Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor
Abstract
:1. Introduction
2. How to Clarify the Electronic-Spin State of Overdoped LSCO
3. Comparison with Neutron Scattering Experimental Results of the Magnetic Excitations in the Underdoped to Overdoped Regimes of LSCO
4. Angle-Resolved Photoemission Spectroscopy (ARPES) Experiments and a Reason Why ARPES Is Not Able to Observe Fermi Pockets
5. New Phase Diagram
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Anderson, P.W. Resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, H.; Araidai, M.; Ishida, K.; Matsuno, S.; Sakata, H.; Shiraishi, K.; Sugino, O.; Tsai, J.S. First-Principles Calculation of copper oxide superconductors that supports the Kamimura-Suwa model. Condens. Matter 2020, 5, 69. [Google Scholar] [CrossRef]
- Shima, N.; Shiraishi, K.; Nakayama, T.; Oshiyama, A.; Kamimura, H. Electronic structures of doped (La(1-x)Srx)2CuO4 in tetragonal phase. In Proceedings of First International Conference on Electronic Materials “New Materials and New Physical Phenomena for Electronics of the 21st Century; Sugano, T., Chang, R.P.H., Kamimura, H., Hayashi, I., Kamiya, T., Eds.; Material Research Society: Pittsburgh, PA, USA, 1989; pp. 51–54. [Google Scholar]
- Anisimov, V.L.; Ezhov, S.Y.; Rice, T.H. Singlet and triplet hole-doped configuration in La2Cu0.5Li0.5O4. Phys. Rev. B 1997, 55, 12829–12832. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, H.; Matsuno, S.; Mizokawa, T.; Sasaoka, K.; Shiraishi, K.; Ushio, H. On the important role of the anti-Jahn-Teller effect in underdoped cuprate superconductors. J. Phys. Conf. Ser. 2013, 428, 012043. [Google Scholar] [CrossRef] [Green Version]
- Cava, R.J.; Batlogg, B.; Sunshine, S.A.; Siegrist, T.; Fleming, R.M.; Rabe, K.; Schneemeyer, L.F.; Murphy, D.W.; van Dover, R.B.; Gallagher, P.K.; et al. Studies of oxygen-deficient Ba2YCu3O7-δ and superconductivity Bi(Pb)-Sr-Ca-Cu-O. Phys. C 1988, 153–155, 560–565. [Google Scholar] [CrossRef]
- Chen, C.T.; Tjeng, L.H.; Kwo, H.; Kao, L.; Rudolf, P.; Sette, P.; Fleming, R.M. Out-of-plane orbital characteristics of intrinsic and doped holes in La2−xSrxCuO4. Phys. Rev. Lett. 1992, 68, 2543–2546. [Google Scholar] [CrossRef]
- Pellegrin, E.; Nücker, N.; Fink, J.; Molodtsov, S.L.; Gutierre, A.; Navas, E.; Sterebel, O.; Hu, Z.; Domke, M.; Kaindl, G.; et al. Orbital character of states at the Fermi level in La2−xSrxCuO4 and R2-xCexCuO4 (R = Nd2Sm). Phys. Rev. B 1993, 47, 3354–3367. [Google Scholar] [CrossRef]
- Zhang, F.C.; Rice, T.M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 1988, 37, 3759–3761. [Google Scholar] [CrossRef] [Green Version]
- Norman, M.R.; Kanigel, A.; Randeria, M.; Chtterjee, U.; Campuzano, J.C. Modeling the Fermi arc in underdoped cuprates. Phys. Rev. B 2007, 76, 174501. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, H.; Suwa, Y. New theoretical view for high temperature superconductivity. J. Phys. Soc. Jpn. 1993, 62, 3368–3371. [Google Scholar] [CrossRef]
- Kamimura, H.; Hamada, T.; Ushio, H. Theoretical exploration of electronic structure in cuprates from electronic entropy. Phys. Rev. B 2002, 66, 054504. [Google Scholar] [CrossRef]
- Kamimura, H.; Ushio, H. On the interplay of Jahn-Teller physics and Mott physics leading to the occurrence of Fermi pockets without pseudogap hypothesis and d-wave high Tc superconductivity in underdoped cuprate superconductors. J. Supercond. Nov. Magn. 2012, 25, 677–690. [Google Scholar] [CrossRef]
