The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantum Design of AHTS
2.2. MBE Synthesis of Artificial High-Tc Superlattices
2.3. The Superconducting Dome of AHTS
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohtomo, A.; Hwang, H.Y. A high mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Reyren, N.; Thiel, S.; Caviglia, A.D.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.; Ruetschi, A.S.; Jaccard, D.; et al. Superconducting interfaces between insulating oxides. Science 2007, 317, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, A.; Huijben, M.; Van Zalk, M.; Huijben, J.; Zeitler, U.; Maan, J.C.; van der Wiel, W.G.; Rijnders, G.J.; Blank, D.H.; Hilgenkamp, H. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 2007, 6, 493–496. [Google Scholar] [CrossRef]
- Tsukazaki, A.; Ohtomo, A.; Kita, T.; Ohno, Y.; Ohno, H.; Kawasaki, M. Quantum Hall Effect in Polar Oxide Heterostructures. Science 2007, 315, 1388–1391. [Google Scholar] [CrossRef] [PubMed]
- Gozar, A.; Logvenov, G.; Kourkoutis, L.F.; Bollinger, A.T.; Giannuzzi, L.A.; Muller, D.A.; Bozovic, I. High temperature interface superconductivity between metallic and insulating copper oxides. Nature 2008, 455, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Pereiro, J.; Bollinger, A.T.; Logvenov, G.; Gozar, A.; Panagopoulos, C.; Božović, I. Insights from the study of high temperature interface superconductivity. Phil. Trans. R. Soc. 2012, 370, 4890–4903. [Google Scholar] [CrossRef]
- Smadici, S.J.; Lee, J.C.; Wang, S.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Cavellin, C.D.; Bozovic, I. Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: Evidence for electronic redistribution from resonance soft X-ray scattering. Phys. Rev Lett. 2009, 102, 107004. [Google Scholar] [CrossRef]
- Logvenov, G.; Gozar, A.; Bozovic, I. High-temperature superconductivity in a single copper-oxygen plane. Science 2009, 326, 699–7023. [Google Scholar] [CrossRef]
- Suter, A. Two-dimensional magnetic and superconducting phases in metal-insulator La2−xSrxCuO4 superlattices measured by muon-spin rotation. Phys. Rev. Lett. 2011, 106, 237003. [Google Scholar] [CrossRef]
- Suyolcu, Y.E.; Wang, Y.; Baiutti, F.; Al-Temimy, A.; Gregori, G.; Cristiani, G.; Sigle, W.; Maier, J.; van Aken, P.A.; Logvenov, G. Dopant size effects on novel functionalities: High-temperature interface superconductivity. Sci. Rep. 2017, 7, 453. [Google Scholar] [CrossRef]
- Wu, J.; Pelleg, O.; Logvenov, G.; Bollinger, A.T.; Sun, Y.J.; Boebinger, G.S.; Vanević, M.; Radović, Z.; Božović, I. Anomalous independence of interface superconductivity from carrier density. Nat. Mater. 2013, 12, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Radovic, Z.; Vanevic, M.; Bollinger, A.T.; Bozovic, I. Interface superconductivity in cuprate defies Fermi-liquid description. J. Spercond. Nov. Magn. 2017, 30, 725–729. [Google Scholar] [CrossRef]
- Misawa, T.; Nomura, Y.; Biermann, S.; Imada, M. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces. Sci. Adv. 2016, 2, e1600664. [Google Scholar] [CrossRef]
- Ino, A.; Mizokawa, T.; Fujimori, A.; Tamasaku, K.; Eisaki, H.; Uchida, S.; Kimura, T.; Sasagawa, T.; Kishio, K. Chemical potential shift in overdoped and underdoped La2−x SrxCuO4. Phys. Rev. Lett. 1997, 79, 2101. [Google Scholar] [CrossRef]
- Harris, J.J. Review Delta-doping of semiconductors. J. Mater. Sci. Mater. Electron. 1993, 4, 93–105. [Google Scholar] [CrossRef]
- Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P.A.; Maier, J. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping. Nat. Commun. 2015, 6, 8586–8593. [Google Scholar] [CrossRef]
- Baiutti, F.; Gregori, G.; Wang, Y.; Suyolcu, Y.E.; Cristiani, G.; van Aken, P.A.; Maier, J.; Logvenov, G. Cationic redistribution at epitaxial interfaces in superconducting two-dimensional doped lanthanum cuprate films. ACS Appl. Mater. Interfaces 2016, 8, 27368–27375. [Google Scholar] [CrossRef]
- Suyolcu, Y.E.; Christiani, G.; van Aken, P.A.; Logvenov, G. Design of complex oxide interfaces by oxide molecular beam epitaxy. J. Supercond. Nov. Magn. 2020, 33, 107–120. [Google Scholar] [CrossRef]
- Suter, A.; Logvenov, G.; Boris, A.V.; Baiutti, F.; Wrobel, F.; Howald, L.; Stilp, E.; Salman, Z.; Prokscha, T.; Keimer, B. Superconductivity drives magnetism in δ-doped La2CuO4. Phys. Rev. B 2018, 97, 134522. [Google Scholar] [CrossRef]
- Bianconi, A.; Innocenti, D.; Valletta, A.; Perali, A. Shape Resonances in superconducting gaps in a 2DEG at oxide-oxide interface. J. Phys. Conf. Ser. 2014, 529, 012007. [Google Scholar] [CrossRef]
- Bianconi, A.; Valletta, A.; Perali, A.; Saini, N.L. Superconductivity of a striped phase at the atomic limit. Phys. C Supercond. 1998, 296, 269–280. [Google Scholar] [CrossRef]
