Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Techniques
Synthesis and Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, S.; Chattopadhyay, S.; Sarkar, A.; Chakrabarti, M.; Sanyal, D.; Jana, D. Role of Defects in Tailoring Structural, Electrical and Optical Properties of ZnO. Prog. Mater. Sci. 2009, 54, 89–136. [Google Scholar] [CrossRef]
- Giri, P.K.; Bhattacharyya, S.; Singh, D.K.; Kesavamoorthy, R.; Panigrahi, B.K.; Nair, K.G.M. Correlation between Microstructure and Optical Properties of ZnO Nanoparticles Synthesized by Ball Milling. J. Appl. Phys. 2007, 102, 093515. [Google Scholar] [CrossRef]
- Sharma, P.K.; Dutta, R.K.; Choudhary, R.J.; Pandey, A.C. Retracted Article: Doping, Strain, Defects and Magneto-Optical Properties of Zn1−xMnxO Nanocrystals. CrystEngComm 2013, 15, 4438–4447. [Google Scholar] [CrossRef]
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sens. Actuators B Chem. 2016, 229, 664–677. [Google Scholar] [CrossRef]
- Ghosh, S.; Khan, G.G.; Das, B.; Mandal, K. Vacancy-Induced Intrinsic d Ferromagnetism and Photoluminescence in Potassium Doped ZnO Nanowires. J. Appl. Phys. 2011, 109, 123927. [Google Scholar] [CrossRef]
- Behrens, M.; Lolli, G.; Muratova, N.; Kasatkin, I.; Hävecker, M.; d’Alnoncourt, R.N.; Storcheva, O.; Köhler, K.; Muhler, M.; Schlögl, R. The Effect of Al-Doping on ZnO Nanoparticles Applied as Catalyst Support. Phys. Chem. Chem. Phys. 2013, 15, 1374–1381. [Google Scholar] [CrossRef]
- Pradeev Raj, K.; Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.R.B.; Aziz, F.A.; Rafique, R.F.; Thamiz Selvi, R.; Rathina Bala, R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res. Lett. 2018, 13, 229. [Google Scholar] [CrossRef]
- Okeke, I.; Agwu, K.; Ubachukwu, A.; Maaza, M.; Ezema, F. Impact of Cu Doping on ZnO Nanoparticles Phyto-Chemically Synthesized for Improved Antibacterial and Photocatalytic Activities. J. Nanopart. Res. 2020, 22, 272. [Google Scholar] [CrossRef]
- Naik, E.I.; Naik, H.B.; Swamy, B.K.; Viswanath, R.; Gowda, I.S.; Prabhakara, M.C.; Chetankumar, K. Influence of Cu Doping on ZnO Nanoparticles for Improved Structural, Optical, Electrochemical Properties and Their Applications in Efficient Detection of Latent Fingerprints. Chem. Data Collect. 2021, 33, 100671. [Google Scholar] [CrossRef]
- Sánchez-López, A.L.; Perfecto-Avalos, Y.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Sepulveda-Villegas, M.; Rincón-Enríquez, G.; Rodríguez-González, V.; Garcia-Varela, R.; Lozano, L.M.; Navarro-López, D.E. Influence of Erbium Doping on Zinc Oxide Nanoparticles: Structural, Optical and Antimicrobial Activity. Appl. Surf. Sci. 2022, 575, 151764. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, N.; Singh, M.; Singh, S.K.; Tandon, P. Development and Characterization of Varying Percentages of Ru-Doped ZnO (xRu:ZnO; 1% ≤ x ≤ 5%) as a Potential Material for LPG Sensing at Room Temperature. Appl. Phys. A 2020, 126, 321. [Google Scholar] [CrossRef]
- Habanjar, K.; Dasuki, D.; Awad, R.; Rekaby, M. Optical and Magnetic Behaviors of Ru-Doped ZnO Nanoparticles. J. Supercond. Nov. Magn. 2022, 35, 2519–2530. [Google Scholar] [CrossRef]
- Ghosh, A.; Kumari, N.; Tewari, S.; Bhattacharjee, A. Structural, Electrical and Optical Studies on Ruthenium Doped ZnO Pellets for Device Applications. Mater. Sci. Eng. B 2015, 196, 7–14. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, P.; Chen, C.L.; Thangavel, R.; Dong, C.L.; Ho, Y.K.; Lee, J.F.; Chan, T.S.; Chen, T.K.; Mok, B.H.; et al. Structural, Optical and Magnetic Characterization of Ru Doped ZnO Nanorods. J. Alloys Compd. 2014, 588, 705–709. [Google Scholar] [CrossRef]
