Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group
Abstract
:1. Introduction
2. Microscopic Model for Bose–Bose Mixtures
3. The Functional Renormalisation Group
3.1. The Effective Action
3.2. The FRG Flow Equation
4. The FRG for Bose–Bose Mixtures
4.1. Thermodynamics
4.2. Propagator
4.3. Flow Equations
4.4. Initial Conditions and Physical Inputs
4.5. RG Flow Examples
4.6. Limitations of the Ansatz and Outlook
5. Balanced Bose–Bose Gases
6. Repulsive Bose Polarons
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEC | Bose–Einstein condensation |
BCS | Bardeen–Cooper–Schrieffer |
MC | Monte Carlo |
FRG | functional renormalisation group |
RG | renormalisation group |
MF | mean-field |
LHY | Lee-Huang-Yang |
IR | infrared |
UV | ultraviolet |
DE | derivative expansion |
RHS | right-hand-side |
BKT | Berezinskii–Kosterlitz–Thouless |
Appendix A. The Wetterich Equation
Appendix B. Driving Terms
References
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 1995, 75, 3969–3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, C.C.; Sackett, C.A.; Tollett, J.J.; Hulet, R.G. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 1995, 75, 1687–1690. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.P.; Stringari, S. Bose-Einstein Condensation and Superfluidity; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Andersen, J. Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 2004, 76, 599–639. [Google Scholar] [CrossRef] [Green Version]
- Bogoliubov, N. On the theory of superfluidity. Izv. AN SSSR Ser. Fiz. 1947, 11, 77. [Google Scholar]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135–1145. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics. Phys. Rev. 1957, 105, 1119–1120. [Google Scholar] [CrossRef]
- Prokof’ev, N.; Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 2002, 66, 043608. [Google Scholar] [CrossRef] [Green Version]
- Prokof’ev, N.; Ruebenacker, O.; Svistunov, B. Weakly interacting Bose gas in the vicinity of the normal-fluid–superfluid transition. Phys. Rev. A 2004, 69, 053625. [Google Scholar] [CrossRef]
- Pilati, S.; Sakkos, K.; Boronat, J.; Casulleras, J.; Giorgini, S. Equation of state of an interacting Bose gas at finite temperature: A path-integral Monte Carlo study. Phys. Rev. A 2006, 74, 043621. [Google Scholar] [CrossRef] [Green Version]
- Pilati, S.; Giorgini, S.; Prokof’ev, N. Critical Temperature of Interacting Bose Gases in Two and Three Dimensions. Phys. Rev. Lett. 2008, 100, 140405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Kurbakov, I.L.; Lozovik, Y.E. Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods. Phys. Rev. A 2009, 79, 051602(R). [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Boronat, J.; Kurbakov, I.L.; Lozovik, Y.E.; Mazzanti, F. Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state. Phys. Rev. A 2010, 81, 013612. [Google Scholar] [CrossRef] [Green Version]
- Capogrosso-Sansone, B.; Giorgini, S.; Pilati, S.; Pollet, L.; Prokof’ev, N.; Svistunov, B.; Troyer, M. The Beliaev technique for a weakly interacting Bose gas. New J. Phys. 2010, 12, 043010. [Google Scholar] [CrossRef]
- Strinati, G.C.; Pieri, P.; Röpke, G.; Schuck, P.; Urban, M. The BCS–BEC crossover: From ultra-cold Fermi gases to nuclear systems. Phys. Rep. 2018, 738, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Larsen, D.M. Binary mixtures of dilute Bose gases with repulsive interactions at low temperature. Ann. Phys. 1963, 24, 89–101. [Google Scholar] [CrossRef]
- Suthar, K.; Roy, A.; Angom, D. Fluctuation-driven topological transition of binary condensates in optical lattices. Phys. Rev. A 2015, 91, 043615. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreev, A.F.; Bashkin, E.P. Three-velocity hydrodynamics of superfluid solutions. Sov. Phys. JETP 1975, 42, 164. [Google Scholar]