- Perali, A.; Bianconi, A.; Lanzara, A.; Saini, N.L. The gap amplification at a shape resonance in a superlattice of quantum stripes: A mechanism for high Tc. Solid State Commun. 1996, 100, 181–186. [Google Scholar] [CrossRef]
- Valletta, A.; Bianconi, A.; Perali, A.; Saini, N.L. Electronic and superconducting properties of a superlattice of quantum stripes at the atomic limit. Z. Für Phys. B Condens. Matter 1997, 104, 707–771. [Google Scholar] [CrossRef]
- Innocenti, D.; Poccia, N.; Ricci, A.; Valletta, A.; Caprara, S.; Perali, A.; Bianconi, A. Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Phys. Rev. B 2010, 82, 184528. [Google Scholar] [CrossRef]
- Ochi, K.; Tajima, H.; Iida, K.; Aoki, H. Resonant pair-exchange scattering and BCS-BEC crossover in a system composed of dispersive and heavy incipient bands: A Feshbach analogy. Phys. Rev. Res. 2022, 4, 013032.e26. [Google Scholar] [CrossRef]
- Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A. Shape-resonant superconductivity in nanofilms: From weak to strong coupling. J. Supercond. Nov. Magn. 2016, 29, 3081–3086. [Google Scholar] [CrossRef]
- Salasnich, L.; Shanenko, A.A.; Vagov, A.; Aguiar, J.A.; Perali, A. Screening of pair fluctuations in superconductors with coupled shallow and deep bands: A route to higher-temperature superconductivity. Phys. Rev. B 2019, 100, 064510. [Google Scholar] [CrossRef]
- Valentinis, D.; Gariglio, S.; Fête, A.; Triscone, J.M.; Berthod, C.; Van Der Marel, D. Modulation of the superconducting critical temperature due to quantum confinement at the LaAlO3/SrTiO3 interface. Phys. Rev. B 2017, 96, 094518. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Valletta, A.; Raimondi, R.; Bianconi, A. Multigap superconductivity at an unconventional Lifshitz transition in a three-dimensional Rashba heterostructure at the atomic limit. Phys. Rev. B 2021, 103, 024523. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Bianconi, A.; Raimondi, R.; Campi, G.; Valletta, A. Spin–orbit coupling controlling the superconducting dome of artificial superlattices of quantum wells. J. Appl. Phys. 2022, 132, 193908. [Google Scholar] [CrossRef]
- Bianconi, A. High Tc Superconductors Made by Metal Heterostructures at the Atomic Limit. European Patent N. EP0733271; (priority date 7 December 1993), Available online: https://patents.google.com/patent/EP0733271A1 (accessed on 25 September 1996).
- Agrestini, S.; Metallo, C.; Filippi, M.; Simonelli, L.; Campi, G.; Sanipoli, C.; Liarokapis, E.; De Negri, S.; Giovannini, M.; Saccone, A.; et al. Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly. Phys. Rev. B 2004, 70, 134514. [Google Scholar] [CrossRef]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef]
- Ricci, A.; Poccia, N.; Campi, G.; Joseph, B.; Arrighetti, G.; Barba, L.; Reynolds, M.; Burghammer, M.; Takeya, H.; Mizuguchi, Y.; et al. Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused X-ray diffraction. Phys. Rev. B 2011, 84, 060511. [Google Scholar] [CrossRef]
- Thapa, S.; Paudel, R.; Blanchet, M.D.; Gemperline, P.T.; Comes, R.B. Probing surfaces and interfaces in complex oxide films via in situ X-ray photoelectron spectroscopy. J. Mater. Res. 2021, 36, 26–51. [Google Scholar] [CrossRef]
- Yunoki, S.; Moreo, A.; Dagotto, E.; Okamoto, S.; Kancharla, S.S.; Fujimori, A. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 2007, 76, 064532. [Google Scholar] [CrossRef]
- Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys. 2019, 6, 061. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Q.; Jiang, K.; Feng, Z.; Lin, Z.; Yu, H.; He, G.; Zhang, J.; Jiang, X.; Zhang, X.; et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 2022, 602, 431–436. [Google Scholar] [CrossRef]
- Campi, G.; Mazziotti, M.V.; Jarlborg, T.; Bianconi, A. Scale-free distribution of oxygen interstitial wires in optimum-doped HgBa2CuO4+y. Condens. Matter 2022, 7, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logvenov, G.; Bonmassar, N.; Christiani, G.; Campi, G.; Valletta, A.; Bianconi, A. The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design. Condens. Matter 2023, 8, 78. https://doi.org/10.3390/condmat8030078
Logvenov G, Bonmassar N, Christiani G, Campi G, Valletta A, Bianconi A. The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design. Condensed Matter. 2023; 8(3):78. https://doi.org/10.3390/condmat8030078
Chicago/Turabian StyleLogvenov, Gennady, Nicolas Bonmassar, Georg Christiani, Gaetano Campi, Antonio Valletta, and Antonio Bianconi. 2023. "The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design" Condensed Matter 8, no. 3: 78. https://doi.org/10.3390/condmat8030078
APA StyleLogvenov, G., Bonmassar, N., Christiani, G., Campi, G., Valletta, A., & Bianconi, A. (2023). The Superconducting Dome in Artificial High-Tc Superlattices Tuned at the Fano–Feshbach Resonance by Quantum Design. Condensed Matter, 8(3), 78. https://doi.org/10.3390/condmat8030078