Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review
Abstract
:1. Introduction
2. Synthesis of Boron Carbide Matrix Composites—Overview
2.1. Synthesis of Boron Carbide Matrix
2.1.1. Synthesis from Elements
2.1.2. Carbothermic Reduction
2.1.3. Combustion Synthesis
2.1.4. Synthesis from Polymeric Precursors
2.1.5. Solid State Reactions
2.1.6. Synthesis via Aerosol Method
2.1.7. Synthesis via Calcinating
2.1.8. Synthesis in Plasma
2.2. Synthesis of Component Phases
2.2.1. Titanium and Zirconium Diborides
2.2.2. Tungsten Borides and Carbides
2.2.3. Cobalt-Containing Components
2.3. Consolidation of Composite Powders
2.3.1. Low-Temperature Sintering
2.3.2. Pressureless Sintering
2.3.3. Hot Pressing
2.3.4. Spark Plasma Sintering
2.3.5. Electrical-Spark Deposition
2.3.6. Field Assisted Sintering
2.3.7. Plasma Spraying
2.4. Structure and Properties of Boron Carbides and Related Matrix Composites
2.4.1. Boron Carbide Matrix
2.4.2. Component Phases
2.4.3. Boron Carbide Matrix Composites with Titanium and Zirconium Diborides
2.4.4. Boron Carbide Matrix Composites with Tungsten Borides and Carbides
2.4.5. Boron Carbide Matrix Composites Containing Cobalt
2.5. Modeling of Boron Carbide Matrix Composites Properties
2.6. Reviews on Boron Carbide Matrix Composites
3. Boron Carbide Matrix
- Preparing of water solution of sucrose (serving as a carbon source);
- Heating the solution to 90–100 °C and adding boric acid (serving as a boron source) under stirring until its complete dissolution;
- Removing water from the formed mixture of various compounds (e.g., esters) by solution heating at ~90 °C under stirring to obtain a viscous mass;
- Further thermal treatment at 145–150 °C for around 2 h until the formation of a solid porous mass;
- Product grinding to obtain a powder with particles size of <1 mm.
4. Binary Ceramic Compositions with Diborides
4.1. B4C–TiB2
4.2. B4C–ZrB2
- Production of high-quality dispersed powders of boron carbide 11B4C and zirconium diboride Zr11B2 by milling (e.g., with >99.4at.% enrichment in the 11B isotope);
- Mixing them (e.g., in a ratio of 96.276 and 3.724wt.%, respectively);
- Hot vacuum pressing of the obtained powder mixture.
5. Binary Metal-Ceramic Compositions with Metallic Alloys
5.1. B4C–(Cu–Mn) and B4C–(Cu–Ti)
5.2. B4C–(Co–Ni–Ti)
6. Complex Metal-Ceramic Compositions with Diborides and Tungsten Carbide–Cobalt
6.1. WC–Co
6.2. B4C–TiB2–(WC–Co)
6.3. B4C–ZrB2–(WC–Co)
7. Conclusions
- Ceramic boron carbide–metal diborides: B4C–TiB2 and B4C–ZrB2;
- Metal-ceramic boron carbide–metallic alloys: B4C–(Cu–Mn), B4C–(Cu–Ti) and B4C–(Co–Ni–Ti);
- Complex metal-ceramic boron carbide–metal diborides–(tungsten boride–cobalt): B4C–TiB2–(WC–Co), B4C–ZrB2–(WC–Co) and of some related compositions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antadze, M.; Chedia, R.; Tsagareishvili, O.; Mikeladze, A.; Gacheciladze, A.; Margiev, B.; Gabunia, D.; Tsuladze, T.; Khantadze, J. Metal-ceramics based on nanostructured boron carbide. Solid State Sci. 2012, 14, 1725–1728. [Google Scholar] [CrossRef]
- Bairamashvili, I.A.; Galustashvili, M.V.; Jobava, J.S.; Kvatchadze, V.G.; Mestvirishvili, Z.Z. Composite ceramics based on boron carbide enriched in isotope 11B as a promising radiation-resistant structural material. Nano Stud. 2013, 8, 305–310. (In Russian) [Google Scholar]
- Mestvirishvili, Z.; Bairamashvili, I.; Kvatchadze, V.; Rekhviashvili, N. Thermal and mechanical properties of B4C–ZrB2 ceramic composite. J. Mater. Sci. Eng. B 2015, 5, 385–393. [Google Scholar] [CrossRef]
- Mikeladze, A.; Tsagareishvili, O.; Chkhartishvili, L.; Chedia, R.; Darchiashvili, M. Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state. Adv. Appl. Ceram. 2019, 118, 196–208. [Google Scholar] [CrossRef]
- Mikeladze, A.; Tsagareishvili, O.; Chkhartishvili, L.; Chedia, R. Obtaining of some boron-containing and related nanocrystalline systems from solutions and suspensions. In Proceedings Book of the International Symposium on Boron; Boren: Nevsehir, Turkey, 2019; pp. 181–191. [Google Scholar]
- Barbakadze, N.; Sarajishvili, K.; Chedia, R.; Chkhartishvili, L.; Tsagareishvili, O.; Mikeladze, A.; Darchiashvili, M.; Ugrekhelidze, V. Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors. Nanotechnol. Percept. 2019, 15, 243–256. [Google Scholar] [CrossRef]
- Chkhartishvili, L.; Mikeladze, A.; Chedia, R.; Tsagareishvili, O.; Barbakadze, N.; Sarajishvili, K.; Darchiashvili, M.; Ugrekhelidze, V.; Korkia, T. Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co. Solid State Sci. 2020, 108, 106439-1–106439-8. [Google Scholar] [CrossRef]