- Fil, D.V.; Shevchenko, S.I. Nondissipative drag of superflow in a two-component Bose gas. Phys. Rev. A 2005, 72, 013616. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhu, C.; Zhang, Y.; Pu, H. Spin-exchange-induced spin-orbit coupling in a superfluid mixture. Phys. Rev. A 2018, 97, 031601. [Google Scholar] [CrossRef] [Green Version]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586–589. [Google Scholar] [CrossRef]
- Hall, D.S.; Matthews, M.R.; Ensher, J.R.; Wieman, C.E.; Cornell, E.A. Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1539–1542. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.S.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Measurements of Relative Phase in Two-Component Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Modugno, G.; Modugno, M.; Riboli, F.; Roati, G.; Inguscio, M. Two Atomic Species Superfluid. Phys. Rev. Lett. 2002, 89, 190404. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 2018, 359, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, C.; Burchianti, A.; Prevedelli, M.; Salasnich, L.; Ancilotto, F.; Modugno, M.; Minardi, F.; Fort, C. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 2019, 1, 033155. [Google Scholar] [CrossRef] [Green Version]
- Armaitis, J.; Stoof, H.T.C.; Duine, R.A. Hydrodynamic modes of partially condensed Bose mixtures. Phys. Rev. A 2015, 91, 043641. [Google Scholar] [CrossRef]
- Chiquillo, E. Equation of state of the one- and three-dimensional Bose-Bose gases. Phys. Rev. A 2018, 97, 063605. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Astrakharchik, G. Beyond Lee-Huang-Yang description of self-bound Bose mixtures. SciPost Phys. 2020, 9, 020. [Google Scholar] [CrossRef]
- De Rosi, G.; Astrakharchik, G.E.; Massignan, P. Thermal instability, evaporation, and thermodynamics of one-dimensional liquids in weakly interacting Bose-Bose mixtures. Phys. Rev. A 2021, 103, 043316. [Google Scholar] [CrossRef]
- Konietin, P.; Pastukhov, V. 2D Dilute Bose Mixture at Low Temperatures. J. Low Temp. Phys. 2018, 190, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Giorgini, S.; Stringari, S. Magnetic Phase Transition in a Mixture of Two Interacting Superfluid Bose Gases at Finite Temperature. Phys. Rev. Lett. 2019, 123, 075301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, M.; Giorgini, S. Thermodynamics of dilute Bose gases: Beyond mean-field theory for binary mixtures of Bose-Einstein condensates. Phys. Rev. A 2020, 102, 063303. [Google Scholar] [CrossRef]
- Hu, H.; Liu, X.J. Consistent Theory of Self-Bound Quantum Droplets with Bosonic Pairing. Phys. Rev. Lett. 2020, 125, 195302. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, J.; Liu, X.J. Microscopic pairing theory of a binary Bose mixture with interspecies attractions: Bosonic BEC-BCS crossover and ultradilute low-dimensional quantum droplets. Phys. Rev. A 2020, 102, 043301. [Google Scholar] [CrossRef]
- Petrov, D.S.; Astrakharchik, G.E. Ultradilute Low-Dimensional Liquids. Phys. Rev. Lett. 2016, 117, 100401. [Google Scholar] [CrossRef] [Green Version]
- Cikojević, V.; Markić, L.V.; Astrakharchik, G.E.; Boronat, J. Universality in ultradilute liquid Bose-Bose mixtures. Phys. Rev. A 2019, 99, 023618. [Google Scholar] [CrossRef] [Green Version]
- Utesov, O.I.; Baglay, M.I.; Andreev, S.V. Effective interactions in a quantum Bose-Bose mixture. Phys. Rev. A 2018, 97, 053617. [Google Scholar] [CrossRef] [Green Version]
- Hryhorchak, O.; Pastukhov, V. Large-N Expansion for Condensation and Stability of Bose–Bose Mixtures at Finite Temperatures. J. Low Temp. Phys. 2021, 202, 219–230. [Google Scholar] [CrossRef]
