Terahertz as a Frontier Area for Science and Technology
Abstract
:1. Introduction
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Scalari, G.; Maissen, C.; Cibella, S.; Leoni, R.; Reichl, C.; Wegscheider, W.; Beck, M.; Faist, J. THz ultrastrong light-matter coupling. Il Nuovo Saggiatore 2015, 31, 4–14. [Google Scholar]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001–043049. [Google Scholar] [CrossRef]
- Kawano, Y. Terahertz waves: A tool for condensed matter, the life sciences and astronomy. Contemp. Phys. 2013, 54, 143–165. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Mittleman, D.M. Perspective: Terahertz science and technology. J. Appl. Phys. 2017, 122, 230901. [Google Scholar] [CrossRef]
- Terahertz Optics. Available online: https://www.nature.com/collections/njscjcdjjr (accessed on 23 June 2021).
- Wang, H.B.; Wu, P.H.; Yamashita, T. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors. Phys. Rev. Lett. 2001, 87, 107002. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P.; Malfatti, L.; Marcelli, A.; Piccinini, M.; Sali, D.; Schade, U. Application of Terahertz spectroscopy to time-dependent chemical-physical phenomena. J. Phys. Chem. A 2009, 113, 9418–9423. [Google Scholar] [CrossRef] [PubMed]
- Limaj, O.; Giorgianni, F.; Gaspare, A.D.; Giliberti, V.; Marzi, G.D.; Roy, P.; Ortolani, M.; Cunnane, D.; Xi, X.; Lupi, S. Superconductivity-Induced Transparency in Terahertz Metamaterials. ACS Photonics 2014, 1, 570–575. [Google Scholar] [CrossRef]
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Ma, J.; Shrestha, R.; Adelberg, J.; Yeh, C.-Y.; Hossain, Z.; Knightly, E.; Jornet, J.M.; Mittleman, D.M. Security and eavesdropping in terahertz wireless links. Nature 2018, 563, 89–96. [Google Scholar] [CrossRef]
- Gallerano, G.P. Overview of Terahertz Radiation Sources. In Proceedings of the 2004 FEL Conference, Trieste, Italy, 29 August–3 September 2004; pp. 216–221. [Google Scholar]
- Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 2013, 102, 094101. [Google Scholar] [CrossRef] [Green Version]
- Perucchi, A.; Di Mitri, S.; Penco, G.; Allaria, E.; Lupi, S. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility. Rev. Sci. Instrum. 2013, 84, 022702. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Tzortzakis, S.; Kampfrath, T. Laser-Driven Strong-Field Terahertz Sources. Adv. Opt. Mater. 2020, 8, 1900681. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.S. Terahertz quantum-cascade lasers. Nat. Photonics 2007, 1, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, M.S.; Tredicucci, A. Physics and technology of Terahertz quantum cascade lasers. Adv. Phys. X 2021, 6, 1893809. [Google Scholar] [CrossRef]
- Doria, A.; Gallerano, G.P.; Giovenale, E. Novel Schemes for Compact FELs in the THz Region. Condens. Matter 2019, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Adhlakha, N.; Di Pietro, P.; Piccirilli, F.; Cinquegrana, P.; Di Mitri, S.; Sigalotti, P.; Spampinati, S.; Veronese, M.; Lupi, S.; Perucchi, A. The TeraFERMI Electro-Optic Sampling Set-Up for Fluence-Dependent Spectroscopic Measurements. Condens. Matter 2020, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Tofani, S.; Fuscaldo, W. Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications. Condens. Matter 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- D’Arco, A.; Tomarchio, L.; Dolci, V.; Di Pietro, P.; Perucchi, A.; Mou, S.; Petrarca, M.; Lupi, S. Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal. Condens. Matter 2020, 5, 47. [Google Scholar] [CrossRef]
- Passarelli, A.; Koral, C.; Masullo, M.R.; Vollenberg, W.; Lain Amador, L.; Andreone, A. Sub-THz Waveguide Spectroscopy of Coating Materials for Particle Accelerators. Condens. Matter 2020, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Atakaramians, S.; Afshar, S.; Monro, T.M.; Abbott, D. Terahertz dielectric waveguides. Adv. Opt. Photonics 2013, 5, 169–215. [Google Scholar] [CrossRef]
- Choi, H.; Son, J.-H. Terahertz Imaging and Tomography Techniques, Chapt. 4. In Terahertz Biomedical Science and Technology; Son, J.-H., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 47–66. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.I.; Yang, B.; Goldup, S.M.; Watkinson, M.; Donnan, R.S. Terahertz spectroscopy: A powerful new tool for the chemical sciences? Chem. Soc. Rev. 2012, 21, 8210. [Google Scholar] [CrossRef] [PubMed]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz Pulsed Imaging in Biomedical Applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Fan, S.; Sun, Y.; Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33–45. [Google Scholar] [CrossRef]
- Marcelli, A.; Cinque, G. Infrared synchrotron radiation beamlines: High brilliance tools for IR spectromicroscopy. A practical guide to the characteristics of the broadband and brilliant non-thermal sources. In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Moss, D., Ed.; Royal Society of Chemistry: London, UK, 2011; Chapter 3; pp. 67–104. [Google Scholar]
- Ikemoto, Y.; Tanaka, M.; Higuchi, T.; Semba, T.; Moriwaki, T.; Kawasaki, E.; Okuyama, M. Infrared Synchrotron Radiation and Its Application to the Analysis of Cultural Heritage. Condens. Matter 2020, 5, 28. [Google Scholar] [CrossRef]
- Schade, U.; Kuske, P.; Lee, J.; Marchetti, B.; Ortolani, M. Cross-Correlation of THz Pulses from the Electron Storage Ring BESSY II. Condens. Matter 2020, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Pompili, R.; Shpakov, V. A Versatile THz Source from High-Brightness Electron Beams: Generation and Characterization. Condens. Matter 2020, 5, 40. [Google Scholar] [CrossRef]
- Sakai, T.; Hayakawa, K.; Tanaka, T.; Hayakawa, Y.; Nogami, K.; Sei, N. Evaluation of Bunch Length by Measuring Coherent Synchrotron Radiation with a Narrow-Band Detector at LEBRA. Condens. Matter 2020, 5, 34. [Google Scholar] [CrossRef]
- Rogalski, A.; Sizov, F. Terahertz detectors and focal plane arrays. Opto−Electron. Rev. 2011, 19, 346–404. [Google Scholar] [CrossRef]
- Sizov, F. THz radiation sensors. Opto−Electron. Rev. 2010, 18, 10–36. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, S.J.; Gioacchino, D.D.; Gatti, C.; Ligi, C.; Guidi, M.C.; Cibella, S.; Fretto, M.; Poccia, N.; Lupi, S.; Marcelli, A. Proximity Array Device: A Novel Photon Detector Working in Long Wavelengths. Condens. Matter 2020, 5, 33. [Google Scholar] [CrossRef]
- Irizawa, A.; Fujimoto, M.; Kawase, K.; Kato, R.; Fujiwara, H.; Higashiya, A.; Macis, S.; Tomarchio, L.; Lupi, S.; Marcelli, A.; et al. Spatially Resolved Spectral Imaging by a THz-FEL. Condens. Matter 2020, 5, 38. [Google Scholar] [CrossRef]
- Macis, S.; Tomarchio, L.; Tofani, S.; Rezvani, S.J.; Faillace, L.; Lupi, S.; Irizawa, A.; Marcelli, A. Angular Dependence of Copper Surface Damage Induced by an Intense Coherent THz Radiation Beam. Condens. Matter 2020, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Agranat, M.B.; Chefonov, O.V.; Ovchinnikov, A.V.; Ashitkov, S.I.; Fortov, V.E.; Kondratenko, P.S. Damage in a Thin Metal Film by High-Power Terahertz Radiation. Phys. Rev. Lett. 2018, 120, 085704. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, H.; Suzuki, H.; Otani, C.; Nagai, M.; Kawase, K.; Irizawa, A.; Isoyama, G. Polymer Morphological Change Induced by Terahertz Irradiation. Sci. Rep. 2016, 6, 27180. [Google Scholar] [CrossRef]
- Williams, C.R.; Andrews, S.R.; Maier, S.A.; Fernandez-Dominguez, A.I.; Martin-Moreno, L.; Garcia-Vidal, F.J. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics 2008, 2, 175–179. [Google Scholar] [CrossRef]
- D’Apuzzo, F.; Piacenti, A.R.; Giorgianni, F.; Autore, M.; Cestelli Guidi, M.; Marcelli, A.; Schade, U.; Ito, Y.; Chen, M.; Lupi, S. Terahertz and Mid-Infrared Plasmons in 3-Dimensional Nanoporous Graphene. Nat. Commun. 2017, 8, 14885. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, A.; Cestelli Guidi, M.; Arcangeletti, E.; Nucara, A.; Calvani, P.; Piccinini, M.; Marcelli, A.; Postorino, P. Far-infrared absorption of La1−xCaxMnO3−y at high pressure. Phys. Rev. Lett. 2006, 96, 035503. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Cinque, G.; Marcelli, A. Synchrotron Radiation InfraRed microspectroscopy and imaging in the characterization of archaeological materials and cultural heritage artefacts. In EMU Notes in Mineralogy; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland: London, UK, 2019; Volume 20, Chapter 12; pp. 411–444. [Google Scholar]
- Della Ventura, G.; Bellatreccia, F.; Marcelli, A.; Cestelli Guidi, M.; Piccinini, M.; Cavallo, A.; Piochi, M. Application of micro-FTIR imaging in Earth Sciences. Anal. Bioanal. Chem. 2010, 397, 2039–2049. [Google Scholar] [CrossRef]
- Della Ventura, G.; Marcelli, A.; Bellatreccia, F. SR-FTIR microscopy and FTIR imaging in the Earth Sciences. Rev. Mineral. Geochem. 2014, 78, 447–479. [Google Scholar] [CrossRef] [Green Version]
- Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of Terahertz Imaging 2021. Sensors 2021, 21, 4092. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irizawa, A.; Lupi, S.; Marcelli, A. Terahertz as a Frontier Area for Science and Technology. Condens. Matter 2021, 6, 23. https://doi.org/10.3390/condmat6030023
Irizawa A, Lupi S, Marcelli A. Terahertz as a Frontier Area for Science and Technology. Condensed Matter. 2021; 6(3):23. https://doi.org/10.3390/condmat6030023
Chicago/Turabian StyleIrizawa, Akinori, Stefano Lupi, and Augusto Marcelli. 2021. "Terahertz as a Frontier Area for Science and Technology" Condensed Matter 6, no. 3: 23. https://doi.org/10.3390/condmat6030023
APA StyleIrizawa, A., Lupi, S., & Marcelli, A. (2021). Terahertz as a Frontier Area for Science and Technology. Condensed Matter, 6(3), 23. https://doi.org/10.3390/condmat6030023