scholar] [CrossRef] [PubMed]
- Monteverde, M.; Ojeda-Aristizabal, C.; Weil, R.; Bennaceur, K.; Ferrier, M.; Guéron, S.; Glattli, C.; Bouchiat, H.; Fuchs, J.N.; Maslov, D.L. Transport and elastic scattering times as probes of the nature of impurity scattering in single-layer and bilayer graphene. Phys. Rev. Lett. 2010, 104, 126801. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.H.; Ponomarenko, L.A.; Nair, R.R.; Yang, R.; Anissimova, S.; Grigorieva, I.V.; Schedin, F.; Blake, P.; Shen, Z.X.; Hill, E.H.; et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868–3872. [Google Scholar] [CrossRef] [PubMed]
- Katoch, J.; Chen, J.-H.; Tsuchikawa, R.; Smith, C.W.; Mucciolo, E.R.; Ishigami, M. Uncovering the dominant scatterer in graphene sheets on SiO2. Phys. Rev. B 2010, 82, 081417(R). [Google Scholar] [CrossRef]
- Burkov, A.A.; Nunez, A.S.; MacDonald, A.H. Theory of spin-charge-coupled transport in a two-dimensional electron gas with Rashba spin-orbit interactions. PRB 2004, 70, 155308. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, L. Spin relaxation in a two-dimensional electron gas in a perpendicular magnetic field. Phys. Rev. B. 2004, 69, 245312. [Google Scholar] [CrossRef]
- Shen, K.; Vignale, G.; Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 2014, 112, 096601. [Google Scholar] [CrossRef] [PubMed]
- Rammer, J. Quantum Transport Theory; Taylor & Francis Inc.: Abingdon, UK, 1998. [Google Scholar]
- McCann, E.; Kechedzhi, K.; Fal’ko, V.I.; Suzuura, H.; Ando, T.; Altshuler, B.L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, P.M.; Gornyi, I.V.; Mirlin, A.D. Electron transport in disordered graphene. Phys. Rev. B 2006, 74, 235443. [Google Scholar] [CrossRef]
- Attention must be paid on this point when considering space-dependent dynamics. In fact, while spininjection can be performed locally, electric field lines extending in space can generate spin nonlocally, i.e., far away from the source [40,68]. However this circumstance is irrelevant for our purpose of obtaining the SRTs.
- Abanin, D.A.; Shytov, A.V.; Levitov, L.S.; Halperin, B.I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 2009, 79, 03504. [Google Scholar] [CrossRef]
- Ado, I.A.; Dmitriev, I.A.; Ostrovsky, P.M.; Titov, M. Anomalous Hall effect with massive Dirac fermions. EPL 2015, 111, 37004. [Google Scholar] [CrossRef]
- Milletarì, M.; Ferreira, A. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene. Phys. Rev. B 2016, 94, 201402(R). [Google Scholar] [CrossRef]
- McCann, E.; Falko, V. z → −z Symmetry of Spin-Orbit Coupling and Weak Localization in Graphene. Phys. Rev. Lett. 2012, 108, 166606. [Google Scholar] [CrossRef] [PubMed]
- Cummings, A.W.; Garcia, J.H.; Fabian, J.; Roche, S. Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects. Phys. Rev. Lett. 2017, 119, 206601. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, T.S.; Ingla-Aynes, J.; Kaverzin, A.A.; van Wees, B.J. Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures. Nano Lett. 2017, 17, 7528–7532. [Google Scholar] [CrossRef] [PubMed]
- Benítez, L.A.; Sierra, J.F.; Torres, W.S.; Arrighi, A.; Bonell, F.; Costache, M.V.; Valenzuela, S.O. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 2017, 14, 303. [Google Scholar] [CrossRef]
- Wakamura, T.; Reale, F.; Palczynski, P.; Guéron, S.; Mattevi, C.; Bouchiat, H. Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS2. Phys. Rev. Lett. 2018, 120, 106802. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: This paper complies with EPSRC requirements on data management. The theoretical research described here is not based upon data generated by the authors in the course of EPSRC-funded research. |
Polarization | Couplings | |||
---|---|---|---|---|
−1 | −1 | +1 | ||
−1 | +1 | +1 | ||
+1 | −1 | +1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offidani, M.; Raimondi, R.; Ferreira, A. Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene. Condens. Matter 2018, 3, 18. https://doi.org/10.3390/condmat3020018
Offidani M, Raimondi R, Ferreira A. Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene. Condensed Matter. 2018; 3(2):18. https://doi.org/10.3390/condmat3020018
Chicago/Turabian StyleOffidani, Manuel, Roberto Raimondi, and Aires Ferreira. 2018. "Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene" Condensed Matter 3, no. 2: 18. https://doi.org/10.3390/condmat3020018
APA StyleOffidani, M., Raimondi, R., & Ferreira, A. (2018). Microscopic Linear Response Theory of Spin Relaxation and Relativistic Transport Phenomena in Graphene. Condensed Matter, 3(2), 18. https://doi.org/10.3390/condmat3020018