- Mestvirishvili, Z.; Kvatchadze, V.; Bairamashvili, I.; Jalabadze, N.; Mestvirishvili, T. Development of the method of production of the ultrafine macrohomogeneous composite powder. Mater. Sci. Technol. 2020, 36, 327–333. [Google Scholar] [CrossRef]
- Chkhartishvili, L.; Antashvili, L.; Dalakishvili, L.; Chedia, R.; Tsagareishvili, O.; Mikeladze, A. On modeling of synthesis process of boron carbide based nanocomposites. Condensed Matter 2021, 6, 3. [Google Scholar] [CrossRef]
- Mestvirishvili, Z.; Gventsadze, D.; Kvatchadze, V.; Mikeladze, A.; Bairamashvili, I.; Kovziridze, Z. 11B4C and 11B4C–Zr11B2 self-lubricating ceramics for dry friction knots of nuclear reactor. Ceram. Adv. Technol. 2021, 23, 42–53. (In Georgian) [Google Scholar]
- Chkhartishvili, L.; Mikeladze, A.; Jalabadze, N.; Nadaraia, L.; Korkia, T.; Chedia, R. New low-temperature method of synthesis of boron carbide matrix ceramics ultra-dispersive powders and their spark plasma sintering. Solid State Phenom. 2022, 331, 173–184. [Google Scholar] [CrossRef]
- Barbakadze, N.; Chkhartishvili, L.; Mikeladze, A.; Tsagareishvili, O.; Sarajishvili, K.; Korkia, T.; Darchiashvili, M.; Rurua, L.; Jalabadze, N.; Chedia, R. Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production. Mater. Today Proc. 2022, 51, 1863–1871. [Google Scholar] [CrossRef]
- Gabunia, D.; Gachechiladze, A.; Mikeladze, A.; Tsagareishvili, O.; Chkhartishvili, L. Obtaining opportunities of boron carbide powders based hetero-modulus ceramics. In Micro et Nano: Sciantiæ Mare Magnum; Fiore, S., Belviso, C., Giannossi, M.L., Eds.; Associazione Italiana per lo Studio delle Argille: Bari, Italy, 2009; Volume 1, p. 86. [Google Scholar]
- Barbakadze, N.; Sarajishvili, K.; Chedia, R.; Chkhartishvili, L.; Tsagareishvili, O.; Mikeladze, A.; Darchiashvili, M.; Ugrekhelidze, V. Obtaining of ultrafine powder composites of tungsten, molybdenum, titanium and boron carbides using liquid precursors. In Book of Abstracts of the 11th Japanese–Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nanomaterials; Batumi State University: Batumi, Georgia, 2019; pp. 114–115. [Google Scholar]
- Tavadze, G.F.; Chkhartishvili, L.S. Development of nanotechnologies of production of composite materials in the Ferdinand Tavadze Institute of Metallurgy and Materials Science—Achievements and prospects. Nano Stud. 2016, 13, 59–78. (In Russian) [Google Scholar]
- Chkhartishvili, L.; Mikeladze, A.; Tsagareishvili, O.; Gachechiladze, A.; Oakley, A.; Margiev, B. Boron-containing nanocrystalline ceramic and metal-ceramic materials. In Handbook of Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 2; pp. 13–35. [Google Scholar]
- Chkhartishvili, L. On obtaining boron carbide based nanocomposites. In Proceedings of the International Conference on Materials Science, Mechanical and Automotive Engineering and Technology in Cappadocia; Kurt, B., Carboga, C., Bayer Ozturk, Z., Kuckdeveci, N., Eds.; Bektas Veli University: Nevsehir, Turkey, 2019; pp. 17–21. [Google Scholar]
- Chkhartishvili, L.; Tsagareishvili, O.; Mikeladze, A.; Chedia, R.; Kvatchadze, V.; Ugrekhelidze, V. Highly stable boron carbide based nanocomposites. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martinez, L.M.T., Kharisov, B.I., Eds.; Springer Nature: Cham, Switzerland, 2021; Volume 1, Chapter 15; pp. 327–351. [Google Scholar]
- Chkhartishvili, L.; Dekanosidze, S. Obtaining of boron carbide based titanium-containing nanocomposites (Mini-review). Nano Stud. 2020, 20, 7–18. [Google Scholar] [CrossRef]
- Chkhartishvili, L.; Gventsadze, D.; Tavadze, G.; Mikeladze, A.; Tsagareishvili, O.; Kovziridze, Z. Greener route of obtaining boron-containing nanocomposites. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Kharisov, B.I., Kharissova, O.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, Chapter 15; pp. 329–353. [Google Scholar]
- Chkhartishvili, L.; Mikeladze, A.; Chedia, R.; Tsagareishvili, O.; Jalabadze, N.; Barbakadze, N.; Kvatchadze, V.; Darchiashvili, M.; Sarajishvili, K.; Rurua, L.; et al. Boron carbide based nanocomposites with advanced mechanical properties. In Proceedings of the 8th International Conference and Exhibition on Advanced and Nano Materials; International Academy of Energy, Minerals and Materials: Ottawa, ON, Canada, 2021; pp. 1–16. [Google Scholar]
- Chkhartishvili, L.; Mikeladze, A.; Chedia, R.; Tsagareishvili, O.; Bugdayci, M.; Karagoz, I.; Maras, T.; Jalabadze, N.; Kvatchadze, V. Combustion synthesis of boron carbide matrix for superhard nanocomposites production. In Advances in Combustion Synthesis and Technology; Bugdayci, M., Oncel, L., Eds.; Bentham Science Publishers: Singapore, 2022; Chapter 4; pp. 66–95. [Google Scholar]
