Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jee, Y.; Becker, M.F.; Walser, R.M. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B 1988, 5, 648. [Google Scholar] [CrossRef]
- Forno, M.D.; Dolgashev, V.; Bowden, G.; Clarke, C.; Hogan, M.; McCormick, D.; Novokhatski, A.; O’Shea, B.; Spataro, B.; Weathersby, S.; et al. High gradient tests of metallic mm-wave accelerating structures. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 864, 12–28. [Google Scholar] [CrossRef]
- Forno, M.D.; Dolgashev, V.; Bowden, G.; Clarke, C.; Hogan, M.; McCormick, D.; Novokhatski, A.; O’Shea, B.; Spataro, B.; Weathersby, S.; et al. Measurements of electron beam deflection and RF breakdown rate from a surface wave guided in metallic mm-wave accelerating structures. Phys. Rev. Accel. Beams 2018, 21, 091301. [Google Scholar] [CrossRef] [Green Version]
- Baston, T.J.; Bowden, F.P. Localized Damage of Metal Crystals by Laser Irradiation. Nature 1968, 218, 150–152. [Google Scholar] [CrossRef]
- Fedosejevs, R.; Ottmann, R.; Sigel, R.; Kühnle, G.; Szatmári, S.; Schäfer, F.P. Absorption of subpicosecond ultraviolet laser pulses in high-density plasma. Appl. Phys. B 1990, 50, 79–99. [Google Scholar] [CrossRef]
- Agranat, M.B.; Andreev, N.E.; Ashitkov, S.I.; Veisman, M.E.; Levashov, P.R.; Ovchinnikov, A.V.; Sitnikov, D.S.; Fortov, V.E.; Khishchenko, K.V. Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses. JETP Lett. 2007, 85, 271–276. [Google Scholar] [CrossRef]
- Ng, A.; Celliers, P.; Forsman, A.; More, R.M.; Lee, Y.T.; Perrot, F.; Dharma-Wardana, M.W.C.; Rinker, G.A. Reflectivity of intense femtosecond laser pulses from a simple metal. Phys. Rev. Lett. 1994, 72, 3351. [Google Scholar] [CrossRef]
- Cerchez, M.; Jung, R.; Osterholz, J.; Toncian, T.; Willi, O.; Mulser, P.; Ruhl, H. Absorption of ultrashort laser pulses in strongly overdense targets. Phys. Rev. Lett. 2008, 100, 245001. [Google Scholar] [CrossRef] [Green Version]
- Agranat, M.B.; Chefonov, O.V.; Ovchinnikov, A.V.; Ashitkov, S.I.; Fortov, V.E. Damage in a thin metal film by high-power terahertz radiation. Phys. Rev. Lett. 2018, 120, 085704. [Google Scholar] [CrossRef]
- Tan, P.; Huang, J.; Liu, K.; Xiong, Y.; Fan, M. Terahertz radiation sources based on free electron lasers and their applications. Sci. China Inf. Sci. 2012, 55, 1–15. [Google Scholar] [CrossRef]
- Rezvani, J.; Di Gioacchino, D.; Gatti, C.; Poccia, N.; Ligi, C.; Tocci, S.; Guidi, M.C.; Cibella, S.; Lupi, S.; Marcelli, A. Tunable vortex dynamics in proximity junction arrays: A possible accurate and sensitive 2D THz detector. Acta Phys. Pol. A 2020, 137, 17–20. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 2013, 102, 094101. [Google Scholar] [CrossRef] [Green Version]
- Chiadroni, E.; Bellaveglia, M.; Calvani, P.; Castellano, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Limaj, O.; et al. Characterization of the THz radiation source at the Frascati linear accelerator. Rev. Sci. Instrum. 2013, 84, 022703. [Google Scholar] [CrossRef] [Green Version]
- Perucchi, A.; Di Mitri, S.; Penco, G.; Allaria, E.; Lupi, S. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility. Rev. Sci. Instrum. 2013, 84, 022702. [Google Scholar] [CrossRef]
- Lupi, S.; Nucara, A.; Perucchi, A.; Calvani, P.; Ortolani, M.; Quaroni, L.; Kiskinova, M. Performance of SISSI, the infrared beamline of the ELETTRA storage ring. J. Opt. Soc. Am. B 2007, 24, 959. [Google Scholar] [CrossRef]
- Rezvani, S.J.; Pinto, N.; Enrico, E.; D’Ortenzi, L.; Chiodoni, A.; Boarino, L. Thermally activated tunneling in porous silicon nanowires with embedded Si quantum dots. J. Phys. D Appl. Phys. 2016, 49, 105104. [Google Scholar] [CrossRef]
- Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N. Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms. Sci. Rep. 2018, 8, 4710. [Google Scholar] [CrossRef] [Green Version]
- Pinto, N.; Rezvani, S.J.; Favre, L.; Berbezier, I.; Fretto, M.; Boarino, L. Geometrically induced electron-electron interaction in semiconductor nanowires. Appl. Phys. Lett. 2016, 109, 123101. [Google Scholar] [CrossRef]
- Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N. Substrate-Induced Proximity Effect in Superconducting Niobium Nanofilms. Condens. Matter 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Ortolani, M.; Lupi, S.; Baldassarre, L.; Schade, U.; Calvani, P.; Takano, Y.; Nagao, M.; Takenouchi, T.; Kawarada, H. Low energy electrodynamics of superconducting diamonds. Phys. Rev. Lett. 2006, 97, 097002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-C.; Ma, X.F.; Jin, Y.; Lu, T.-M. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 1992, 61, 3080–3082. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Y.; Ma, X.F. Coherent measurement of THz optical rectification from electro-optic crystals. Appl. Phys. Lett. 1992, 61, 2764–2766. [Google Scholar] [CrossRef]