- Boudjemâa, A. Quantum and thermal fluctuations in two-component Bose gases. Phys. Rev. A 2018, 97, 033627. [Google Scholar] [CrossRef] [Green Version]
- Boudjemâa, A. Many-body and temperature effects in two-dimensional quantum droplets in Bose–Bose mixtures. Sci. Rep. 2021, 11, 21765. [Google Scholar] [CrossRef]
- Jørgensen, N.B.; Wacker, L.; Skalmstang, K.T.; Parish, M.M.; Levinsen, J.; Christensen, R.S.; Bruun, G.M.; Arlt, J.J. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2016, 117, 055302. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.G.; Van de Graaff, M.J.; Kedar, D.; Corson, J.P.; Cornell, E.A.; Jin, D.S. Bose Polarons in the Strongly Interacting Regime. Phys. Rev. Lett. 2016, 117, 055301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.Z.; Ni, Y.; Robens, C.; Zwierlein, M.W. Bose polarons near quantum criticality. Science 2020, 368, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Peña Ardila, L.A.P.; Giorgini, S. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef] [Green Version]
- Grusdt, F.; Shchadilova, Y.E.; Rubtsov, A.N.; Demler, E. Renormalization group approach to the Fröhlich polaron model: Application to impurity-BEC problem. Sci. Rep. 2015, 5, 12124. [Google Scholar] [CrossRef]
- Levinsen, J.; Parish, M.M.; Bruun, G.M. Impurity in a Bose-Einstein Condensate and the Efimov Effect. Phys. Rev. Lett. 2015, 115, 125302. [Google Scholar] [CrossRef]
- Christensen, R.S.; Levinsen, J.; Bruun, G.M. Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate. Phys. Rev. Lett. 2015, 115, 160401. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Guardian, A.; Bruun, G.M. Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate. Phys. Rev. X 2018, 8, 031042. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.M.; Endo, S.; Levinsen, J.; Parish, M.M. Universality of an Impurity in a Bose-Einstein Condensate. Phys. Rev. X 2018, 8, 011024. [Google Scholar] [CrossRef] [Green Version]
- Pastukhov, V. Polaron in dilute 2D Bose gas at low temperatures. J. Phys. At. Mol. Opt. Phys. 2018, 51, 155203. [Google Scholar] [CrossRef] [Green Version]
- Peña Ardila, L.A.; Jørgensen, N.B.; Pohl, T.; Giorgini, S.; Bruun, G.M.; Arlt, J.J. Analyzing a Bose polaron across resonant interactions. Phys. Rev. A 2019, 99, 063607. [Google Scholar] [CrossRef] [Green Version]
- Ichmoukhamedov, T.; Tempere, J. Feynman path-integral treatment of the Bose polaron beyond the Fröhlich model. Phys. Rev. A 2019, 100, 043605. [Google Scholar] [CrossRef] [Green Version]
- Hryhorchak, O.; Panochko, G.; Pastukhov, V. Mean-field study of repulsive 2D and 3D Bose polarons. J. Phys. At. Mol. Opt. Phys. 2020, 53, 205302. [Google Scholar] [CrossRef]
- Zinner, N.T. Efimov states of heavy impurities in a Bose-Einstein condensate. EPL (Europhys. Lett.) 2013, 101, 60009. [Google Scholar] [CrossRef]
- Sun, M.; Zhai, H.; Cui, X. Visualizing the Efimov Correlation in Bose Polarons. Phys. Rev. Lett. 2017, 119, 013401. [Google Scholar] [CrossRef]
- Levinsen, J.; Parish, M.M.; Christensen, R.S.; Arlt, J.J.; Bruun, G.M. Finite-temperature behavior of the Bose polaron. Phys. Rev. A 2017, 96, 063622. [Google Scholar] [CrossRef] [Green Version]
- Guenther, N.E.; Massignan, P.; Lewenstein, M.; Bruun, G.M. Bose Polarons at Finite Temperature and Strong Coupling. Phys. Rev. Lett. 2018, 120, 050405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, G.; Boronat, J. Quasiparticle Nature of the Bose Polaron at Finite Temperature. Phys. Rev. Lett. 2021, 127, 205301. [Google Scholar] [CrossRef] [PubMed]