- Tsagareishvili, O.; Mikeladze, A.; Chedia, R.; Chkhartishvili, L. Method of Obtaining Boron Carbide Based Hard Nanocomposite Materials. National Centre for Intellectual Property of Georgia “Geo Patent”. Patent # GE P 2018 6709 B, 11 October 2018. pp. 1–7 (In Georgian). [Google Scholar]
- Sonber, J.K.; Murthy, T.S.R.C.; Subramanian, C.; Fotedar, R.K.; Hubli, R.C.; Suri, A.K. Synthesis, densification and characterization of boron carbide. Trans. Ind. Ceram. Soc. 2013, 72, 100–107. [Google Scholar] [CrossRef]
- Durandurdu, M. Amorphous BC5 from first principles calculations. J. Non-Cryst. Solids 2022, 592, 121743-1–121743-5. [Google Scholar] [CrossRef]
- Chakraborti, A.; Guignot, N.; Vast, N.; Le Godec, Y. Synthesis of boron carbide from its elements up to 13 GPa. J. Phys. Chem. Solids 2021, 159, 110253-1–110253-10. [Google Scholar] [CrossRef]
- Subramanian, C.; Suri, A.K.; Murthy, T.S.R.C. Development of boron-based materials for nuclear applications. BARC News Lett. 2010, 313, 14–22. [Google Scholar]
- Sonber, J.K.; Murthy, T.S.R.C.; Sairam, K.; Bedse, R.D.; Hubli, R.C.; Chakravartty, J.K. Development and production of 10B enriched boron carbide (B4C) pellets for control rod application in PFBR. BARC News Lett. 2015, 2015, 259–264. [Google Scholar]
- Chang, I.T.H.; Falticeanu, C.L. Production of Boron Carbide Powder. Patent Appl. Publ. US 2015/0299421 A1, 22 October 2015. p. 1. [Google Scholar]
- Kakiage, M. Low-temperature synthesis of boride powders by controlling microstructure in precursor using organic compounds. J. Ceram. Soc. Jpn. 2018, 126, 602–608. [Google Scholar] [CrossRef]
- Budak, E.; Hizarci, S.; Yilmaz, E. Recycling of hazelnut shell: Synthesis of boron carbide by carbothermic reaction. Proc. Int. Conf. Radiat. Appl. 2019, 4, 162–166. [Google Scholar]
- Qian, S.; Zhang, B. Research of preparation boron carbide micro powder by combustion synthesis method. Metall. Eng. 2020, 7, 83–91. (In Chinese) [Google Scholar]
- Al-Taie, M.H.; Chyad, F.A.; Alaa Jaber, H. An experimental investigation of B4C preparation from boric acid–polymeric gel precursors at low temperature. Iraqi J. Mech. Mater. Eng. 2014, 14, 408–422. [Google Scholar]
- Shawgi, N.; Li, S.X.; Wang, S.; Wang, Z.; Nie, Y.N. Synthesis of nano particles and fiber-like shape boron carbide powder from ploy (vinyl alcohol) and boric acid. J. Sol–Gel. Sci. Technol. 2017, 82, 450–457. [Google Scholar] [CrossRef]
- Karaahmet, O.; Cicek, B. Use of partially hydrolyzed PVA for boron carbide synthesis from polymeric precursor. Ceramics–Silikaty 2020, 64, 434–446. [Google Scholar] [CrossRef]
- Faridaddin Feiz, S.; Nikzad, L.; Majidian, H.; Salahi, E. Performance of glucose, sucrose and cellulose as carbonaceous precursors for the synthesis of B4C powders. Synth. Sinter. 2022, 2, 26–30. [Google Scholar] [CrossRef]
- Shawgi, N.; Li, S.X.; Wang, S. A novel method of synthesis of high purity nano plated boron carbide powder by a solid-state reaction of poly (vinyl alcohol) and boric acid. Ceram. Int. 2017, 43, 10554–10558. [Google Scholar] [CrossRef]
- Shawgi, N.; Li, S.X.; Wang, S.; Li, Y.; Ramzi, R. Towards a large-scale production of boron carbide nano particles from poly (vinyl alcohol) and boric acid by a solid-state reaction-pyrolysis process (SRPP). Ceram. Int. 2018, 44, 774–778. [Google Scholar] [CrossRef]
- Ozcelik, B.K.; Ergun, C. Boronated carbon and boron carbide synthesize via aerosol method. Mater. Sci. Technol. 2014, 14, 1–6. [Google Scholar]
- Saritha Devi, H.V.; Swapna, M.S.; Sankararaman, S. Boron carbide nanowires from castor oil for optronic applications: A low-temperature greener approach. Res. Square 2020, 1–11. [Google Scholar] [CrossRef]
- Watts, J.L.; Talbot, P.C.; Alarco, J.A.; Mackinnon, I.D.R. Morphology control in high yield boron carbide. Ceram. Int. 2017, 43, 2650–2657. [Google Scholar] [CrossRef]
- Taran, A.V.; Garkusha, I.E.; Taran, V.S.; Muratov, R.M.; Skoblo, T.S.; Sidashenko, O.I.; Romaniuk, S.P.; Maltsev, T.V.; Baturin, A.A. Structure and properties of B4C coatings obtained by RF sputtering with external magnetic field. In Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications; Fesenko, O., Yatsenko, L., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 51–57. [Google Scholar]
- Fahrenholtz, W.G.; Binner, J.; Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. J. Mater. Res. 2016, 31, 2757–2772. [Google Scholar] [CrossRef]
- Liu, D.; Fu, Q.; Chu, Y. Molten salt synthesis, formation mechanism, and oxidation behavior of nanocrystalline HfB2 powders. J. Adv. Ceram. 2020, 9, 35–44. [Google Scholar] [CrossRef]
