SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Measurements
3. Theoretical Background
4. Results and Discussions
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SAXS | Small-Angle X-ray Scattering |
LNLS | Brazilian Synchrotron Light Laboratory |
References
- Papell, S.S. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles. U.S. Patent 3215572, 2 November 1965. [Google Scholar]
- Rosensweig, R.E.; Kaiser, R. Study of Ferromagnetic Liquid, Phase I; NTIS Rep. No. NASW-1219; NASA Office of Advanced Reseach and Technology: Washington, DC, USA, 1967.
- Rosensweig, R.E. Ferrohydrodynamics; Cambridge University Press: Cambridge, UK; London, UK, 1985. [Google Scholar]
- Beeran, A.E.; Fernandez, F.B.; Nazeer, S.S.; Jayasree, R.S.; John, A.; Anil, S.; Vellappally, S.; Al Kheraif, A.A.A.; Varma, P.R.H. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application. Colloids Surf. B Biointerfaces 2015, 136, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, Q.A.; Thanh, N.T.K.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009, 22, 224001. [Google Scholar] [CrossRef]
- Fu, Z.; Xiao, Y.; Feoktystov, A.; Pipich, V.; Appavou, M.; Su, Y.; Feng, E.; Jina, W.; Bruckel, T. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering. Nanoscale 2016, 8, 18541–18550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozynek, Z.; Jozefczak, A.; Knudsen, K.D.; Skumiel, A.; Hornowski, T.; Fossum, J.O.; Timko, M.; Kopcanshy, P.; Koneracka, M. Structuring from nanoparticles in oil-based ferrofluids. Eur. Phys. J. E 2011, 34. [Google Scholar] [CrossRef] [PubMed]
- Campi, G.; Poccia, N.; Joseph, B.; Bianconi, A.; Mishra, S.; Lee, J.; Roy, S.; Agung Nugroho, A.; Buchholz, M.; Braden, M.; et al. Direct Visualization of Spatial inhomogeneity of Spin Stripes Order in La1.72Sr0.28NiO4. arXiv 2019, arXiv:1905.02124. [Google Scholar]
- Campi, G.; Bianconi, A. Evolution of Complexity in Out-of-Equilibrium Systems by Time-Resolved or Space-Resolved Synchrotron Radiation Techniques. Condens. Matter 2019, 4, 32. [Google Scholar] [CrossRef]
- Wandersman, E.; Chushkin, Y.; Dubois, E.; Dupuis, V.; Robert, A.; Perzynski, R. Field induced anisotropic cooperativity in amagnetic colloidal glass. Soft Matter 2015, 11, 7165. [Google Scholar] [CrossRef] [PubMed]
- Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; et al. Arrangement at the nanoscale Effect on magnetic particle hyperthermia. Sci. Rep. 2016, 6, 37934. [Google Scholar] [CrossRef]
- Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 2016, 26, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Serantes, D.; Simeonidis, K.; Angelakeris, M.; Chubykalo-Fesenko, O.; Marciello, M.; Del Puerto Morales, M.; Baldomir, D.; Martinez-Boubeta, C. Multiplying Magnetic Hyperthermia. Response by Nanoparticle Assembling. J. Phys. Chem. C 2014, 118, 5927–5934. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F.; et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 2013, 3, 1652. [Google Scholar] [CrossRef] [PubMed]
- Mehdaoui, B.; Tan, R.P.; Meffre, A.; Carrey, J.; Lachaize, S.; Chaudret, B.; Respaud, M. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Phys. Rev. B 2013, 87, 174419. [Google Scholar] [CrossRef]
- Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013, 18, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaucage, G.; Schaefer, D.W. Structural studies of complex systems using small-angle scattering: A unified Guinier/power-law approach. J. Non-Cryst. Solids 1994, 172–174, 797–805. [Google Scholar] [CrossRef]
- Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Cryst. 1995, 28, 717. [Google Scholar] [CrossRef]
- Beaucage, G. Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. J. Appl. Cryst. 1996, 29, 134. [Google Scholar] [CrossRef]
- Beaucage, G. Determination of branch fraction and minimum dimension of mass-fractal aggregates. Phys. Rev. E 2004, 70, 031401. [Google Scholar] [CrossRef] [Green Version]
- Beaucage, G.; Kammler, H.K.; Pratsinis, S.E. Particle size distributions from small-angle scattering using global scattering functions. J. Appl. Cryst. 2004, 37, 523. [Google Scholar] [CrossRef]
- Paula, F.L.O.; Depeyrot, J.; Fossum, J.O.; Tourinho, F.A.; Aquino, R.; Knudsen, K.D.; da Silva, G.J. Small-angle X-ray and small-angle neutron scattering investigations of colloidal dispersions of magnetic nanoparticles and clay nanoplatelets. J. Appl. Cryst. 2007, 40, 269–273. [Google Scholar] [CrossRef]