- Field, B.; Levinsen, J.; Parish, M.M. Fate of the Bose polaron at finite temperature. Phys. Rev. A 2020, 101, 013623. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Berges, J.; Tetradis, N.; Wetterich, C. Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 2002, 363, 223–386. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, N.; Canet, L.; Eichhorn, A.; Metzner, W.; Pawlowski, J.; Tissier, M.; Wschebor, N. The nonperturbative functional renormalization group and its applications. Phys. Rep. 2021, 910, 1–114. [Google Scholar] [CrossRef]
- Boettcher, I.; Pawlowski, J.M.; Diehl, S. Ultracold atoms and the Functional Renormalization Group. Nucl. Phys. B-Proc. Suppl. 2012, 228, 63–135. [Google Scholar] [CrossRef] [Green Version]
- Floerchinger, S.; Wetterich, C. Functional renormalization for Bose-Einstein condensation. Phys. Rev. A 2008, 77, 053603. [Google Scholar] [CrossRef] [Green Version]
- Floerchinger, S.; Wetterich, C. Superfluid Bose gas in two dimensions. Phys. Rev. A 2009, 79, 013601. [Google Scholar] [CrossRef] [Green Version]
- Floerchinger, S.; Wetterich, C. Nonperturbative thermodynamics of an interacting Bose gas. Phys. Rev. A 2009, 79, 063602. [Google Scholar] [CrossRef]
- Diehl, S.; Floerchinger, S.; Gies, H.; Pawlowkski, J.; Wetterich, C. Functional renormalization group approach to the BCS-BEC crossover. Ann. Der Phys. 2010, 522, 615–656. [Google Scholar] [CrossRef] [Green Version]
- Scherer, M.M.; Floerchinger, S.; Gies, H. Functional renormalization for the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover. Philos. Trans. R. Soc. A 2011, 369, 2779–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boettcher, I.; Pawlowski, J.M.; Wetterich, C. Critical temperature and superfluid gap of the unitary Fermi gas from functional renormalization. Phys. Rev. A 2014, 89, 053630. [Google Scholar] [CrossRef] [Green Version]
- von Milczewski, J.; Rose, F.; Schmidt, R. Functional renormalization group approach to strongly-coupled Bose-Fermi mixtures in two dimensions. arXiv 2021, arXiv:2104.14017. [Google Scholar]
- Gräter, M.; Wetterich, C. Kosterlitz-Thouless Phase Transition in the Two Dimensional Linear σ Model. Phys. Rev. Lett. 1995, 75, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Gersdorff, G.V.; Wetterich, C. Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition. Phys. Rev. B 2001, 64, 054513. [Google Scholar] [CrossRef] [Green Version]
- Blaizot, J.P.; Galain, R.M.; Wschebor, N. Non-Perturbative Renormalization Group calculation of the transition temperature of the weakly interacting Bose gas. Europhys. Lett. 2005, 72, 705–711. [Google Scholar] [CrossRef]
- Metzner, W.; Salmhofer, M.; Honerkamp, C.; Meden, V.; Schönhammer, K. Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 2012, 84, 299–352. [Google Scholar] [CrossRef] [Green Version]
- Rançon, A.; Dupuis, N. Nonperturbative renormalization group approach to the Bose-Hubbard model. Phys. Rev. B 2011, 83, 172501. [Google Scholar] [CrossRef] [Green Version]
- Rançon, A.; Dupuis, N. Nonperturbative renormalization group approach to strongly correlated lattice bosons. Phys. Rev. B 2011, 84, 174513. [Google Scholar] [CrossRef] [Green Version]
- Isaule, F.; Morera, I.; Polls, A.; Juliá-Díaz, B. Functional renormalization for repulsive Bose-Bose mixtures at zero temperature. Phys. Rev. A 2021, 103, 013318. [Google Scholar] [CrossRef]
- Isaule, F.; Morera, I.; Massignan, P.; Juliá-Díaz, B. Renormalization-group study of Bose polarons. Phys. Rev. A 2021, 104, 023317. [Google Scholar] [CrossRef]