- James, A.L.; Lenka, M.; Pandey, N.; Ojha, A.; Kumar, A.; Saraswat, R.; Thareja, P.; Krishnan, V.; Jasuja, K. Process able dispersions of photocatalytically active nanosheets derived from titanium diboride: Self assembly into hydrogels and paper-like macrostructures. Nanoscale 2020, 12, 17121–17131. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; Bugdayci, M.; Ercan Acma, M. Production of B4C–TiB2 composite powder by self-propagating high-temperature synthesis. J. Aust. Ceram. Soc. 2022, 58, 777–791. [Google Scholar] [CrossRef]
- Murchie, A.C.; Watts, J.L.; Fahrenholtz, W.G.; Hilmas, G.E. Mechanical properties of borothermally synthesized zirconium diboride at elevated temperatures. Int. J. Appl. Ceram. Technol. 2021, 18, 1235–1243. [Google Scholar] [CrossRef]
- Neuman, E.W.; Wittmaier, C.C.; Fahrenholtz, W.G.; Hilmas, G.E. Zirconium diboride laminates for improved damage tolerance at elevated temperatures. Int. J. Appl. Ceram. Technol. 2021, 18, 1845–1852. [Google Scholar] [CrossRef]
- Selim Parlakyigit, A.; Ergun, C. A facile synthesis method for in situ composites of TiB2/B4C and ZrB2/B4C. J. Aust. Ceram. Soc. 2022, 58, 411–420. [Google Scholar] [CrossRef]
- Gonzalez Szwacki, N. The structure and hardness of the highest boride of tungsten, a borophene-based compound. Sci. Rep. 2017, 7, 4082-1–4082-6. [Google Scholar] [CrossRef]
- Mazo, I.; Molinari, A.; Sglavo, V.M. Electrical resistance flash sintering of tungsten carbide. Mater. Des. 2022, 213, 110330-1–110330-13. [Google Scholar] [CrossRef]
- Senyurt, B.; Akcamli, N.; Agaogullari, D. In-situ synthesis of tungsten boride-carbide composite powders from WO3–B2O3–Mg–C quaternary system via a mechanochemical route. Ceram. Int. 2021, 47, 1640–1650. [Google Scholar] [CrossRef]
- Jiang, B.; Song, H.; Kang, Y.; Wang, S.; Wang, Q.; Zhou, X.; Kani, K.; Guo, Y.; Ye, J.; Li, H.; et al. A mesoporous non-precious metal boride system: Synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem. Sci. 2019, 11, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, H.; Zhao, C.; Hu, H.; Liu, X.; Song, X. Nanocrystalline WC–Co composite with ultrahigh hardness and toughness. Composites B 2020, 197, 108161-1–108161-11. [Google Scholar] [CrossRef]
- Demir, E.; Popov, E.; Mirzayev, M.; Slavov, L.; Neov, D.; Donkov, A.; Siemek, K.; Vershinina, T.; Genov, I.; Beskrovnyi, A.; et al. Effects of swift heavy ions at different fluencies on WC–6Co hard metal alloy. Int. J. Ref. Met. Hard Mater. 2022, 106, 105865-1–105865-10. [Google Scholar] [CrossRef]
- Dai, J.; Lee, W.; Gomez, E.D.; Yamamoto, N. Demonstrating low-temperature sintering of boron carbide powders. Int. J. Ceram. Eng. Sci. 2019, 1, 178–184. [Google Scholar] [CrossRef]
- Liu, G.; Chen, S.; Zhao, Y.; Fu, Y.; Wang, Y. The effects of transition metal oxides (Me = Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering. Coatings 2020, 10, 1253. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Yan, S.; Deng, Y.; Gao, S.; Xing, P. Preparing B4C–SiC–TiB2 composites via reactive pressureless sintering with B4C and TiSi2 as raw materials. J. Mater. Res. Technol. 2020, 9, 8685–8696. [Google Scholar] [CrossRef]
- Neuman, E.W.; Hilmas, G.E.; Fahrenholtz, W.G. Pressureless sintering of zirconium diboride with carbon and boron carbide nanopowder. Ceram. Int. 2022, 48, 13071–13079. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, X.; Li, J.; Sun, Y.; Ran, S. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C–TiB2 composites. Ceram. Int. 2018, 44, 21415–21420. [Google Scholar] [CrossRef]
- Ding, X.; Pan, K.; Liu, Z.; Zhu, J.; Deng, X.; Li, J.; Ran, S. Effects of TiC particle size on microstructures and mechanical properties of B4C–TiB2 composites prepared by reactive hot-press sintering of TiC–B mixtures. Ceram. Int. 2020, 46, 10425–10430. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, C.; Li, Q.; Liu, Z.; Ran, S. B4C–TiB2 composites fabricated by hot pressing TiC–B mixtures: The effect of B excess. Ceram. Int. 2022, 48, 11981–11987. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Cao, W.; Liu, Z.; Deng, X.; Ding, X.; Ran, S. Influences of B4C content and particle size on the mechanical properties of hot pressed TiB2–B4C composites. J. Asian Ceram. Soc. 2021, 9, 1239–1247. [Google Scholar] [CrossRef]
- Ma, K.; Shi, X.; Cao, X.; Yang, Z.; Zuo, J.; Xu, J.; Li, M. Mechanical, electrical properties and microstructures of hot-pressed B4C–WB2 composites. Ceram. Int. 2022, 48, 20211–20219. [Google Scholar] [CrossRef]
- Maity, T.N.; Gopinath, N.K.; Biswas, K.; Basu, B. Spark plasma sintering of ultrahigh temperature ceramics. In Spark Plasma Sintering of Materials. Advances in Processing and Applications; Cavaliere, P., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 369–440. [Google Scholar]
