A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions
Abstract
:1. Introduction
2. Experiment
2.1. Superlattice Design and Growth
2.2. Post-Growth Characterization and Measurements
3. Results and Discussion
3.1. Characterization of the Superlattice Surface and Interface
3.2. Analysis of the Interface Perfection Using Superlattices
3.3. Introducing an Overdoped Protective Layer
4. Discussion
- (i)
- The geometric mismatch: the in-plane lattice constants of LSCO are larger compared to LSAO. The LSCO layers are under compressive Poisson strain, which creates misfit dislocations, domains, etc. However, this is likely not the main problem—we can grow LSCO films on LSAO substrates with Tc ≳ 40 K.
- (ii)
- The chemical mismatch: one compound contains Cu and the other Al. The entropy is driving Cu-Al intermixing. To prevent this, we need to find the “ALL-MBE window” in the (T, p) space where the bulk ion mobility is low (so that there is no cation interdiffusion) while the surface mobility is high (so that the film forms the desired crystal structure). Controlled post-annealing can help improve crystallinity. Our STEM data (Figure 4) show that we succeeded to a large extent. However, we cannot rule out having some Al atoms on Cu sites. Replacing Cu2+ with Al3+ adds one electron and removes one hole from the CuO2 plane. In addition, such charged defects act as strong unitary scatterers and pair breakers, reducing the superfluid density and Tc.
- (iii)
- The electrostatic mismatch: the sequence of effective charges of atomic layers in LCO is (LaO)+1–(CuO2)−2–(LaO)+1, different from that in LSAO, viz., (La0.5SrO)+0.5–(AlO2)−1–(La0.5SrO)+0.5. This leads to the so-called “polarization catastrophe” and the “Madelung strain” [45]. To maintain charge neutrality, the growing film adjusts its composition by changing the sticking rates, so the cation ratios (e.g., La vs. Cu) may vary. STEM studies [46,47] showed that the first couple of MLs of LSCO on LSAO are heavily reconstructed—in fact, the actual structure of the “interface compound” is unrelated to the regular “214” (or “K2NiF4”) structure of bulk LSCO. For the same reasons, oxygen vacancies may abound in the LSCO layer(s) next to the interface. Another consequence is dramatic ionic displacements and structural modifications in the layers next to the interface or to the free surface [48].
- (iv)
- The electronic mismatch: the electrochemical potentials in the two materials are different. This can cause electron transfer (depletion and accumulation) across the interface, modifying the electronic properties in both the nearby superconducting and insulating layers.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirtley, J.R.; Tafuri, F. Tunneling Measurements of the Cuprate Superconductors. In Handbook of High-Temperature Superconductivity; Springer New York: New York, NY, USA, 2007; pp. 19–86. [Google Scholar] [CrossRef]
- Fundamentals and Frontiers of the Josephson Effect; Tafuri, F. (Ed.) Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 286, ISBN 978-3-030-20724-3. [Google Scholar] [CrossRef]
- Tafuri, F.; Massarotti, D.; Galletti, L.; Stornaiuolo, D.; Montemurro, D.; Longobardi, L.; Lucignano, P.; Rotoli, G.; Pepe, G.P.; Tagliacozzo, A.; et al. Recent Achievements on the Physics of High-T C Superconductor Josephson Junctions: Background, Perspectives and Inspiration. J. Supercond. Nov. Magn. 2012, 26, 21–41. [Google Scholar] [CrossRef]