- Martins, F.H.; da Silva, F.G.; Paula, F.L.O.; Gomes, J.A.; Aquino, R.; Mestnik-Filho, J.; Bonville, P.; Porcher, F.; Perzynski, R.; Depeyrot, J. Local Structure of Core-Shell MnFe2O4+δ Based Nanocrystals: Cation Distribution and Valence States of Manganese Ions. J. Phys. Chem. C 2017, 121, 8982–8991. [Google Scholar] [CrossRef]
- Paula, F.L.O.; da Silva, G.J.; Aquino, R.; Depeyrot, J.; Fossum, J.O.; Knudsen, K.; Tourinho, F.A. Gravitational and Magnetic Separation in Self-Assembled Clay-Ferrofluid Nanocomposites. Braz. J. Phys. 2009, 39, 163–170. [Google Scholar] [CrossRef]
- Castro, L.L.; da Silva, M.; Bakuzis, A.; Miotto, R. Aggregate formation on polydisperse ferrofluids: A Monte Carlo analysis. J. Magn. Magn. Mater. 2005, 293, 553–558. [Google Scholar] [CrossRef]
- Vanessa, P.; Cabreira, R.G.; Gomide, G.S.; Coppola, P.; Silva, F.G.; Paula, F.L.O.; Perzynski, R.; Goya, F.G.; Aquino, R.; Depeyrot, J. Core/Shell Nanoparticles of Non-Stoichiometric Zn-Mn and Zn-Co Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia. J. Phys. Chem. C 2018, 122, 3028. [Google Scholar] [CrossRef]
- Tourinho, F.A.; Franck, R.; Massart, R.; Perzynski, R. Synthesis and magneitc properties of managanese and cobalt ferrite ferrite ferrofluids. Prog. Colloid Polym. Sci. 1989, 79, 128–134. [Google Scholar]
- Tourinho, F.A.; Franck, R.; Massart, R. Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 1990, 25, 3249–3254. [Google Scholar] [CrossRef]
- Gomes, J.A.; Sousa, M.H.; Tourinho, F.A.; Aquino, R.; Depeyrot, J.; Dubois, E.; Perzynski, R. Synthesis of Core-Shell Ferrite Nanoparticles for Ferrofluids: Chemical and Magnetic Analysis. J. Phys. Chem. C 2008, 112, 6220–6227. [Google Scholar] [CrossRef]
- Zaioncz, S.; Dahmouche, K.; Soares, B.G. SAXS Characterization of New Nanocomposites Based on Epoxy Resin/Siloxane/MMA/Acrylic Acid Hybrid Materials. Macromol. Mater. Eng. 2010, 295, 243–255. [Google Scholar] [CrossRef]
- Beaucage, G.; Ulibarri, T.; Black, E.P.; Schaefer, D.W. Hybrid Organic-Inorganic Composites; Mark, J.E., Lee, C.Y.-C., Bianconi, P.A., Eds.; ACS Symposium Series 585; American Chemical Society: Washington, DC, USA, 1985; p. 97. [Google Scholar]
- Svergun, D.I.; Koch, M.H.; Timmins, P.A.; May, R.P. Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Moreira, A.F.L.; Paula, F.L.O.; Depeyrot, J. Evidence of Structural Distortions in Mixed Mn-Zn ferrite. IOSR J. App. Phys. 2019, 11, 36–44. [Google Scholar] [CrossRef]
- Gomes, J.A.; Azevedo, G.M.; Depeyrot, J.; Mestnik-Filho, J.; Paula, F.L.O.; Tourinho, F.A.; Perzynski, R. Structural, Chemical, and Magnetic Investigations of Core-Shell Zinc Ferrite Nanoparticles. J. Phys. Chem. C 2012, 116, 24281–24291. [Google Scholar] [CrossRef]
- Available online: http://www.esrf.eu/computing/scientic/FIT2D (accessed on 21 July 2014).
- Mériguet, G.; Cousin, F.; Dubois, E.; Boué, F.; Cebers, A.; Farago, B.; Perzynski, R. What Tunes the Structural Anisotropy of Magnetic Fluids under a Magnetic Field? J. Phys. Chem. B 2006, 110, 4378–4386. [Google Scholar] [CrossRef]
- Robbes, A.S.; Cousin, F.; Meneau, F.; Dalmas, F.; Boué, F.; Jestin, J. Nanocomposite Materials with Controlled Anisotropic Reinforcement Triggered by Magnetic Self-Assembly. Macromolecules 2011, 44, 8858–8865. [Google Scholar] [CrossRef]
Rg1 [Å] | P1 | Rg2 [Å] | P2 | k | ξ [Å] | Nclust | |
---|---|---|---|---|---|---|---|
105 | 2.7 | 46 | 3.95 | - | - | ∼10 | |
81.5 | 2.79 | 45 | 4.00 | - | - | ∼5.3 | |
57.5 | 2.3 | 45 | 3.85 | 2.01 | 181 | ∼1.8 |
[Å] | [Å] | [Å] | [Å] | |
---|---|---|---|---|
210 | 90 | 103.2 | 105 | |
‖ | 160 | 74 | 84.0 | 53 |
⊥ | 90 | 51 | 58.2 | 37 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paula, F.L.d.O. SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters. Condens. Matter 2019, 4, 55. https://doi.org/10.3390/condmat4020055
Paula FLdO. SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters. Condensed Matter. 2019; 4(2):55. https://doi.org/10.3390/condmat4020055
Chicago/Turabian StylePaula, Fábio Luís de Oliveira. 2019. "SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters" Condensed Matter 4, no. 2: 55. https://doi.org/10.3390/condmat4020055
APA StylePaula, F. L. d. O. (2019). SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters. Condensed Matter, 4(2), 55. https://doi.org/10.3390/condmat4020055