- Wehbi, L.; Noun, M.; Habanjar, K.; Awad, R. Investigation of the Structural and the Physical Properties of ZnO–NiO–Mn2O3 Nanocomposites for Photocatalytic Applications. Appl. Phys. A 2023, 129, 390. [Google Scholar] [CrossRef]
- Matei, D.; Katsina, A.U.; Mihai, S.; Cursaru, D.L.; Şomoghi, R.; Nistor, C.L. Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 1210. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G. Photocatalytic Removal of Methyl Orange Azo Dye with Simultaneous Hydrogen Production Using Ru-Modified ZnO Photocatalyst. Catalysts 2019, 9, 964. [Google Scholar] [CrossRef]
- Albadri, A.E.A.E.; Aissa, M.A.B.; Modwi, A.; Saleh, S.M. Synthesis of Mesoporous Ru-ZnO@g-C3N4 Nanoparticles and Their Photocatalytic Activity for Methylene Blue Degradation. Water 2023, 15, 481. [Google Scholar] [CrossRef]
- Goswami, N.; Sharma, D.K. Structural and Optical Properties of Unannealed and Annealed ZnO Nanoparticles Prepared by a Chemical Precipitation Technique. Phys. E Low-Dimens. Syst. Nanostructures 2010, 42, 1675–1682. [Google Scholar] [CrossRef]
- Shnain, Z.Y.; Toma, M.A.; Abdulhussein, B.A.; Saleh, N.J.; Ibrahim, M.; Manuel, N.; Mahmood, A. The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method. Bull. Chem. React. Eng. Catal. 2022, 17, 46–52. [Google Scholar] [CrossRef]
- Batterjee, M.G.; Nabi, A.; Kamli, M.R.; Alzahrani, K.A.; Danish, E.Y.; Malik, M.A. Green Hydrothermal Synthesis of Zinc Oxide Nanoparticles for UV-Light-Induced Photocatalytic Degradation of Ciprofloxacin Antibiotic in an Aqueous Environment. Catalysts 2022, 12, 1347. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, A.; Pramanik, S.; Kuiri, P.K.; Sen, R.; Neogi, S.K. Synthesis of ZnO Nanoparticles by Co-Precipitation Technique and Characterize the Structural and Optical Properties of These Nanoparticles. J. Phys. Conf. Ser. 2022, 2349, 012014. [Google Scholar] [CrossRef]
- Synthesis and Characterization of ZnO Nanoparticles Using Cd and Sn as Dopants and for Photocatalytic Degradation of Eosin Yellow and Direct Blue15 under UV Light Irradiation. Available online: https://www.researchsquare.com (accessed on 30 September 2023).
- Usman, O.; Ikram, M.; Abid, N.; Saeed, M.; Bashir, A.; Nabgan, W.; Mushahid, N.; Ikram, M. Enhanced Bactericidal Action of rGO–ZnO Hybrids Prepared by the One-Pot Co-Precipitation Approach. ACS Omega 2022, 7, 26715–26722. [Google Scholar] [CrossRef] [PubMed]
- Zahra, S.; Qaisa, S.; Sheikh, A.; Bukhari, H.; Amin, C.A. Effect of Calcination Temperature on the Structure and Morphology of Zinc Oxide Nanoparticles Synthesized by Base-Catalyzed Aqueous Sol-Gel Process. Eur. J. Chem. 2022, 13, 162–167. [Google Scholar] [CrossRef]
- Mahmood, N.B.; Saeed, F.R.; Gbashi, K.R.; Mahmood, U.-S. Synthesis and Characterization of Zinc Oxide Nanoparticles via Oxalate Co-Precipitation Method. Mater. Lett. X 2022, 13, 100126. [Google Scholar] [CrossRef]
- Swapna, P.; Reddy, S.V. Structural, Optical & Magnetic Properties of (Fe, Al) Co-Doped Zinc Oxide Nanoparticles. Nanoscale Rep. 2019, 2, 3–16. [Google Scholar] [CrossRef]
- Phul, R.; Perwez, M.; Ahmed, J.; Sardar, M.; Alshehri, S.M.; Alhokbany, N.; Khan, M.A.M.; Ahmad, T. Efficient Multifunctional Catalytic and Sensing Properties of Synthesized Ruthenium Oxide Nanoparticles. Catalysts 2020, 10, 780. [Google Scholar] [CrossRef]
- Salman, K.; Renuka, C.G. Modified Sol-Gel Technique for the Synthesis of Pure MgO and ZnO Nanoparticles to Study Structural and Optical Properties for Optoelectronic Applications. Mater. Today Proc. 2023, 89, 84–89. [Google Scholar] [CrossRef]
- Abdulrahman, N. Braggs, Scherre, Williamson–Hall and SSP Analyses to Estimate the Variation of Crystallites Sizes and Lattice Constants for ZnO Nanoparticles Synthesized at Different Temperatures. NeuroQuantology 2020, 18, 53–63. [Google Scholar] [CrossRef]