- Hilgenkamp, H.; Mannhart, J. Grain boundaries in high-Tcsuperconductors. Rev. Mod. Phys. 2002, 74, 485–549. [Google Scholar] [CrossRef]
- Mannhart, J.; Chaudhari, P.; Dimos, D.; Tsuei, C.C.; McGuire, T.R. Critical Currents in [001] Grains and across Their Tilt Boundaries in YBa2Cu3O7 Films. Phys. Rev. Lett. 1988, 61, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Kunkel, G.; Siegel, M.; Schubert, J.; Zander, W.; Braginski, A.I.; Jia, C.L.; Kabius, B.; Urban, K. Correlation of YBa2Cu3O7step-edge junction characteristics with microstructure. J. Appl. Phys. 1995, 78, 1131–1139. [Google Scholar] [CrossRef]
- Poppe, U.; Divin, Y.; Faley, M.; Wu, J.; Jia, C.; Shadrin, P.; Urban, K. Properties of YBa/sub 2/Cu/sub 3/O/sub 7/ thin films deposited on substrates and bicrystals with vicinal offcut and realization of high I/sub c/R/sub n/ junctions. IEEE Trans. Appl. Supercond. 2001, 11, 3768–3771. [Google Scholar] [CrossRef]
- Bauch, T.; Lindström, T.; Tafuri, F.; Rotoli, G.; Delsing, P.; Claeson, T.; Lombardi, F. Quantum Dynamics of a d-Wave Josephson Junction. Science 2006, 311, 57–60. [Google Scholar] [CrossRef]
- Smilde, H.J.H.; Ariando, A.; Blank, D.H.A.; Gerritsma, G.J.; Hilgenkamp, H.; Rogalla, H. d-Wave–Induced Josephson Current Counterflow inYBa2Cu3O7/NbZigzag Junctions. Phys. Rev. Lett. 2002, 88, 057004. [Google Scholar] [CrossRef]
- Char, K.; Colclough, M.S.; Garrison, S.M.; Newman, N.; Zaharchuk, G. Bi-epitaxial grain boundary junctions in YBa2Cu3O7. Appl. Phys. Lett. 1991, 59, 733–735. [Google Scholar] [CrossRef]
- Antognazza, L.; Moeckly, B.H.; Geballe, T.H.; Char, K. Properties of high-TcJosephson junctions withY0.7Ca0.3Ba2Cu3O7−δbarrier layers. Phys. Rev. B 1995, 52, 4559–4567. [Google Scholar] [CrossRef]
- Katz, A.S.; Sun, A.G.; Dynes, R.C.; Char, K. Fabrication of all thin-film YBa2Cu3O7−δ /Pb Josephson tunnel junctions. Appl. Phys. Lett. 1995, 66, 105–107. [Google Scholar] [CrossRef]
- Il’Ichev, E.; Grajcar, M.; Hlubina, R.; Ijsselsteijn, R.P.J.; Hoenig, H.E.; Meyer, H.-G.; Golubov, A.; Amin, M.H.S.; Zagoskin, A.M.; Omelyanchouk, A.N.; et al. Degenerate Ground State in a MesoscopicYBa2Cu3O7−xGrain Boundary Josephson Junction. Phys. Rev. Lett. 2001, 86, 5369–5372. [Google Scholar] [CrossRef]
- Lombardi, F.; Tafuri, F.; Ricci, F.; Granozio, F.M.; Barone, A.; Testa, G.; Sarnelli, E.; Kirtley, J.R.; Tsuei, C.C. Intrinsic d-Wave Effects in YBa2Cu3O7−δ Grain Boundary Josephson Junctions. Phys. Rev. Lett. 2002, 89, 207001. [Google Scholar] [CrossRef]
- Bauch, T.; Lombardi, F.; Tafuri, F.; Barone, A.; Rotoli, G.; Delsing, P.; Claeson, T. Macroscopic Quantum Tunneling in d-Wave YBa2Cu3O7−δ Josephson Junctions. Phys. Rev. Lett. 2005, 94, 087003. [Google Scholar] [CrossRef]
- Tafuri, F.; Kirtley, J.R. Weak links in high critical temperature superconductors. Rep. Prog. Phys. 2005, 68, 2573–2663. [Google Scholar] [CrossRef]
- Lucignano, P.; Stornaiuolo, D.; Tafuri, F.; Altshuler, B.L.; Tagliacozzo, A. Evidence for a Minigap in YBCO Grain Boundary Josephson Junctions. Phys. Rev. Lett. 2010, 105, 147001. [Google Scholar] [CrossRef]
- Longobardi, L.; Massarotti, D.; Stornaiuolo, D.; Galletti, L.; Rotoli, G.; Lombardi, F.; Tafuri, F. Direct Transition from Quantum Escape to a Phase Diffusion Regime in YBaCuO Biepitaxial Josephson Junctions. Phys. Rev. Lett. 2012, 109, 050601. [Google Scholar] [CrossRef]
- Naito, M.; Yamamoto, H.; Sato, H. Intrinsic problem of cuprate surface and interface: Why good tunnel junctions are difficult to fabricate. Phys. C Supercond. Appl. 2000, 335, 201–206. [Google Scholar] [CrossRef]