- Stoof, H.T.C.; Gubbels, K.B.; Dickerscheid, D. Ultracold Quantum Fields; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.N. Functional Integrals and Collective Excitations; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep. 2016, 640, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Convergence and stability of the renormalisation group. arXiv 2002, arXiv:hep-th/0208117. [Google Scholar]
- Litim, D.F. Towards functional flows for hierarchical models. Phys. Rev. D 2007, 76, 105001. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Derivative expansion and renormalisation group flows. J. High Energy Phys. 2001, 2001, 059. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, N.; Sengupta, K. Non-perturbative renormalization group approach to zero-temperature Bose systems. Europhys. Lett. 2007, 80, 50007. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Optimized renormalization group flows. Phys. Rev. D 2001, 64, 105007. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Critical exponents from optimised renormalisation group flows. Nucl. Phys. B 2002, 631, 128–158. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, J.M.; Scherer, M.M.; Schmidt, R.; Wetzel, S.J. Physics and the choice of regulators in functional renormalisation group flows. Ann. Phys. 2017, 384, 165–197. [Google Scholar] [CrossRef] [Green Version]
- Karle, V.; Defenu, N.; Enss, T. Coupled superfluidity of binary Bose mixtures in two dimensions. Phys. Rev. A 2019, 99, 063627. [Google Scholar] [CrossRef] [Green Version]
- Rath, S.P.; Schmidt, R. Field-theoretical study of the Bose polaron. Phys. Rev. A 2013, 88, 053632. [Google Scholar] [CrossRef] [Green Version]
- Naidon, P.; Petrov, D.S. Mixed Bubbles in Bose-Bose Mixtures. Phys. Rev. Lett. 2021, 126, 115301. [Google Scholar] [CrossRef]
- Machado, T.; Dupuis, N. From local to critical fluctuations in lattice models: A nonperturbative renormalization-group approach. Phys. Rev. E 2010, 82, 041128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tommasini, P.; de Passos, E.J.V.; de Toledo Piza, A.F.R.; Hussein, M.S.; Timmermans, E. Bogoliubov theory for mutually coherent condensates. Phys. Rev. A 2003, 67, 023606. [Google Scholar] [CrossRef]
- Abad, M.; Recati, A. A study of coherently coupled two-component Bose-Einstein condensates. Eur. Phys. J. D 2013, 67, 148. [Google Scholar] [CrossRef] [Green Version]
- Hryhorchak, O.; Pastukhov, V. Condensation and superfluidity of S U ( N ) Bose gas. Phys. B Condens. Matter 2020, 583, 412017. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Guardian, A.; Peña Ardila, L.A.; Pohl, T.; Bruun, G.M. Bipolarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2018, 121, 013401. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, J.; Zhou, J.; Liu, X.J. Crossover polarons in a strongly interacting Fermi superfluid. arXiv 2021, arXiv:2111.01372. [Google Scholar]
- Hryhorchak, O.; Pastukhov, V. Polaron in almost ideal molecular Bose-Einstein condensate. arXiv 2021, arXiv:2111.07095. [Google Scholar]
- Huber, M.Q.; Cyrol, A.K.; Pawlowski, J.M. DoFun 3.0: Functional equations in mathematica. Comput. Phys. Commun. 2020, 248, 107058. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaule, F.; Morera, I. Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group. Condens. Matter 2022, 7, 9. https://doi.org/10.3390/condmat7010009
Isaule F, Morera I. Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group. Condensed Matter. 2022; 7(1):9. https://doi.org/10.3390/condmat7010009
Chicago/Turabian StyleIsaule, Felipe, and Ivan Morera. 2022. "Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group" Condensed Matter 7, no. 1: 9. https://doi.org/10.3390/condmat7010009
APA StyleIsaule, F., & Morera, I. (2022). Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group. Condensed Matter, 7(1), 9. https://doi.org/10.3390/condmat7010009