- Kamimura, H.; Matsuno, S.; Suwa, Y.; Ushio, H. Occurrence of d-wave pairing in the phonon-mediated mechanism of high temperature superconductivity in cuprates. Phys. Rev. Lett. 1996, 77, 723–726. [Google Scholar] [CrossRef]
- Tsuei, C.C.; Kirtley, J.R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 2000, 72, 969–1016. [Google Scholar] [CrossRef]
- Takagi, H.; Ido, T.; Ishibashi, S.; Uota, M.; Uchida, S.; Tokura, Y.; Millis, A.J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 1989, 40, 2254. [Google Scholar] [CrossRef]
- Wakimoto, S.; Yamada, K.; Tranquada, J.M.; Frost, C.D.; Birgeneau, R.J.; Zhang, H. Disappearance of antiferromagnetic spin excitations in overdoped La2−xSrxCuO4. Phys. Rev. Lett. 2007, 98, 247003. [Google Scholar] [CrossRef] [Green Version]
- Norman, M.R.; Pines, D.; Kalin, C. The pseudogap: Friend or foe of high Tc. Adv. Phy. 2005, 54, 715–733. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly correlated and approximately normed semilocal density functional. Phys. Rev. lett. 2015, 115, 036402. [Google Scholar] [CrossRef] [Green Version]
- Furness, J.W.; Zhang, Y.; Lane, C.; Buda, I.G.; Barbielini, B.; Markiewicz, R.S.; Bansil, A.; Sun, J. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun. Phys. 2018, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Lee, C.H.; Kurahashi, K.; Wada, J.; Wakimoto, S.; Ueli, S.; Kimura, H.; Endoh, T.; Hosoya, S.; Shirane, G.; et al. Doping dependence of the spatially modulated dynamical spin correlations and sperconducting-transition temperature in La2−xSrxCuO4. Phys. Rev. B 1998, 57, 6165. [Google Scholar] [CrossRef]
- Wakimoto, S.; Zhang, H.; Yamada, K.; Swainson, I.; Hyunkyung, K.; Birgeneau, R.J. Direct Relation between the low-energy spin excitation and superconductivity of overdoped high-Tc supeconductors. Phys. Rev. Lett. 2004, 92, 217004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeppli, G.; Bishop, D.J.; Brohom, C.; Bucher, E.; Cheong, S.-W.; Dai, P.; Fisk, Z.; Hayden, S.M.; Kleiman, R.; Mason, T.E.; et al. Neutron scattering and the search for mechanism of superconductivity. Physica C 1999, 317–318, 9–17. [Google Scholar] [CrossRef]
- Birgeneau, R.J.; Endoh, Y.; Hidaka, K.; Katarai, K.; Kastner, M.A.; Murakami, T.; Shirane, G.; Thurston, T.R.; Yamada, K. Quasaielastic and inelastic spin fluctuations in superconducting La2−xSrxCuO4. In Mechanisms of High Temperature Supercondcutivity; Kamimura, H., Oshiyama, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 120–128. [Google Scholar]
- Hamada, T.; Ishida, K.; Kamimura, H.; Suwa, Y. Computational study on the ground state of a doped hole in a two-dimensional quantum spin systems. J. Phys. Soc. Jpn. 2001, 70, 2033–2037. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Woo, H.; Perring, T.G.; Goka, H.; Gu, G.D.; Xu, G.; Fujita, M.; Yamada, K. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 2004, 429, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Mason, Y.E.; Schröder, A.; Aeppli, G.; Mook, H.A.; Haydon, S.M. New magnetic coherence effect in superconducting La2−xSrxCuO4. Phys. Rev. Lett. 1996, 77, 1604–1607. [Google Scholar] [CrossRef] [Green Version]