- Bozovic, I.; Eckstein, J. Atomic-level engineering of cuprates and manganites. Appl. Surf. Sci. 1997, 113–114, 189–197. [Google Scholar] [CrossRef]
- Bozovic, I.; Eckstein, J.N.; Virshup, G.F.; Chaiken, A.; Wall, M.; Howell, R.; Fluss, M. Atomic-layer engineering of cuprate superconductors. J. Supercond. 1994, 7, 187–195. [Google Scholar] [CrossRef]
- Bozovic, I. Atomic-layer engineering of superconducting oxides: Yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 2001, 11, 2686–2695. [Google Scholar] [CrossRef]
- Xu, X.; He, X.; Shi, X.; Božović, I. Synthesis of La2−xSrxCuO4 films via atomic layer-by-layer molecular beam epitaxy. APL Mater. 2022, 10, 061103. [Google Scholar] [CrossRef]
- Bozovic, I.; Logvenov, G.; Verhoeven, M.A.J.; Caputo, P.; Goldobin, E.; Geballe, T.H. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 2003, 422, 873–875. [Google Scholar] [CrossRef]
- Bozovic, I.; Logvenov, G.; Verhoeven, M.A.J.; Caputo, P.; Goldobin, E.; Beasley, M.R. Giant Proximity Effect in Cuprate Superconductors. Phys. Rev. Lett. 2004, 93, 157002. [Google Scholar] [CrossRef]
- Sato, H.; Naito, M. Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4 thin films on LaSrAlO4 substrates. Phys. C Supercond. Appl. 1997, 274, 221–226. [Google Scholar] [CrossRef]
- Sato, H.; Tsukada, A.; Naito, M.; Matsuda, A. La-214 thin films under epitaxial strain. Phys. C Supercond. Appl. 2000, 341–348, 1767–1770. [Google Scholar] [CrossRef]
- Sato, H.; Tsukada, A.; Naito, M. La-214 thin films under epitaxial strain. Phys. C Supercond. Appl. 2004, 408–410, 848–852. [Google Scholar] [CrossRef]
- Cieplak, M.Z.; Berkowski, M.; Abal’Oshev, A.; Guha, S.; Wu, Q. The effect of strain on the microstructure and superconductivity of pulsed laser deposited LaSrCuO films. Supercond. Sci. Technol. 2006, 19, 564–572. [Google Scholar] [CrossRef]
- Li, B.-S.; Sawa, A.; Okamoto, H. Suppression of Precipitates in the La2-xSrxCuO4 Films Grown on LaSrAlO4 Substrates by Introducing Homoepitaxial Layer. Jpn. J. Appl. Phys. 2011, 50, 093101. [Google Scholar] [CrossRef]
- Lagally, M.; Savage, D. Quantitative Electron Diffraction from Thin Films. MRS Bull. 1993, 18, 24–31. [Google Scholar] [CrossRef]
- Daweritz, L.; Ploog, K. Contribution of reflection high-energy electron diffraction to nanometre tailoring of surfaces and interfaces by molecular beam epitaxy. Semicond. Sci. Technol. 1994, 9, 123–136. [Google Scholar] [CrossRef]
- Kawamura, T.; Maksym, P. RHEED wave function and its applications. Surf. Sci. Rep. 2009, 64, 122–137. [Google Scholar] [CrossRef]
- Hafez, M.A.; Zayed, M.K.; Elsayed-Ali, H.E. Review: Geometric Interpretation of Reflection and Transmission RHEED Patterns. Micron 2022, 159, 103286. [Google Scholar] [CrossRef]
- He, X.; Gozar, A.; Sundling, R.; Božović, I. High-precision measurement of magnetic penetration depth in superconducting films. Rev. Sci. Instruments 2016, 87, 113903. [Google Scholar] [CrossRef]
- Bozovic, I.; Eckstein, J.N. Superconductivity in Cuprate Superlattices. In Physical Properties of High Temperature Superconductors V; World Scientific: Singapore, 1996; pp. 99–207. [Google Scholar] [CrossRef]
- Noguera, C. Polar oxide surfaces. J. Phys. Condens. Matter 2000, 12, R367–R410. [Google Scholar] [CrossRef]
- Nakagawa, N.; Hwang, H.Y.; Muller, D. Why some interfaces cannot be sharp. Nat. Mater. 2006, 5, 204–209. [Google Scholar] [CrossRef]