- Ayodele, O.O.; Shongwe, M.B.; Obadele, B.A.; Olubambi, P.A. Spark plasma sintering of titanium-based materials. In Spark Plasma Sintering of Materials. Advances in Processing and Applications; Cavaliere, P., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 673–701. [Google Scholar]
- Vasylkiv, O.; Demirskyi, D.; Badica, P.; Nishimura, T.; Tok, A.I.Y.; Sakka, Y.; Borodianska, H. Room and high temperature flexural failure of spark plasma sintered boron carbide. Ceram. Int. 2016, 42, 7001–7013. [Google Scholar] [CrossRef]
- Gorle, R.; Vasanthakumar, K.; Bakshi, S.R. Reactive spark plasma sintering of B4C composite at low temperature using mechanically milled B4C–Ti–B mixtures. Ceram. Int. 2021, 47, 26134–26143. [Google Scholar] [CrossRef]
- Rubink, W.S.; Ageh, V.; Lide, H.; Ley, N.A.; Young, M.L.; Casem, D.T.; Faierson, E.J.; Scharf, T.W. Spark plasma sintering of B4C and B4C–TiB2 composites: Deformation and failure mechanisms under quasistatic and dynamic loading. J. Eur. Ceram. Soc. 2021, 41, 3321–3332. [Google Scholar] [CrossRef]
- Unsal, H.; Grasso, S.; Kovalcikova, A.; Hanzel, O.; Tatarkova, M.; Dlouhy, I.; Tatarko, P. In-situ graphene platelets formation and its suppression during reactive spark plasma sintering of boron carbide/titanium diboride composites. J. Eur. Ceram. Soc. 2021, 41, 6281–6289. [Google Scholar] [CrossRef]
- Demirskyi, D.; Borodianska, H.; Sakka, Y.; Vasylkiv, O. Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 2017, 37, 393–397. [Google Scholar] [CrossRef]
- Solodkyi, I.; Bogomol, I.; Bolbut, V.; Loboda, P.; Kuncser, A.; Vasylkiv, O.; Badica, P. Hierarchical composites of B4C–TiB2 eutectic particles reinforced with Ti. Ceram. Int. 2020, 46, 28132–28144. [Google Scholar] [CrossRef]
- Rurua, L.; Nadaraia, L.; Khundadze, L. Sintering of TiB2–TiC–SiC composite materials by combined SPS/SHS method. Mater. Sci. Forum 2022, 1067, 91–97. [Google Scholar] [CrossRef]
- Demirskyi, D.; Sakka, Y.; Vasylkiv, O. Consolidation of B4C–TaB2 eutectic composites by spark plasma sintering. J. Asian Ceram. Soc. 2015, 3, 369–372. [Google Scholar] [CrossRef]
- Demirskyi, D.; Suzuki, T.S.; Yoshimi, K.; Vasylkiv, O. Synthesis of medium-entropy (Zr1/3Hf1/3Ta1/3)B2 using the spark plasma consolidation of diboride powders. J. Ceram. Soc. Jpn. 2020, 128, 977–980. [Google Scholar] [CrossRef]
- Hosseini, N.; Fazili, A.; Reza Derakhshandeh, M.; Nikzad, L.; Bahamirian, M.; Razavi, M. Effect of Co addition on microstructural and mechanical properties of WC–B4C–SiC composites. Ceram. Int. 2021, 47, 15771–15782. [Google Scholar] [CrossRef]
- Jin, X.; Tang, C.; Li, Q.; Wang, D.; Ding, X.; Ran, S. Densification and strengthening mechanism in spark plasma sintering of B4C–VB2 ceramics via carbide boronizing. Ceram. Int. 2022, 48, 26452–26459. [Google Scholar] [CrossRef]
- Liu, B.; Gu, Y.; Ji, Y.; Zheng, G.; Ma, F.; Wang, J.; Wu, Y.; Long, F.; Zhou, B. Fabrication and mechanical properties of boron nitride nanotube reinforced boron carbide ceramics. Res. Square 2021, 1–15. [Google Scholar] [CrossRef]
- Gokce, M.; Kayali, Y.; Talas, S. The ceramic composite coating (TiC+TiB2) by ESD on Ti6Al4V alloy and its characterization. Ceram. Sci. Eng. 2020, 3, 1–5. [Google Scholar]
- Dai, J.; Singh, J.; Yamamoto, N. Fabrication and characterization of FAST sintered micro/nano boron carbide composites with enhanced fracture toughness. J. Eur. Ceram Soc. 2020, 40, 5272–5285. [Google Scholar] [CrossRef]
- Murashov, A.P.; Borisov, Y.S.; Adeeva, L.I.; Bobrik, Y.J.; Rupchev, V.L. Plasma-arc spraying of wear-resistant coatings from composite powders FeV–B4C. Paton Welding J. 2003, 9, 42–44. [Google Scholar]
- Balakrishnarajan, M.M.; Pancharatna, P.D.; Hoffmann, R. Structure and bonding in boron carbide: The invincibility of imperfections. New J. Chem. 2007, 31, 473–485. [Google Scholar] [CrossRef]
- Yang, X.; Goddard, W.A.; An, Q. The structure and properties of boron-very-rich boron carbides: B12 icosahedra linked through bent CBB chains. J. Phys. Chem. C 2018, 122, 2448–2453. [Google Scholar] [CrossRef]
- Betranhandy, E.; Vast, N.; Sjakste, J. Ab initio study of defective chains in icosahedral boron carbide B4C. Solid State Sci. 2012, 14, 1683–1687. [Google Scholar] [CrossRef]
- Madhav Reddy, K.; Guo, D.; Song, S.; Cheng, C.; Han, J.; Wang, X.; An, Q.; Chen, M. Dislocation-mediated shear amorphization in boron carbide. Sci. Adv. 2021, 7, eabc6714-1–eabc6714-7. [Google Scholar]
- Demirskyi, D.; Sepehri–Amin, H.; Suzuki, T.S.; Yoshimi, K.; Vasylkiv, O. Ultra-high temperature flexure and strain driven amorphization in polycrystalline boron carbide bulks. Scr. Mater. 2022, 210, 114487-1–114487-5. [Google Scholar] [CrossRef]
- Werheit, H.; Manghnani, M.H.; Hushur, A. Phonon peculiarities at the high-pressure phase transition of B4.3C boron carbide. Solid State Sci. 2019, 97, 105978-1–105978-9. [Google Scholar] [CrossRef]