- Drees, Y.; Lamago, D.; Piovano, A.; Komarek, A.C. Hour-glass magnetice spectrum in stripeless insulating transition metal oxide. Nature Comm. 2013, 4, 2449. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Zhou, X.J.; Tanaka, K.; Yang, W.L.; Hussain Shen, Z.-X.; Fujimori, A.; Sahrakorpi, S.; Lindroos, M.; Markiewicz, R.S.; Bansil, A.; et al. Systematic doping evolution off underlying Fermi surface of La2−xSrxCuO4. Phys. Rev. B 2006, 74, 224510. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, H.; Sugino, O.; Tsai, J.S.; Ushio, H. High-Tc Copper Oxide Superconductors and Related Novel Materials; Bussmann-Holder, A., Keller, H., Bianconi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 11; pp. 129–150. [Google Scholar]
- Kamimura, H.; Sasaoka, K.; Ushio, H. Occurrence of Fermi pockets without pseudogap hypothesis and clarification of the energy distribution of angle-resolved photoemission spectroscopy in underdoped cuprate superconductors. J. Phys. Soc. Jpn. 2011, 80, 114715. [Google Scholar] [CrossRef] [Green Version]
- Lorama, J.; Mirza, K.; Cooper, J.; Tallon, J. Specific heat evidence on the normal state pseudogap. J. Phys. Chem. Solids 1998, 59, 2091–2094. [Google Scholar] [CrossRef]
- Nakayama, K.; Sato, T.; Sekiba, Y.; Richard, P.; Takahashi, T.; Kudo, K.; Okumura, N.; Sasaki, Y.; Kobayashi, N. Evolution of a pairing-induced pseudogap from the superconducting gap of (Bi, Pb)2Sr2CuO6. Phys. Rev. Lett. 2009, 102, 227006. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Watanabe, T. Discriminating the superconducting gap from the pseudogap in Bi2Sr2CaCu2O8+δ by interlayer tunneling spectroscopy. Phys. Rev. Lett. 2000, 85, 4787–4790. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Balédent, V.; Yu, G.; Barišić, N.; Hradil, K.; Mole, R.A.; Sidis, Y.; Steffens, P.; Zhao, X.; Bourges, P.; et al. Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor. Nature 2010, 468, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, A.; Rosenkranz, E.; Freswell, H.M.; Campzano, J.C.C.; Li, Z.; Raffy, H.; Cullen, W.G.; You, H.; Olsen, C.G.; Varma, C.M.; et al. Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc uperconductors. Nature 2002, 416, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Hosur, P.; Kapitulnik, A.; Kiverlson, S.A.; Orenstein, J.; Raghu, S. Kerr effect as evidence of gyrotropic order in the cuprates. Phys. Rev. B 2013, 87, 115116. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamimura, H.; Araidai, M.; Ishida, K.; Matsuno, S.; Sakata, H.; Sasaoka, K.; Shiraishi, K.; Sugino, O.; Tsai, J.-S.; Yamada, K. Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor. Condens. Matter 2023, 8, 33. https://doi.org/10.3390/condmat8020033
Kamimura H, Araidai M, Ishida K, Matsuno S, Sakata H, Sasaoka K, Shiraishi K, Sugino O, Tsai J-S, Yamada K. Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor. Condensed Matter. 2023; 8(2):33. https://doi.org/10.3390/condmat8020033
Chicago/Turabian StyleKamimura, Hiroshi, Masaaki Araidai, Kunio Ishida, Shunichi Matsuno, Hideaki Sakata, Kenji Sasaoka, Kenji Shiraishi, Osamu Sugino, Jaw-Shen Tsai, and Kazuyoshi Yamada. 2023. "Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor" Condensed Matter 8, no. 2: 33. https://doi.org/10.3390/condmat8020033
APA StyleKamimura, H., Araidai, M., Ishida, K., Matsuno, S., Sakata, H., Sasaoka, K., Shiraishi, K., Sugino, O., Tsai, J. -S., & Yamada, K. (2023). Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor. Condensed Matter, 8(2), 33. https://doi.org/10.3390/condmat8020033