- Winnerl, S.; Stehr, D.; Drachenko, O.; Schneider, H.; Helm, M.; Seidel, W.; Michel, P.; Schneider, S.; Seidel, J.; Grafstrom, S.; et al. FELBE Free-Electron Laser: Status and application for time resolved spectroscopy experiments. In Proceedings of the 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 18–22 September 2006. [Google Scholar]
- Kato, R.; Kashiwagi, S.; Morio, Y.; Furuhashi, K.; Terasawa, Y.; Sugimoto, N.; Suemine, S.; Isoyama, G. High power terahertz FEL at ISIR, Osaka University. In Proceedings of the IPAC’10, Kyoto, Japan, 23–28 May 2010. [Google Scholar]
- Nanni, E.A.; Huang, W.R.; Hong, K.; Ravi, K.; Fallahi, A.; Moriena, G.; Miller, R.J.D.; Kärtner, F.X. Terahertz-driven linear electron acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar] [CrossRef]
- Boni, R.; Chimenti, V.; Spataro, B.; Tazzioli, F.; Fernandes, P.; Parodi, R. Design and operation of a multipacting-free 51.4 MHz RF accelerating cavity. Nucl. Instrum. Methods Phys. Res. 1989, 274, 49–55. [Google Scholar] [CrossRef]
- Macis, S.; Rezvani, J.; Davoli, I.; Cibin, G.; Spataro, B.; Scifo, J.; Faillace, L.; Marcelli, A. Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study. Condens. Matter 2019, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Macis, S.; Aramo, C.; Bonavolontà, C.; Cibin, G.; D’Elia, A.; Davoli, I.; De Lucia, M.; Lucci, M.; Lupi, S.; Miliucci, M.; et al. MoO3 films grown on polycrystalline Cu: Morphological, structural and electronic. J. Vac. Sci. Technol. A 2019, 37, 021513. [Google Scholar] [CrossRef]
- Kwan, T.; Dawson, J.M.; Lin, A.T. Free electron laser. Phys. Fluids 1977, 20, 581. [Google Scholar] [CrossRef]
- Irizawa, A.; Suga, S.; Nagashima, T.; Higashiya, A.; Hashida, M.; Sakabe, S. Laser-induced fine structures on silicon exposed to THz-FEL. Appl. Phys. Lett. 2017, 111, 251602. [Google Scholar] [CrossRef]
- Bommireddy, P.R.; Sivajee-Ganesh, K.; Jayanth-Babu, K.; Hussain, O.M.; Julien, C.M. Microstructure and supercapacitive properties of RF-sputtered copper oxide thin films: Influence of O2/Ar ratio. Ionics 2015, 21, 2319–2328. [Google Scholar]
- Levitskii, V.S.; Shapovalov, V.I.; Komlev, A.E.; Zav’yalov, A.V.; Vit’ko, V.V.; Komlev, A.A.; Shutova, E.S. Raman spectroscopy of copper oxide films deposited by reactive magnetron sputtering. Tech. Phys. Lett. 2015, 41, 1094–1096. [Google Scholar] [CrossRef]
- Butt, M.Z. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Metz, France, 30 June–4 July 2014; Volume 60, p. 012068. [Google Scholar]
- Antoine, C.Z.; Peauger, F.; Le Pimpec, F. Electromigration occurences and its effects on metallic surfaces submitted to high electromagnetic field: A novel approach to breakdown in accelerators. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 665, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.Y.; Guo, C. Reflection of femtosecond laser light in multipulse ablation of metals. J. Appl. Phys. 2011, 110, 043102. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Hashida, M.; Nishii, T.; Inoue, S.; Sakabe, S. Derivation of effective penetration depth of femtosecond laser pulses in metal from ablation rate dependence on laser fluence, incidence angle, and polarization. Appl. Phys. Lett. 2015, 106, 013101. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, H.J.; Gudat, W.; Kunz, C. Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am. 1975, 65, 742. [Google Scholar] [CrossRef]
- Liao, Y.-C.; Yu, M.-H. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet. J. Mater. Process. Technol. 2007, 190, 102–108. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Grudiev, A.; Calatroni, S.; Wuensch, W. New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. Spec. Top. Accel. Beams 2009, 12, 102001. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macis, S.; Tomarchio, L.; Tofani, S.; Rezvani, S.J.; Faillace, L.; Lupi, S.; Irizawa, A.; Marcelli, A. Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam. Condens. Matter 2020, 5, 16. https://doi.org/10.3390/condmat5010016
Macis S, Tomarchio L, Tofani S, Rezvani SJ, Faillace L, Lupi S, Irizawa A, Marcelli A. Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam. Condensed Matter. 2020; 5(1):16. https://doi.org/10.3390/condmat5010016
Chicago/Turabian StyleMacis, Salvatore, Luca Tomarchio, Silvia Tofani, S. Javad Rezvani, Luigi Faillace, Stefano Lupi, Akinori Irizawa, and Augusto Marcelli. 2020. "Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam" Condensed Matter 5, no. 1: 16. https://doi.org/10.3390/condmat5010016
APA StyleMacis, S., Tomarchio, L., Tofani, S., Rezvani, S. J., Faillace, L., Lupi, S., Irizawa, A., & Marcelli, A. (2020). Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam. Condensed Matter, 5(1), 16. https://doi.org/10.3390/condmat5010016