- Medwick, P.A.; Fischer, H.E.; Pohl, R.O. Thermal conductivity and specific heat of boron carbides. J. Alloys Comp. 1994, 203, 67–75. [Google Scholar] [CrossRef]
- Prista, G.; Werheit, H.; Gabani, S.; Shalamberidze, S.; Flachbart, K. Low temperature specific heat anomaly with boson peak in isotope-enriched boron carbides B4.3C–B10C. Solid State Sci. 2020, 101, 106140-1–106140-5. [Google Scholar]
- Werheit, H. Systematic error in conventionally measured Raman spectra of boron carbide—A general issue in solid state Raman spectroscopy. Rev. Sci. Instrum. 2019, 90, 043114-1–043114-5. [Google Scholar] [CrossRef]
- Nakamura, D.; Koshizaki, N.; Shishido, N.; Kamiya, S.; Ishikawa, Y. Fracture and embedment behavior of brittle submicrometer spherical particles fabricated by pulsed laser melting in liquid using a scanning electron microscope nanoindenter. Nanomaterials 2021, 11, 2201. [Google Scholar] [CrossRef]
- Filippov, A.V.; Khoroshko, E.S.; Shamarin, N.N.; Savchenko, N.L.; Moskvichev, E.N.; Utyaganova, V.R.; Kolubaev, E.A.; Smolin, A.Y.; Tarasov, S.Y. Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods. J. Alloys Comp. 2021, 859, 157824-1–157824-20. [Google Scholar] [CrossRef]
- Morohashi, Y.; Maruyama, T.; Donomae, T.; Tachi, Y.; Onose, S. Neutron irradiation effect on isotopically tailored 11B4C. J. Nucl. Sci. Technol. 2008, 45, 867–872. [Google Scholar] [CrossRef]
- Werheit, H.; Herstell, B.; Winkelbauer, W.; Pristas, G.; Gabani, S.; Flachbart, K.; Shalamberidze, S. Electrical conductivity of boron carbide from ∼5 to ∼2100 K in the whole homogeneity range. Solid State Sci. 2022, 132, 106987-1–106987-10. [Google Scholar] [CrossRef]
- Chen, Z.; Paul, B.; Majumdar, S.; Okamoto, N.L.; Kishida, K.; Inui, H.; Otani, S. Room-temperature deformation of single crystals of ZrB2 and TiB2 with the hexagonal AlB2 structure investigated by micropillar compression. Sci. Rep. 2021, 11, 14265-1–14265-11. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Cheng, H.; Zhu, Y.; An, R.; Fang, H.; Feiya, A.; Han, B. Effects of directly added or reaction formed TiB2 on the microstructure and mechanical properties of pressureless-sintered B4C–TiB2 composites. Res. Square 2020, 1–21. [Google Scholar] [CrossRef]
- Silvestroni, L.; Failla, S.; Gilli, N.; Melandri, C.; Savaci, U.; Turan, S.; Sciti, D. Disclosing small scale length properties in core–shell structured B4C–TiB2 composites. Mater. Des. 2021, 197, 109204-1–109204-14. [Google Scholar] [CrossRef]
- Niu, H.; Zhu, Y.; You, N.; Wang, Y.; Cheng, H.; Luo, D.; Tang, M.; Zhang, J. Effects of TiB2 particles on the microstructure evolution and mechanical properties of B4C/TiB2 ceramic composite. Materials 2021, 14, 5227. [Google Scholar] [CrossRef]
- Neuman, E.W.; Thompson, M.; Fahrenholtz, W.G.; Hilmas, G.E. Elevated temperature thermal properties of ZrB2–B4C ceramics. J. Eur. Ceram. Soc. 2022, 42, 4024–4029. [Google Scholar] [CrossRef]
- Hofmann, H.; Petzow, G. Structure and properties of reaction hot-pressed B4C–TiB2–W2B5 materials. J. Less-Comm. Met. 1986, 117, 121–127. [Google Scholar] [CrossRef]
- Pan, D.; Li, S.; Zhang, X.; Pan, B.; Zhou, S.; Fu, Y.; Kondoh, K. Effect of graphite content on properties of B4C–W2B5 ceramic composites by in situ reaction of B–Gr–WC. J. Am. Ceram. Soc. 2018, 101, 3617–3626. [Google Scholar] [CrossRef]
- Nesmelov, D.D.; Ordan’yan, S.S.; Udalov, Y.P. Structure and mechanical properties of hot-pressed composite ceramics W2B5–ZrB2–SiC–B4C. Ref. Ind. Ceram. 2021, 62, 202–207. [Google Scholar] [CrossRef]
- Aleksandrov Fabijanic, T.; Snajdar Musa, M.; Coric, D.; Sakoman, M. Vickers indentation fracture toughness of near-nano and nanostructured WC–Co cemented carbides. Metals 2017, 7, 143. [Google Scholar] [CrossRef]
- An, Q.; Goddard III, W.A.; Xie, K.Y.; Sim, G.-D.; Hemker, K.J.; Munhollon, T.; Fatih Toksoy, M.; Haber, R.A. Superstrength through nanotwinning. Nano Lett. 2016, 16, 7573–7579. [Google Scholar] [CrossRef]
- Dai, J.; Pineda, E.J.; Bednarcyk, B.A.; Singh, J.; Yamamoto, N. Macro-scale testing and micromechanics modeling of fracture behaviors for boron carbide composites with hierarchical microstructures. Am. Inst. Aeronaut. Astronaut. Sci. Tech. Forum 2021, 1–13. [Google Scholar] [CrossRef]
- Melashvili, Z.; Namicheishvili, T.; Tutberidze, A.; Aslamazashvili, Z.; Chikhradze, M.; Zakharov, G. Modelling of fluidity during hot compaction of Ti–B system synthesized mass. IoP Conf. Ser. Earth Environ. Sci. 2021, 906, 012009-1–012009-8. [Google Scholar] [CrossRef]
- Dai, J.; Pined, E.; Bednarcyk, B.; Singh, J.; Yamamoto, N. Micromechanics-based simulation of B4C–TiB2 composite fracture under tensile load. J. Eur. Ceram. Soc. 2022, 42, 6364–6378. [Google Scholar] [CrossRef]
- Kovalchenko, M.S.; Vinokurov, V.B.; Litvin, R.V.; Klimenko, L.I. The densification kinetics of porous zirconium diboride in vacuum pressure sintering. Powd. Metall. Met. Ceram. 2021, 60, 278–290. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Reza Baharvandi, H.; Ehsani, N.; Verma, S.; Bahaaddini, M.; Batra, N.K. Experimental investigation and validation on the effect of nickel addition on properties of the pressureless sintered boron carbide composites using machine learning models. Ceram. Int. 2022, 48, 13205–13215. [Google Scholar] [CrossRef]
- Sharma, A.; Tirumuruhan, B.; Sudhan Muthuvel, G.; Kumar Gupta, A.; Sujith, R. Optimization of process parameters of boron carbide-reinforced Al–Zn–Mg–Cu matrix composite produced by pressure-assisted sintering. J. Mater. Eng. Perform. 2021, 31, 328–340. [Google Scholar] [CrossRef]
- Emrich, B.R. Literature Survey on Synthesis, Properties, and Applications of Selected Boride Compounds. In Technical Documentary Report No. ASD-TDR-62-873; Armed Services Technical Information Agency: Arlington, TX, USA, 1962; pp. 1–123. [Google Scholar]
- Suri, A.K.; Subramanian, C.; Sonber, J.K.; Murthy, T.S.R.C. Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 2010, 55, 4–40. [Google Scholar] [CrossRef]
- Agyei–Tuffour, B.; Annan, E.; Rwenyagila, E.R.; Ampaw, E.; Arthur, E.; Mustapha, K.; Kolawole, S.; Soboyejo, W.O.; Radev, D.D. Untraditional synthesis of boron-containing superhard and refractory materials—A Review. Glob. J. Eng. Des. Technol. 2013, 2, 21–26. [Google Scholar]
- Zhang, W.; Yamashita, S.; Kita, H. Progress in pressureless sintering of boron carbide ceramics—A review. Adv. Appl. Ceram. 2019, 118, 222–239. [Google Scholar] [CrossRef]
- Grasso, S.; Biesuz, M.; Zoli, L.; Taveri, G.; Duff, A.I.; Ke, D.; Jiang, A.; Reece, M.J. A review of cold sintering processes. Adv. Appl. Ceram. 2020, 119, 115–143. [Google Scholar] [CrossRef]
- Eustathopoulos, N. Wetting by liquid metals—Application in materials processing: The contribution of the Grenoble group. Metals 2015, 5, 350–370. [Google Scholar] [CrossRef]
- Parmar, N.; Bayer, I.; Biswas, A. Advanced ceramics development by using nanotechnology. Vac. Technol. Coat. 2018, 19, 17–23. [Google Scholar]
- Albert, B.; Hofmann, K. Metal borides: Versatile structures and properties. In Handbook of Solid State Chemistry; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley–VCH: Weinheim, Germany, 2017; Chapter 10; pp. 435–453. [Google Scholar]
- Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Ran, S.-L.; Wang, D.-W.; Sun, H.-F.; Fan, C.-G. Research progress of B4C–TiB2 composite ceramics. J. Synth. Cryst. 2019, 42, 2150–2155. (In Chinese) [Google Scholar]
- Fang, D.; Li, W.; Cheng, T.; Qu, Z.; Chen, Y.; Wang, R.; Ai, S. Review on mechanics of ultra-high-temperature materials. Acta Mech. Sin. 2021, 37, 1347–1370. [Google Scholar] [CrossRef]
- Binner, J.; Murthy, T.S.R.C. Structural and thermostructural ceramics. Encycl. Mater. Tech. Ceram. Glasses 2021, 2, 3–24. [Google Scholar]
- Mazitov, A.B.; Oganov, A.R. Grain boundaries in minerals: Atomic structure, phase transitions, and effect on strength of polycrystals. Proc. Russ. Mineral. Soc. 2021, 150, 92–102. [Google Scholar] [CrossRef]
- Porz, L. 60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics. Int. J. Ceram. Eng. Sci. 2022, 4, 214–239. [Google Scholar] [CrossRef]
- Annerino, A.; Lawson, M.; Gouma, P.-I. Future insights on high temperature ceramics and composites for extreme environments. Int. J. Ceram. Eng. Sci. 2022, 4, 296–301. [Google Scholar] [CrossRef]
- Wei, Z.-Y.; Meng, G.-H.; Chen, L.; Li, G.-R.; Liu, M.-J.; Zhang, W.-X.; Zhao, L.-N.; Zhang, Q.; Zhang, X.-D.; Wan, C.-L.; et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J. Adv. Ceram. 2022, 11, 985–1068. [Google Scholar] [CrossRef]
- Sun, J.; Ye, D.; Zou, J.; Chen, X.; Wang, Y.; Yuan, J.; Liang, H.; Qu, H.; Binner, J.; Bai, J. A review on additive manufacturing of ceramic matrix composites. J. Mater. Sci. Technol. 2023, 138, 1–16. [Google Scholar] [CrossRef]
- Chkhartishvili, L. Obtaining of Boron Carbide-Based Nanostructured Heterophase Ceramic Materials and Products with Improved Performance Characteristics; Program Report of SRNSFG Research Grant Project # AR-18-1045; SRNSFG: Tbilisi, Georgia, 2022; pp. 1–79. (In Georgian) [Google Scholar]
- Ovsyannikov, D.A.; Popov, M.Y.; Perfilov, S.A.; Prokhorov, V.M.; Kulnitskiy, B.A.; Perezhogin, I.A.; Blank, V.D. High-hardness ceramics based on boron carbide fullerite derivatives. Phys. Solid State 2017, 59, 327–330. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.X.; Zhang, Z.F. General relationship between strength and hardness. Mater. Sci. Eng. A 2011, 529, 62–73. [Google Scholar] [CrossRef]
Sample | Compacting Method | Powder Dispersity (μm) | Microhardness (GPa) | Bending Strength (MPa) |
---|---|---|---|---|
1 | Hot pressing | <1 | 31.4 | 216 |
2 | SPS | <1 | 35.7 | 353 |
3 | Hot pressing | <0.1 | 38.2 | 549 |
4 | SPS | <0.1 | 45.6 | 834 |
Sample | Content of ZrB2 (wt.%) | Particles Mean Size (μm) | Microhardness (GPa) | Bending Strength (MPa) | Fracture Toughness (MPa∙m1/2) |
---|---|---|---|---|---|
1 | 15 | 0.84 | 2.12 | 451 | 4.1 |
2 | 20 | 0.81 | 3.46 | 471 | 4.4 |
3 | 25 | 0.79 | 5.38 | 490 | 4.5 |
Sample | Content of ZrB2 (wt.%) | Particles Mean Size (μm) | Microhardness (GPa) | Bending Strength (MPa) | Fracture Toughness (MPa∙m1/2) |
---|---|---|---|---|---|
1 | 15 | <0.10 | 37.1 | 441 | 4.2 |
2 | 20 | <0.10 | 36.4 | 481 | 4.6 |
3 | 25 | <0.10 | 34.8 | 520 | 4.7 |
Content of ZrB2 (wt.%) | Load (MPa) | |||||
---|---|---|---|---|---|---|
0.10 | 0.15 | |||||
Temperature T (°C) | Friction Coefficient (f) | Wear Intensity I (10−9) | Temperature T (°C) | Friction Coefficient (f) | Wear Intensity I (10−9) | |
0 | 26 | 0.23 | 1.13 | 34 | 0.26 | 5.40 |
3 | 26 | 0.20 | 1.01 | 48 | 0.62 | 28.34 |
5 | 30 | 0.23 | 0.58 | 38 | 0.16 | 1.16 |
Sample | Particles Size in Powder (μm) | Grains Size in Compact (μm) | Content of WC–Co (wt.%) | Microhardness (GPa) | Bending Strength (MPa) | Fracture Toughness (MPa∙m1/2) |
---|---|---|---|---|---|---|
1 | 0.79 | 2.3 | 1 | 37.1 | 441 | 4.6 |
2 | 0.81 | 2.5 | 3 | 36.4 | 490 | 4.7 |
3 | 0.85 | 2.7 | 5 | 36.1 | 588 | 4.8 |
4 | <0.10 | 0.32 | 1 | 38.1 | 883 | 5.2 |
5 | <0.10 | 0.30 | 3 | 37.3 | 981 | 5.8 |
6 | <0.10 | 0.28 | 5 | 38.3 | 1079 | 5.8 |
Characteristic Component | Density ρ (g/cm3) | Microhardness H (GPa) | Bending Strength σ (MPa) | Ratio (H/σ) |
---|---|---|---|---|
Boron carbide B4C | 2.52 | 28.4 | 155 | 183 |
Titanium diboride TiB2 | 4.52 | 26.5 | 275 | 96.4 |
Tungsten carbide WC | 15.6 | 25.5 | 344 | 74.1 |
Cobalt Co | 8.90 | 1.04 | 800 | 1.30 |
Property | Sample | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Composition, wt.% | 53.3:13.3:(30.7:2.7) | 53.3:13.3:(30.7:2.7) | 24.0:6.0:(64.4:5.6) | 24.0:6.0:(64.4:5.6) | 32.0:8.0:(55.2:4.8) | 64.0:16.0:(18.4:1.6) |
Measured microhardness, GPa | 23.0 | 17.9 | 30.6 | 21.4 | 27.5 | 25.1 |
Calculated bending strength, MPa | 873 | 677 | 2194 | 1534 | 1638 | 518 |
Sample | Synthesis Route | Measured Density (g/cm3) | Averaged Density (g/cm3) | Theoretical Density (g/cm3) |
---|---|---|---|---|
1 | 1 | 3.58 | 3.56 | 3.63 |
2 | 3.53 | |||
3 | 3.57 | |||
4 | 2 | 3.46 | 3.48 | |
5 | 3.50 | |||
6 | 3.48 | |||
7 | 3 | 3.51 | 3.52 | |
8 | 3.54 | |||
9 | 3.51 |
Sample | WC–Co Content (wt.%) | Components Particle Size (μm) | Composite Grain Size (μm) | Theoretical Density (g/cm3) | Measured Density (g/cm3) | Microhardness (GPa) | Bending Strength (MPa) | Fracture Toughness (MPa∙m1/2) |
---|---|---|---|---|---|---|---|---|
1 | 5 | <0.80 | 2.30 | 2.58 | 2.51 | 33.5 | 588 | 5.0 |
2 | 10 | <0.80 | 2.50 | 3.63 | 3.56 | 33.1 | 785 | 5.3 |
3 | 15 | <0.80 | 2.70 | 4.68 | 4.44 | 31.9 | 1079 | 5.4 |
4 | 20 | <0.15 | 0.32 | 5.30 | 5.08 | 31.9 | 1177 | 5.6 |
5 | 25 | <0.18 | 0.30 | 5.91 | 5.79 | 30.5 | 1226 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chkhartishvili, L.; Mikeladze, A.; Tsagareishvili, O.; Kvatchadze, V.; Tavkhelidze, V.; Mestvirishvili, Z.; Driaev, D.; Barbakadze, N.; Nadaraia, L.; Sarajishvili, K.; et al. Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review. Condens. Matter 2023, 8, 37. https://doi.org/10.3390/condmat8020037
Chkhartishvili L, Mikeladze A, Tsagareishvili O, Kvatchadze V, Tavkhelidze V, Mestvirishvili Z, Driaev D, Barbakadze N, Nadaraia L, Sarajishvili K, et al. Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review. Condensed Matter. 2023; 8(2):37. https://doi.org/10.3390/condmat8020037
Chicago/Turabian StyleChkhartishvili, Levan, Archil Mikeladze, Otar Tsagareishvili, Vakhtang Kvatchadze, Valery Tavkhelidze, Zviad Mestvirishvili, Dimitri Driaev, Natia Barbakadze, Lili Nadaraia, Ketevan Sarajishvili, and et al. 2023. "Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review" Condensed Matter 8, no. 2: 37. https://doi.org/10.3390/condmat8020037
APA StyleChkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Kvatchadze, V., Tavkhelidze, V., Mestvirishvili, Z., Driaev, D., Barbakadze, N., Nadaraia, L., Sarajishvili, K., Jinikashvili, I., Buzariashvili, M., & Chedia, R. (2023). Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review. Condensed Matter, 8(2), 37. https://doi.org/10.3390/condmat8020037