- Chakhalian, J.; Freeland, J.W.; Habermeier, H.-U.; Cristiani, G.; Khaliullin, G.; van Veenendaal, M.; Keimer, B. Orbital Reconstruction and Covalent Bonding at an Oxide Interface. Science 2007, 318, 1114–1117. [Google Scholar] [CrossRef]
- Mannhart, J.; Blank, D.; Hwang, H.; Millis, A.; Triscone, J.-M. Two-Dimensional Electron Gases at Oxide Interfaces. MRS Bull. 2008, 33, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Kolpak, A.M.; Ismail-Beigi, S. Fundamental asymmetry in interfacial electronic reconstruction between insulating oxides: An Ab Initio Study. Phys. Rev. B 2009, 79, 161402. [Google Scholar] [CrossRef]
- Cantoni, C.; Gazquez, J.; Granozio, F.M.; Oxley, M.P.; Varela, M.; Lupini, A.R.; Pennycook, S.J.; Aruta, C.; Di Uccio, U.S.; Perna, P.; et al. Electron Transfer and Ionic Displacements at the Origin of the 2D Electron Gas at the LAO/STO Interface: Direct Measurements with Atomic-Column Spatial Resolution. Adv. Mater. 2012, 24, 3952–3957. [Google Scholar] [CrossRef]
- Huang, Z.; Ariando; Wang, X.R.; Rusydi, A.; Chen, J.; Yang, H.; Venkatesan, T. Interface Engineering and Emergent Phenomena in Oxide Heterostructures. Adv. Mater. 2018, 30, e1802439. [Google Scholar] [CrossRef]
- Kouser, S.; Pantelides, S.T. Quantum physical reality of polar-nonpolar oxide heterostructures. Phys. Rev. B 2021, 104, 075411. [Google Scholar] [CrossRef]
- Butko, V.Y.; Logvenov, G.; Božović, N.; Radović, Z.; Božović, I. Madelung Strain in Cuprate Superconductors—A Route to Enhancement of the Critical Temperature. Adv. Mater. 2009, 21, 3644–3648. [Google Scholar] [CrossRef]
- Locquet, J.-P.; Perret, J.; Fompeyrine, J.; Mächler, E.; Seo, J.W.; van Tendeloo, G. Doubling the Critical Temperature of LSCO Using Epitaxial Strian. Nature 1998, 394, 453–456. [Google Scholar] [CrossRef]
- He, J.; Klie, R.F.; Logvenov, G.; Bozovic, I.; Zhu, Y. Microstructure and possible strain relaxation mechanisms of La2CuO4+δ thin films grown on LaSrAlO4 and SrTiO3 substrates. J. Appl. Phys. 2007, 101, 073906. [Google Scholar] [CrossRef]
- Zhou, H.; Yacoby, Y.; Butko, V.Y.; Logvenov, G.; Božović, I.; Pindak, R. Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers. Proc. Natl. Acad. Sci. USA 2010, 107, 8103–8107. [Google Scholar] [CrossRef] [Green Version]
Sample # | Unit Cell Structure | Number of OP Layers | Tc |
---|---|---|---|
1 | (2 × OP):(1 × LSAO) | 2 | <4 K 1,2 |
2 | (3 × OP):(1 × LSAO) | 3 | 5 K |
3 | (4 × OP):(1 × LSAO) | 4 | 6 K |
4 | (5 × OP):(1 × LSAO) | 5 | 31 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; He, X.; Bollinger, A.T.; Han, M.-G.; Zhu, Y.; Shi, X.; Božović, I. A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions. Condens. Matter 2023, 8, 21. https://doi.org/10.3390/condmat8010021
Xu X, He X, Bollinger AT, Han M-G, Zhu Y, Shi X, Božović I. A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions. Condensed Matter. 2023; 8(1):21. https://doi.org/10.3390/condmat8010021
Chicago/Turabian StyleXu, Xiaotao, Xi He, Anthony T. Bollinger, Myung-Geun Han, Yimei Zhu, Xiaoyan Shi, and Ivan Božović. 2023. "A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions" Condensed Matter 8, no. 1: 21. https://doi.org/10.3390/condmat8010021
APA StyleXu, X., He, X., Bollinger, A. T., Han, M. -G., Zhu, Y., Shi, X., & Božović, I. (2023). A Method to Probe the Interfaces in La2−xSrxCuO4-LaSrAlO4-La2−xSrxCuO4 Trilayer Junctions. Condensed Matter, 8(1), 21. https://doi.org/10.3390/condmat8010021