- Dejene, F.B. Characterization of Low-Temperature-Grown ZnO Nanoparticles: The Effect of Temperature on Growth. J. Phys. Commun. 2022, 6, 075011. [Google Scholar] [CrossRef]
- Das, U.D.; Ahamed, J.U.; Hossain, M.A.M.; Razzaq, M.E.A.; Dewanjee, S.; Jisu, R.N. Synthesis and characterization of TiO2 and ZnO nanoparticles. Mech. Eng. Res. J. 2022, 12, 19–29. [Google Scholar]
- Kayani, Z.N.; Saleemi, F.; Batool, I. Effect of Calcination Temperature on the Properties of ZnO Nanoparticles. Appl. Phys. A 2015, 119, 713–720. [Google Scholar] [CrossRef]
- Zolfaghari, M. Propose for Raman Mode Position for Mn-Doped ZnO Nanoparticles. Phys. B Condens. Matter 2019, 555, 1–8. [Google Scholar] [CrossRef]
- Akram, R.; Fatima, A.; Almohaimeed, Z.M.; Farooq, Z.; Qadir, K.W.; Zafar, Q. Photocatalytic Degradation of Methyl Green Dye Mediated by Pure and Mn-Doped Zinc Oxide Nanoparticles under Solar Light Irradiation. Adsorpt. Sci. Technol. 2023, 2023, e5069872. [Google Scholar] [CrossRef]
- Nur-Amelia, A.; Abd-Shukor, R. Effect of Ru Substitution on the Superconducting Properties of GdBa2(Cu3−xRux)O7−δ (x = 0 to 0.2). J. Low Temp. Phys. 2020, 201, 397–405. [Google Scholar] [CrossRef]
- Hussein, H.M.; Sharifi, S.; Yazdani, A. Effect of Substituting the Ionic Radius in the Structural and Optoelectrical Properties of Spin-Coated Thin Film Synthesized by Solvothermal Method. Optik 2021, 241, 166975. [Google Scholar] [CrossRef]
- Boukhari, J.A.; Bitar, Z.; Azab, A.A.; Awad, R. Structural, Optical and Magnetic Properties of Ni1-2xMgxRuxO Nanoparticles. Phys. Scr. 2023, 98, 075934. [Google Scholar] [CrossRef]
- Sivakumar, S.; Robinson, Y.; Mala, N.A. Studies on Photocatalytic Performance and Supercapacitor Applications of Undoped and Cu-Doped ZnO Nanoparticles. Appl. Surf. Sci. Adv. 2022, 12, 100344. [Google Scholar] [CrossRef]
- Saadi, H.; Rhouma, F.I.H.; Benzarti, Z.; Bougrioua, Z.; Guermazi, S.; Khirouni, K. Electrical Conductivity Improvement of Fe Doped ZnO Nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Xu, F.; Lv, H.-F.; Wu, S.-Y.; Ho, H.-P. Light-Activated Gas Sensing Activity of ZnO Nanotetrapods Enhanced by Plasmonic Resonant Energy from Au Nanoparticles. Sens. Actuators B Chem. 2018, 259, 709–716. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Ahmed Mohamed, H.E.; Maaza, M. ZnO Nanoparticles Prepared via a Green Synthesis Approach: Physical Properties, Photocatalytic and Antibacterial Activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Sarkar, T.; Kundu, S.; Ghorai, G.; Sahoo, P.; Bhattacharjee, A. Structural, Spectroscopic and Morphology Studies on Green Synthesized ZnO Nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2023, 14, 035001. [Google Scholar] [CrossRef]
- Kaur, K.; Chaudhary, S.; Singh, S.; Mehta, S.K. Imine Modified ZnO Nanoparticles: A Luminescent Chemodosimeter for Al3+ and S2− Ions Based on Ligand Displacement Reaction. N. J. Chem. 2015, 39, 1773–1782. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S.C.; Awana, V.P.S. Structural, Vibrational, Optical and Magnetic Properties of Sol–Gel Derived Nd Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2013, 24, 5102–5110. [Google Scholar] [CrossRef]
- Al Bitar, M.; Khalil, M.; Awad, R. Pure and Lanthanum-Doped Zinc Oxide Nanoparticles: Synthesis, Characterization, and Antibacterial Activity. Appl. Phys. A 2022, 128, 818. [Google Scholar] [CrossRef]
- Srinet, G.; Kumar, R.; Sajal, V. Effects of Aluminium Doping on Structural and Photoluminescence Properties of ZnO Nanoparticles. Ceram. Int. 2014, 40, 4025–4031. [Google Scholar] [CrossRef]
- Srinet, G.; Sharma, S.; Kumar, M.; Anshul, A. Structural and Optical Properties of Mg Modified ZnO Nanoparticles: An x-Ray Peak Broadening Analysis. Phys. E Low-Dimens. Syst. