Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond
Abstract
:1. Introduction
2. TRS Breaking in Superconductors
2.1. Methods for Detecting TRS Breaking
2.2. Superconductors with TRS Broken State
3. SrRuO: Puzzles, Solutions, and Still Open Issues
3.1. Modelling of Strontium Ruthenate
3.2. Horizontal or Vertical Line Nodes?
3.3. Surface Magnetic Fields
3.4. Topology Related Aspects—A Few Remarks
4. Understanding the Kerr Effect in SrRuO—Multi-Orbital Mechanism
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Bednorz, J.G.; Müller, K.A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Steglich, F.; Aarts, J.; Bredl, C.D.; Lieke, W.; Meschede, D.; Franz, W.; Schäfer, H. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 1979, 43, 1892–1896. [Google Scholar] [CrossRef]
- Ott, H.R.; Rudigier, H.; Fisk, Z.; Smith, J.L. UBe13: An Unconventional Actinide Superconductor. Phys. Rev. Lett. 1983, 50, 1595–1598. [Google Scholar] [CrossRef]
- Stewart, G.R.; Fisk, Z.; Willis, J.O.; Smith, J.L. Possibility of existence of bulk superconductivity and spin fluctuations in UPt3. Phys. Rev. Lett. 1984, 50, 679–682. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J.G.; Lichtenberg, F. Superconductivity in a layered perovskite without copper. Nature 1994, 372, 532–534. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef]
- Gor’kov, L.P. Exotic superconductors. Phys. Scr. 1985, 32, 6–10. [Google Scholar] [CrossRef]
- Brandow, B. Characteristic features of the exotic superconductors. Phys. Rep. 1998, 296, 2–63. [Google Scholar] [CrossRef]
- Stewart, G.R. Unconventional superconductivity. Adv. Phys. 2017, 66, 75–196. [Google Scholar] [CrossRef] [Green Version]
- Kallin, C.; Berlinsky, J. Chiral superconductors. Rep. Prog. Phys. 2016, 79, 054502. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.A. Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors. Phys. Rev. Lett. 2001, 86, 268–271. [Google Scholar] [CrossRef]
- Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef] [Green Version]
- Aasen, D.; Hell, M.; Mishmash, R.V.; Andrew Higginbotham, A.; Jeroen Danon, J.; Leijnse, M.; Jespersen, T.S.; Folk, J.A.; Marcus, C.M.; Flensberg, K.; et al. Milestones Toward Majorana-Based Quantum Computing. Phys. Rev. X 2016, 6, 031016. [Google Scholar] [CrossRef]
- Taylor, E.; Kallin, C. Intrinsic Hall Effect in a Multiband Chiral Superconductor in the Absence of an External Magnetic Field. Phys. Rev. Lett. 2012, 108, 157001. [Google Scholar] [CrossRef]
- Wysokiński, K.I.; Annett, J.F.; Györffy, B.L. Intrinsic Optical Dichroism in the Chiral Superconducting State of Sr2RuO4. Phys. Rev. Lett. 2012, 108, 077004. [Google Scholar] [CrossRef]
- Bae, S.; Tan, Y.; Zhuravel, A.P.; Zhang, L.; Zeng, S.; Liu, Y.; Lograsso, T.A.; Prozorov, R.; Venkatesan, A.T.; Anlage, S.M. Dielectric Resonator Method for Determining Gap Symmetry of Superconductors through Anisotropic Nonlinear Meissner Effect. arXiv 2019, arXiv:1901.08762. [Google Scholar] [CrossRef] [PubMed]
- Schemm, E.R.; Levenson-Falk, E.M.; Kapitulnik, A. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors. Phys. C Supercond. Appl. 2017, 535, 13–19. [Google Scholar] [CrossRef]
- Vadimov, V.L.; Mel’nikov, A.S. Laser pulse probe of the chirality of Cooper pairs. Phys. Rev. B 2017, 96, 184523. [Google Scholar] [CrossRef]
- Yerin, Y.; Omelyanchouk, A.; Drechsler, S.L.; Efremov, D.V.; van den Brink, J. Anomalous diamagnetic response in multiband superconductors with broken time-reversal symmetry. Phys. Rev. B 2017, 96, 144513. [Google Scholar] [CrossRef]
- Gong, X.; Kargarian, M.; Stern, A.; Yue, D.; Zhou, H.; Jin, X.; Galitski, V.M.; Yakovenko, V.M.; Xia, J. Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers. Sci. Adv. 2017, 3, e1602579. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Mahmood, F.; Yue, D.; Xu, P.C.; Jin, X.; Armitage, N.P. Nodeless Bulk Superconductivity in the Time-Reversal Symmetry Breaking Bi/Ni Bilayer System. Phys. Rev. Lett. 2019, 122, 017002. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Schemm, E.; Deutscher, G.; Kivelson, S.A.; Bonn, D.A.; Hardy, W.N.; Liang, R.; Siemons, W.; Koster, G.; Fejer, M.M.; et al. Polar Kerr-Effect Measurements of the High-Temperature YBa2Cu3O6+x Superconductor: Evidence for Broken Symmetry near the Pseudogap Temperature. Phys. Rev. Lett. 2008, 100, 127002. [Google Scholar] [CrossRef]
- Sidis, Y.; Ulrich, C.; Bourges, P.; Bernhard, C.; Niedermayer, C.; Regnault, L.P.; Andersen, N.H.; Keimer, B. Antiferromagnetic Ordering in Superconducting YBa2Cu3O6.5. Phys. Rev. Lett. 2001, 86, 4100–4103. [Google Scholar] [CrossRef]
- Mook, H.A.; Sidis, Y.; Fauque, B.; Baledent, V.; Bourges, P. Observation of magnetic order in a superconducting YBa2Cu3O6.6 single crystal using polarized neutron scattering. Phys. Rev. B 2008, 020506. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, Z.; Tan, C.; Huang, K.; Bernal, O.O.; Ho, P.C.; Morris, G.D.; Hillier, A.D.; Biswas, P.K.; Cottrell, S.P.; et al. Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa2Cu3Oy. Sci. Adv. 2018, 4, eaao5235. [Google Scholar] [CrossRef]
- Garaud, J.; Silaev, M.; Babaev, E. Thermoelectric Signatures of Time-Reversal Symmetry Breaking States in Multiband Superconductors. Phys. Rev. Lett. 2016, 116, 097002. [Google Scholar] [CrossRef]
- Ginzburg, V.L. On thermoelectric phenomena in superconductors. J. Phys. USSR 1944, 8, 148. [Google Scholar]
- Van Harlingen, D.J.; Heidel, D.F.; Garland, J.C. Experimental study of thermo-electricity in superconducting indium. Phys. Rev. B 1980, 21, 1843–1857. [Google Scholar] [CrossRef]
- Barybin, A.A. A Fermi liquid approach to an explanation of the thermoelectric effects experimentally observed in superconductors. Supercond. Sci. Technol. 2008, 21, 105005. [Google Scholar] [CrossRef]
- Shelly, C.D.; Matrozova, E.A.; Petrashov, V.T. Resolving thermoelectric “paradox” in superconductors. Sci. Adv. 2016, 2, e1501250. [Google Scholar] [CrossRef] [Green Version]
- Wysokinski, M.M. Thermoelectric Effect in the Normal Conductor-Superconductor Junction: A BTK Approach. Acta Phys. Pol. A 2012, 122, 758–764. [Google Scholar] [CrossRef]
- Wysokinski, M.M.; Spalek, J. Seebeck effect in the graphene-superconductor junction. J. Appl. Phys. 2013, 113, 163905. [Google Scholar] [CrossRef] [Green Version]
- Amato, A. Heavy-fermion systems studied by μSR technique. Rev. Mod. Phys. 1997, 69, 1119–1179. [Google Scholar] [CrossRef]
- Sonier, J.E.; Brewer, J.H.; Kiefl, R.F. μSR studies of the vortex state in type-II superconductors. Rev. Mod. Phys. 2000, 72, 769–811. [Google Scholar] [CrossRef]
- Hillier, A.D.; Quintanilla, J.; Cywinski, R. Evidence for Time-Reversal Symmetry Breaking in the Noncentrosymmetric Superconductor LaNiC2. Phys. Rev. Lett. 2009, 102, 117007. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Smidman, M.; Anand, V.K. A brief review on μSR studies of unconventional Fe- and Cr-based superconductors. Sci. China-Phys. Mech. Astron. 2018, 61, 127402. [Google Scholar] [CrossRef]
- Capelle, K.; Gross, E.K.U.; Gyorffy, B.L. Theory of dichroism in the electromagnetic response of superconductors. Phys. Rev. Lett. 1997, 78, 3753–3756. [Google Scholar] [CrossRef]
- Capelle, K.; Gross, E.K.U.; Gyorffy, B.L. Analysis of dichroism in the electromagnetic response of superconductors. Phys. Rev. B 1998, 58, 473–489. [Google Scholar] [CrossRef]
- White, R.M.; Geballe, T.H. Long Range Order in Solids; Academic: New York, NY, USA, 1979; pp. 317–321. [Google Scholar]
- Lutchyn, R.M.; Nagornykh, P.; Yakovenko, V.M. Gauge-invariant electromagnetic response of a chiral px + ipy superconductor. Phys. Rev. B 2008, 77, 144516. [Google Scholar] [CrossRef]
- Kapitulnik, A.; Xia, J.; Schemm, E.; Palevski, A. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J. Phys. 2009, 11, 055060. [Google Scholar] [CrossRef]
- Kapitulnik, A. Notes on constraints for the observation of Polar Kerr Effect in complex materials. Physica B 2015, 460, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Tokura, Y.; Nagaosa, N. Nonreciprocal responses from noncentrosymmetric quantum materials. Nat. Commun. 2018, 9, 3740. [Google Scholar] [CrossRef]
- Annett, J.F.; Gyorffy, B.L.; Wysokiński, K.I. Orbital magnetic moment of a chiral p-wave superconductor. New J. Phys. 2009, 11, 055063. [Google Scholar] [CrossRef] [Green Version]
- Schlabitz, W.; Baumann, J.; Pollit, B.; Rauchschwalbe, U.; Mayer, H.M.; Ahlheim, U.; Bredl, C.D. Superconductivity and magnetic order in a strongly interacting fermi-system: URu2Si2. Z. Phys. B 2015, 62, 171–177. [Google Scholar] [CrossRef]
- Mydosh, J.A.; Oppeneer, P.M. Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2. Rev. Mod. Phys. 2011, 83, 1301–1322. [Google Scholar] [CrossRef]
- Luke, G.M.; Keren, A.; Le, L.P.; Wu, W.D.; Uemura, Y.J.; Bonn, D.A.; Taillefer, L.; Garrett, J.D. Muon spin relaxation in UPt3. Phys. Rev. Lett. 1993, 71, 1466–1469. [Google Scholar] [CrossRef]
- Brawner, D.A.; Ott, H.R.; Fisk, Z. Further evidence for time reversal symmetry breaking in the heavy electron superconductor UPt3. Phys. B Condens. Matter 1997, 230–232, 338–341. [Google Scholar] [CrossRef]
- Joynt, R.; Taillefer, L. The superconducting phases of UPt3. Rev. Mod. Phys. 2002, 74, 235–294. [Google Scholar] [CrossRef]
- Adenwalla, S.; Lin, S.W.; Ran, Q.Z.; Zhao, Z.; Ketterson, J.B.; Sauls, J.A.; Taillefer, L.; Hinks, D.G.; Levy, M.; Sarma, B.K. Phase diagram of UPt3 from ultrasonic velocity measurements. Phys. Rev. Lett. 1990, 65, 2298–2301. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Higemoto, W.; Aoki, Y.; Hillier, A.D.; Ohishi, K.; Ishida, K.; Kadono, R.; Koda, A.; Bernal, O.O.; MacLaughlin, D.E.; et al. Suppression of time-reversal symmetry breaking superconductivity in Pr(Os1−xRux)4Sb12 and Pr1−yLayOs4Sb12. Phys. Rev. B 2011, 83, 100504. [Google Scholar] [CrossRef]
- Luke, G.M.; Fudamoto, Y.; Kojima, K.M.; Larkin, M.I.; Merrin, J.; Nachumi, B.; Uemura, Y.J.; Maeno, Y.; Mao, Z.Q.; Mori, Y.; et al. Time reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 1998, 394, 558–561. [Google Scholar] [CrossRef]
- Xia, J.; Maeno, Y.; Beyersdorf, P.T.; Fejer, M.M.; Kapitulnik, A. High resolution po- lar Kerr effect measurements of Sr2RuO4: Evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 2006, 97, 167002. [Google Scholar] [CrossRef]
- Schemm, E.R.; Gannon, W.J.; Wishne, C.M.; Halperin, W.P.; Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 2014, 345, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Schemm, E.R.; Baumbach, R.E.; Tobash, P.H.; Ronning, F.; Bauer, E.D.; Kapitulnik, A. Evidence for broken time-reversal symmetry in the superconducting phase of URu2Si2. Phys. Rev. B 2015, 91, 140506. [Google Scholar] [CrossRef]
- Aoki, Y.; Tsuchiya, A.; Kanayama, T.; Saha, S.R.; Sugawara, H.; Sato, H.; Higemoto, W.; Koda, A.; Ohishi, K.; Nishiyama, K.; et al. Time-Reversal Symmetry-Breaking Superconductivity in Heavy-Fermion PrOs4Sb12 Detected by Muon-Spin Relaxation. Phys. Rev. Lett. 2003, 91, 067003. [Google Scholar] [CrossRef] [PubMed]
- Levenson-Falk, E.M.; Schemm, E.R.; Aoki, Y.; Maple, M.B.; Kapitulnik, A. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs4Sb12. Phys. Rev. Lett. 2018, 120, 187004. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.D.; Frederick, N.A.; Ho, P.-C.; Zapf, V.S.; Maple, M.B. Superconductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B 2002, 65, 100506. [Google Scholar] [CrossRef]
- Maisuradze, A.; Schnelle, W.; Khasanov, R.; Gumeniuk, R.; Nicklas, M.; Rosner, H.; Leithe-Jasper, A.; Grin, Y.; Amato, A.; Thalmeier, P. Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12. Phys. Rev. B 2010, 82, 024524. [Google Scholar] [CrossRef]
- Grinenko, V.; Materne, P.; Sarkar, R.; Luetkens, H.; Kihou, K.; Lee, C.H.; Akhmadaliev, S.; Efremov, D.V.; Drechsler, S.L.; Klauss, H.H. Superconductivity with broken time-reversal symmetry in ion-irradiated Ba0.27K0.73Fe2As2 single crystals. Phys. Rev. B 2017, 95, 214511. [Google Scholar] [CrossRef]
- Hillier, A.D.; Quintanilla, J.; Mazidian, B.; Annett, J.F.; Cywinski, R. Nonunitary Triplet Pairing in the Centrosymmetric Superconductor LaNiGa2. Phys. Rev. Lett. 2012, 109, 097001. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.; Pang, G.M.; Baines, C.; Jiang, W.B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; et al. Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5. Phys. Rev. B 2018, 97, 020502. [Google Scholar] [CrossRef]
- Biswas, P.K.; Luetkens, H.; Neupert, T.; Stürzer, T.; Baines, C.; Pascua, G.; Schnyder, A.P.; Fischer, M.H.; Goryo, J.; Lees, M.R.; et al. Evidence for superconductivity with broken time-reversal symmetry in locally noncentrosymmetric SrPtAs. Phys. Rev. B 2013, 87, 180503. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla, J.; Hillier, A.D.; Annett, J.F.; Cywinski, R. Relativistic analysis of the pairing symmetry of the noncentrosymmetric superconductor LaNiC2. Phys. Rev. B 2010, 82, 174511. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Quintanilla, J.; Hillier, A.D.; Kase, N.; Strydom, A.M.; Akimitsu, J. Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18. Phys. Rev. B 2015, 91, 060503. [Google Scholar] [CrossRef]
- Barker, J.A.T.; Singh, D.; Thamizhavel, A.; Hillier, A.D.; Less, M.R.; Balakrishnan, G.; Paul, D.; Singh, R.P. Unconventional Superconductivity in La7Ir33 Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry. Phys. Rev. Lett. 2015, 115, 267001. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Scheurer, M.S.; Hillier, A.D.; Singh, R.P. Time reversal symmetry breaking and unconventional pairing in the noncentrosymmetric superconductor La7Rh3 probed by μSR. arXiv 2018, arXiv:1802.01533. [Google Scholar]
- Singh, R.P.; Hillier, A.D.; Mazidian, B.; Quintanilla, J.; Annett, J.F.; Paul, D.; Balakrishnan, G.; Lees, M.R. Detection of time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Zr using muon-spin spectroscopy. Phys. Rev. Lett. 2014, 112, 107002. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.M.; Nie, Z.Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W.B.; Chen, Y.; Singh, R.P.; Smidman, M.; Yuan, H.Q. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry. Phys. Rev. B 2018, 97, 224506. [Google Scholar] [CrossRef]
- Singh, D.; Barker, J.A.T.; Thamizhavel, A.; Paul, D.; Hillier, A.D.; Singh, R.P. Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Hf: Further evidence for unconventional behavior in the α-Mn family of materials. Phys. Rev. B 2017, 96, 180501. [Google Scholar] [CrossRef]
- Singh, D.; Sajilesh, K.P.; Barker, J.A.T.; Paul, D.M.K.; Hillier, A.D.; Singh, R.P. Time reversal symmetry breaking in noncentrosymmetric superconductor Re6Ti. Phys. Rev. B 2018, 97, 100505. [Google Scholar] [CrossRef]
- Shang, T.; Ghosh, S.K.; Chang, L.-J.; Baines, C.; Lee, M.K.; Zhao, J.Z.; Verezhak, J.A.T.; Gawryluk, D.J.; Pomjakushina, E.; Shi, M.; et al. Time-reversal symmetry breaking and unconventional superconductivity in Zr3Ir: A new type of noncentrosymmetric superconductor. arXiv 2019, arXiv:1901.01414. [Google Scholar]
- Zhang, J.; MacLaughlin, D.E.; Hillier, A.D.; Ding, Z.F.; Huang, K.; Maple, M.B.; Shu, L. Broken time-reversal symmetry in superconducting Pr1−xCexPt4Ge12. Phys. Rev. B 2015, 91, 104523. [Google Scholar] [CrossRef]
- Shang, T.; Gawryluk, D.J.; Verezhak, J.A.T.; Pomjakushina, E.; Shi, M.; Medarde, M.; Mesot, J.; Shiroka, T. Structure and superconductivity in the binary Re1−xMox alloys. Phys. Rev. Mater. 2019, 3, 024801. [Google Scholar] [CrossRef]
- Smidman, M.; Salamon, M.B.; Yuan, H.Q.; Agterberg, D.F. Superconductivity and spin–orbit coupling in non-centrosymmetric materials: A review. Rep. Progr. Phys. 2017, 80, 036501. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Scaffidi, T.; Hicks, C.W.; Maeno, Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. NPJ Quantum Mater. 2017, 2, 40. [Google Scholar] [CrossRef]
- Pchelkina, Z.V.; Nekrasov, I.A.; Pruschke, T.; Sekiyama, A.; Suga, S.; Anisimov, V.I.; Vollhardt, D. Evidence for strong electronic correlations in the spectra of Sr2RuO4. Phys. Rev. B 2007, 75, 035122. [Google Scholar] [CrossRef]
- Rozbicki, E.J.; Annett, J.F.; Souquet, J.-R.; Mackenzie, A.P. Spin-orbit coupling and k-dependent Zeeman splitting in strontium ruthenate. J. Phys. Condens. Matter 2011, 23, 094201. [Google Scholar] [CrossRef]
- Haverkort, M.W.; Elfimov, I.S.; Tjeng, L.H.; Sawatzky, G.A.; Damascelli, A. Strong Spin-Orbit Coupling Effects on the Fermi Surface of Sr2RuO4 and Sr2RhO4. Phys. Rev. Lett. 2008, 101, 026406. [Google Scholar] [CrossRef]
- Facio, J.I.; Mravlje, J.; Pourovskii, L.; Cornaglia, P.S.; Vildosola, V. Spin-orbit and anisotropic strain effects on the electronic correlations in Sr2RuO4. Phys. Rev. B 2018, 98, 085121. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 2003, 75, 657–712. [Google Scholar] [CrossRef]
- Kallin, C. Chiral p-wave order in Sr2RuO4. Rep. Prog. Phys. 2012, 75, 042501. [Google Scholar] [CrossRef]
- Maeno, Y.; Kittaka, S.; Nomura, T.; Yonezawa, S.; Ishida, K. Evaluation of Spin-Triplet Superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 2012, 81, 011009. [Google Scholar] [CrossRef]
- Lichtenberg, F. The story of Sr2RuO4. Prog. Solid State Chem. 2002, 30, 103–131. [Google Scholar] [CrossRef]
- Hussey, N.E.; Mackenzie, A.P.; Cooper, J.R.; Maeno, Y.; Nishizaki, S.; Fujita, T. Normal-state magnetoresistance of Sr2RuO4. Phys. Rev. B 1998, 57, 5505–5511. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Haselwimmer, R.K.W.; Tyler, A.W.; Lonzarich, G.G.; Mori, Y.; Nishizaki, S.; Maeno, Y. Extremely Strong Dependence of Superconductivity on Disorder in Sr2RuO4. Phys. Rev. Lett. 1998, 80, 161–164. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Rice, T.M.; Sigrist, M. Orbital dependent superconductivity in Sr2RuO4. Phys. Rev. Lett. 1997, 78, 3374–3377. [Google Scholar] [CrossRef]
- Zhitomirsky, M.E.; Rice, T.M. Interband proximity effect and nodes of superconducting gap in Sr2RuO4. Phys. Rev. Lett. 2001, 87, 057001. [Google Scholar] [CrossRef]
- Konik, R.M.; Rice, T.M. Orbital dependence of quasiparticle lifetimes in Sr2RuO4. Phys. Rev. B 2007, 76, 104501. [Google Scholar] [CrossRef]
- Zegrodnik, M.; Bünemann, J.; Spałek, J. Even-parity spin-triplet pairing by purely repulsive interactions for orbitally degenerate correlated fermions. New J. Phys. 2014, 16, 033001. [Google Scholar] [CrossRef] [Green Version]
- Wysokiński, M.M.; Kaczmarczyk, J.; Spałek, J. Correlation-driven d-wave superconductivity in Anderson lattice model: Two gaps. Phys. Rev. B 2016, 94, 024517. [Google Scholar] [CrossRef]
- Aoki, D.; Ishida, K.; Flouquet, J. Review of U-based Ferromagnetic Superconductors: Comparison between UGe2, URhGe, and UCoGe. J. Phys. Soc. Jpn. 2019, 88, 022001. [Google Scholar] [CrossRef]
- Raghu, S.; Kapitulnik, A.; Kivelson, S.A. Hidden Quasi-One-Dimensional Superconductivity in Sr2RuO4. Phys. Rev. Lett. 2010, 105, 136401. [Google Scholar] [CrossRef]
- Wang, Q.H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F.C.; Hanke, W.; Rice, T.M.; Thomale, R. Theory of superconductivity in a three-orbital model of Sr2RuO4. EPL Europhys. Lett. 2013, 104, 17013. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, T.; Huang, H.; Ting, C.S.; Tong, P.; Wang, Q.-H. Probing active/passive bands by quasiparticle interference in Sr2RuO4. Phys. Rev. B 2013, 88, 094514. [Google Scholar] [CrossRef]
- Akebi, S.; Kondo, T.; Nakayama, M.; Kuroda, K.; Kunisada, S.; Taniguchi, H.; Maeno, Y.; Shin, S. Low-energy electron-mode couplings in the surface bands of Sr2RuO4 revealed by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 2019, 99, 081108. [Google Scholar] [CrossRef]
- Rice, T.M.; Sigrist, M. Sr2RuO4: An electronic analogue of 3He? J. Phys. Condens. Matter 1995, 7, L643–L648. [Google Scholar] [CrossRef]
- Mazin, I.I.; Singh, D.J. Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4. Phys. Rev. Lett. 1997, 79, 733–736. [Google Scholar] [CrossRef]
- Sidis, Y.; Braden, M.; Bourges, P.; Hennion, B.; Nishizaki, S.; Maeno, Y.; Mori, Y. Evidence for Incommensurate Spin Fluctuations in Sr2RuO4. Phys. Rev. Lett. 1999, 83, 3320–3323. [Google Scholar] [CrossRef]
- Braden, M.; Sidis, Y.; Bourges, P.; Pfeuty, P.; Kulda, J.; Mao, Z.; Maeno, Y. Inelastic neutron scattering study of magnetic excitations in Sr2RuO4. Phys. Rev. B 2002, 66, 064522. [Google Scholar] [CrossRef]
- Braden, M.; Steffens, P.; Sidis, Y.; Kulda, J.; Bourges, P.; Hayden, S.; Kikugawa, N.; Maeno, Y. Anisotropy of the Incommensurate Fluctuations in Sr2RuO4: A Study with Polarized Neutrons. Phys. Rev. Lett. 2004, 92, 097402. [Google Scholar] [CrossRef]
- Iida, K.; Kofu, M.; Katayama, N.; Lee, J.; Kajimoto, R.; Inamura, Y.; Nakamura, M.; Arai, M.; Yoshida, Y.; Fujita, M.; et al. Inelastic neutron scattering study of the magnetic fluctuations in Sr2RuO4. Phys. Rev. B 2011, 84, 060402. [Google Scholar] [CrossRef]
- Ortmann, J.E.; Liu, J.Y.; Hu, J.; Zhu, M.; Peng, J.; Matsuda, M.; Ke, X.; Mao, Z.Q. Competition Between Antiferromagnetism and Ferromagnetism in Sr2RuO4 Probed by Mn and Co Doping. Sci. Rep. 2013, 3, 2950. [Google Scholar] [CrossRef]
- Steffens, P.; Sidis, Y.; Kulda, J.; Mao, Z.Q.; Maeno, Y.; Mazin, I.I.; Braden, M. Spin Fluctuations in Sr2RuO4 from Polarized Neutron Scattering: Implications for Superconductivity. Phys. Rev. Lett. 2019, 122, 047004. [Google Scholar] [CrossRef]
- Annett, J.F.; Litak, G.; Gyorffy, B.L.; Wysokiński, K.I. Interlayer coupling and p-wave pairing in strontium ruthenate. Phys. Rev. B 2002, 66, 134514. [Google Scholar] [CrossRef]
- Annett, J.F.; Gyorffy, B.L.; Litak, G.; Wysokiński, K.I. Gap nodes and time reversal symmetry breaking in strontium ruthenate. Eur. Phys. J. B 2003, 36, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Wysokinski, K.I.; Litak, G.; Annett, J.F.; Gyorffy, B.L. Spin triplet superconductivity in Sr2RuO4. Phys. Status Solidi B 2003, 236, 325–331. [Google Scholar] [CrossRef]
- Annett, J.F.; Litak, G.; Gyorffy, B.L.; Wysokiński, K.I. Spin-orbit coupling and symmetry of the order parameter in strontium ruthenate. Phys. Rev. B 2006, 73, 134501. [Google Scholar] [CrossRef] [Green Version]
- Wysokinski, K.I.; Annett, J.F.; Gyorffy, B.L. Orbital-dependent pairing effects in the nuclear spin-lattice relaxation rate of Sr2RuO4. Supercond. Sci. Technol. 2009, 22, 014009. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Julian, S.R.; Diver, A.J.; McMullan, G.J.; Ray, M.P.; Lonzarich, G.G.; Maeno, Y.; Nishizaki, S.; Fujita, T. Quantum Oscillations in the Layered Perovskite Superconductor Sr2RuO4. Phys. Rev. Lett. 1996, 76, 3786–3789. [Google Scholar] [CrossRef]
- Bergemann, C.; Julian, S.R.; Mackenzie, A.P.; NishiZaki, S.; Maeno, Y. Detailed Topography of the Fermi Surface of Sr2RuO4. Phys. Rev. Lett. 2000, 84, 2662–2665. [Google Scholar] [CrossRef]
- Leggett, A.J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 1975, 47, 331–414. [Google Scholar] [CrossRef]
- Annett, J.F. Symmetry of the order parameter for high-temperature superconductivity. Adv. Phys. 1990, 39, 83–126. [Google Scholar] [CrossRef]
- Ishida, K.; Mukuda, H.; Kitaoka, Y.; Asayama, K.; Mao, Z.Q.; Mori, Y.; Maeno, Y. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 1998, 396, 658–660. [Google Scholar] [CrossRef]
- Duffy, J.A.; Hayden, S.M.; Maeno, Y.; Mao, Z.; Kulda, J.; McIntyre, J. Polarized-Neutron Scattering Study of the Cooper-Pair Moment in Sr2RuO4. Phys. Rev. Lett. 2000, 85, 5412–5415. [Google Scholar] [CrossRef]
- Murakawa, H.; Ishida, K.; Kitagawa, K.; Mao, Z.Q.; Maeno, Y. Measurement of the 101Ru-Knight Shift of Superconducting Sr2RuO4 in a Parallel Magnetic Field. Phys. Rev. Lett. 2004, 93, 167004. [Google Scholar] [CrossRef]
- Annett, J.F.; Györffy, B.L.; Litak, G.; Wysokiński, K. Magnetic field induced rotation of the d-vector in the spin-triplet superconductor Sr2RuO4. Phys. Rev. B 2008, 78, 054511. [Google Scholar] [CrossRef]
- Annett, J.F.; Litak, G.; Gyorffy, B.L.; Wysokiński, K.I. Magnetic field induced rotation of the d-vector in Sr2RuO4. Phys. C Supercond. 2007, 460–462, 995–996. [Google Scholar] [CrossRef]
- Kuhn, S.J.; Morgenlander, W.; Louden, E.R.; Rastovski, C.; Gannon, W.J.; Takatsu, H.; Peets, D.C.; Maeno, Y.; Dewhurst, C.D.; Gavilano, J.; et al. Anisotropy and multiband superconductivity in Sr2RuO4 determined by small-angle neutron scattering studies of the vortex lattice. Phys. Rev. B 2017, 96, 174507. [Google Scholar] [CrossRef]
- Kittaka, S.; Kasahara, A.; Sakakibara, T.; Shibata, D.; Yonezawa, S.; Maeno, Y.; Tenya, K.; Machida, K. Sharp magnetization jump at the first-order superconducting transition in Sr2RuO4. Phys. Rev. B 2014, 90, 220502. [Google Scholar] [CrossRef]
- Dodaro, J.F.; Wang, Z.; Kallin, C. Effects of deep superconducting gap minima and disorder on residual thermal transport in Sr2RuO4. Phys. Rev. B 2018, 98, 214520. [Google Scholar] [CrossRef]
- Hassinger, E.; Bourgeois-Hope, P.; Taniguchi, H.; René de Cotret, S.; Grissonnanche, G.; Anwar, M.S.; Maeno, Y.; Doiron-Leyraud, N.; Taillefer, L. Vertical Line Nodes in the Superconducting Gap Structure of Sr2RuO4. Phys. Rev. X 2017, 7, 011032. [Google Scholar] [CrossRef]
- Yarzhemsky, V.G. Group Theoretical Lines of Nodes in Triplet Chiral Superconductor Sr2RuO4. J. Phys. Soc. Jpn. 2018, 87, 114711. [Google Scholar] [CrossRef]
- Sigrist, M.; Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 1991, 63, 239–311. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Kallin, C.; Hicks, C.W.; Kim, E.-A.; Liu, Y.; Moler, K.A.; Maeno, Y.; Nelson, K.D. Upper limit on spontaneous supercurrents in Sr2RuO4. Phys. Rev. B 2007, 76, 014526. [Google Scholar] [CrossRef]
- Hicks, C.W.; Kirtley, J.R.; Lippman, T.M.; Koshnick, N.C.; Huber, M.E.; Maeno, Y.; Yuhasz, W.M.; Maple, M.B.; Moler, K.A. Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12 from scanning SQUID microscopy. Phys. Rev. B 2010, 81, 214501. [Google Scholar] [CrossRef]
- Curran, P.J.; Bending, S.J.; Desoky, W.M.; Gibbs, A.S.; Lee, S.L.; Mackenzie, A.P. Search for spontaneous edge currents and vortex imaging in Sr2RuO4 mesostructures. Phys. Rev. B 2014, 89, 144504. [Google Scholar] [CrossRef]
- Aoki, Y.; Tayama, T.; Sakakibara, T.; Kuwahara, K.; Iwasa, K.; Kohgi, M.; Higemoto, W.; MacLaughlin, D.E.; Sugawara, H.; Sato, H. The Unconventional Superconductivity of Skutterudite PrOs4Sb12: Time-Reversal Symmetry Breaking and Adjacent Field-Induced Quadrupole Ordering. J. Phys. Soc. Jpn. 2007, 76, 051006. [Google Scholar] [CrossRef]
- Ashby, P.E.C.; Kallin, C. Suppression of spontaneous supercurrents in a chiral p-wave superconductor. Phys. Rev. B 2009, 79, 224509. [Google Scholar] [CrossRef]
- Lederer, S.; Huang, W.; Taylor Raghu, E.S.; Kallin, C. Suppression of spontaneous currents in Sr2RuO4 by surface disorder. Phys. Rev. B 2014, 90, 134521. [Google Scholar] [CrossRef]
- Huang, W.; Lederer, S.; Taylor, E.; Kallin, C. Nontopological nature of the edge current in a chiral p-wave superconductor. Phys. Rev. B 2015, 91, 094507. [Google Scholar] [CrossRef]
- Etter, S.B.; Bouhon, A.; Sigrist, M. Spontaneous surface flux pattern in chiral p-wave superconductors. Phys. Rev. B 2018, 97, 064510. [Google Scholar] [CrossRef]
- Matsumoto, M.; Sigrist, M. Quasiparticle States near the Surface and the Domain Wall in a px ± ipy -Wave Superconductor. J. Phys. Soc. Jpn. 1999, 68, 994–1007. [Google Scholar] [CrossRef]
- Read, N.; Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 2000, 61, 10267–10297. [Google Scholar] [CrossRef] [Green Version]
- Palacio-Morales, A.; Mascot, E.; Cocklin, S.; Kim, H.; Rachel, S.; Morr, D.K.; Wiesendanger, R. Atomic-Scale Interface Engineering of Majorana Edge Modes in a 2D Magnet-Superconductor Hybrid System. arXiv 2019, arXiv:1809.04503. [Google Scholar]
- Mazur, G.P.; Dybko, K.; Szczerbakow, A.; Kazakov, A.; Zgirski, M.; Lusakowska, E.; Kret, S.; Korczak, J.; Story, S.; Sawicki, M.; et al. Experimental search for the origin of zero-energy modes in topological materials. arXiv 2019, arXiv:1709.04000. [Google Scholar]
- Brzezicki, W.; Wysokiński, M.; Hyart, T. Topological properties of multilayers and surface steps in the SnTe material class. arXiv 2019, arXiv:1812.02168. [Google Scholar]
- Das, S.; Aggarwal, L.; Roychowdhury, S.; Aslam, M.; Gayen, S.; Biswas, K.; Sheet, G. Unexpected super-conductivity at nanoscale junctions made on the topological crystalline insulator Pb0.6Sn0.4Te. Appl. Phys. Lett. 2016, 109, 132601. [Google Scholar] [CrossRef]
- Aggarwal, L.; Gaurav, A.; Thakur, G.S.; Haque, Z.; Ganguli, A.K.; Sheet, G. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat. Mater. 2016, 15, 32–37. [Google Scholar] [CrossRef]
- Awoga, O.A.; Cayao, J.; Annica, M.; Black-Schaffer, A.M. Supercurrent detection of topologically trivial zero-energy states in nanowire junctions. arXiv 2019, arXiv:1904.03783. [Google Scholar]
- Lutchyn, R.M.; Nagornykh, P.; Yakovenko, V.M. Frequency and temperature dependence of the anomalous ac Hall conductivity in a chiral px + ipy superconductor with impurities. Phys. Rev. B 2009, 80, 104508. [Google Scholar] [CrossRef]
- Ebert, H. Magneto-optical effects in transition metal systems. Rep. Prog. Phys. 1996, 59, 1665–1835. [Google Scholar] [CrossRef]
- Yip, S.K.; Sauls, J.A. Circular dichroims and birefringence in unconventional superconductors. J. Low. Temp. Phys. 1992, 86, 257–290. [Google Scholar] [CrossRef]
- Roy, R.; Kallin, C. Collective modes and electromagnetic response of a chiral superconductor. Phys. Rev. B 2008, 77, 174513. [Google Scholar] [CrossRef]
- Goryo, J. Impurity-induced polar Kerr effect in a chiral p-wave superconductor. Phys. Rev. B 2008, 78, 060501. [Google Scholar] [CrossRef]
- Mineev, V.P. Recent developments in unconventional superconductivity. J. Low Temp. Phys. 2010, 158, 615–630. [Google Scholar] [CrossRef]
- Taylor, E.; Kallin, C. Anomalous Hall conductivity of clean Sr2RuO4 at finite temperatures. J. Phys. Conf. Ser. 2013, 449, 012036. [Google Scholar] [CrossRef]
- Gradhand, M.; Wysokiński, K.I.; Annett, J.F.; Györffy, B.L. Kerr rotation in the unconventional superconductor Sr2RuO4. Phys. Rev. B 2013, 88, 094504. [Google Scholar] [CrossRef]
- Gradhand, M.; Annett, J.F.; Wysokiński, K.I. Three-band intrinsic Kerr effect in Sr2RuO4. Philos. Mag. 2015, 95, 525–537. [Google Scholar] [CrossRef]
- Wang, Z.; Berlinsky, J.; Zwicknagl, G.; Kallin, C. Intrinsic ac anomalous Hall effect of nonsymmorphic chiral superconductors with an application to UPt3. Phys. Rev. B 2017, 96, 174511. [Google Scholar] [CrossRef]
- Wu, L.; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N.P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 2016, 354, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- König, E.J.; Levchenko, A. Kerr Effect from Diffractive Skew Scattering in Chiral px ± ipy Superconductors. Phys. Rev. Lett. 2017, 118, 027001. [Google Scholar] [CrossRef]
- Robbins, J.; Annett, J.F.; Gradhand, M. Effect of spin-orbit coupling on the polar Kerr effect in Sr2RuO4. Phys. Rev. B 2017, 96, 144503. [Google Scholar] [CrossRef]
- Anwar, M.S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y. Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions. Phys. Rev. B 2017, 95, 224509. [Google Scholar] [CrossRef]
- Watson, C.A.; Gibbs, A.S.; Mackenzie, A.P.; Hicks, C.W.; Moler, K.A. Micron-scale measurements of low anisotropic strain response of local Tc in Sr2RuO4. Phys. Rev. B 2018, 98, 094521. [Google Scholar] [CrossRef]
- Yang, F.; Yu, T.; Wu, M.W. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p-wave superconductors. Phys. Rev. B 2018, 97, 205301. [Google Scholar] [CrossRef]
- Huang, W.; Yao, H. Possible Three-Dimensional Nematic Odd-Parity Superconductivity in Sr2RuO4. Phys. Rev. Lett. 2018, 121, 157002. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Kallin, C. Spontaneous edge current in higher chirality superconductors. Phys. Rev. B 2018, 98, 094501. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Huang, W.; Yao, D.-X. Spontaneous surface current in multicomponent cubic superconductors with time-reversal symmetry breaking. Phys. Rev. B 2018, 98, 014511. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, Z.; Huang, W. Higher-order topological superconductivity: Possible realization in Fermi gases and Sr2RuO4. Phys. Rev. B 2019, 99, 020508. [Google Scholar] [CrossRef]
- Komendova, L.; Black-Schaffer, A.M. Odd-Frequency Superconductivity in Sr2RuO4 Measured by Kerr Rotation. Phys. Rev. Lett. 2017, 119, 087001. [Google Scholar] [CrossRef]
- Triola, C.; Black-Schaffer, A.M. Odd-frequency pairing and Kerr effect in the heavy-fermion superconductor UPt3. Phys. Rev. B 2018, 97, 064505. [Google Scholar] [CrossRef]
Material | Detection | Structure | [K] | sc State |
---|---|---|---|---|
SrRuO | SR [54], Kerr [55] | C | 1.5 | nodal, spin triplet, [6] |
UPt | SR [49], Kerr [56] | C | 0.54 | spin triplet |
URuSi | Kerr [57] | C | 1.5 | [47] |
PrOsSb | SR [58], Kerr [59] | C | 1.8 | [60] |
PrPtGe | SR [61] | C | 7.9 | |
PrLaOsSb | SR [53] | C | ∼1 | |
Pr(OsRu)Sb | SR [53] | C | ||
Ba0.27K0.73Fe2As2 | SR [62] | C | 13 | or (?) |
LaNiGa | SR [63] | C | 2.1 | |
Re | SR [64] | C | 2.7 | fully gapped |
ReNb | SR [64] | C | 8.8 | |
SrPtAs | SR [65] | NC (locally) | 2.4 | |
LaNiC | SR [37,66] | NC | 2.7 | multi-gapped, non-unitary triplet |
LuRhSn | SR [67] | C | 4.0 | (?) |
LaIr | SR [68] | NC | 2.25 | |
LaRh | SR [69] | NC | 2.65 | |
ReZr | SR [70,71] | NC | 6.75 | |
ReHf | SR [72] | NC | 5.91 | s-wave |
ReTi | SR [73] | NC | 6.0 | |
ReTi | SR [64] | NC | 6 | s-wave |
ZrIr | SR [74] | NC | 2.2 | single gap, nodeless |
PrCePtGe | SR [75] | NC? | ||
Bi/Ni (bilayers) | Kerr [22] | NC | 3.6 | (?) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysokiński, K.I. Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond. Condens. Matter 2019, 4, 47. https://doi.org/10.3390/condmat4020047
Wysokiński KI. Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond. Condensed Matter. 2019; 4(2):47. https://doi.org/10.3390/condmat4020047
Chicago/Turabian StyleWysokiński, Karol Izydor. 2019. "Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond" Condensed Matter 4, no. 2: 47. https://doi.org/10.3390/condmat4020047
APA StyleWysokiński, K. I. (2019). Time Reversal Symmetry Breaking Superconductors: Sr2RuO4 and Beyond. Condensed Matter, 4(2), 47. https://doi.org/10.3390/condmat4020047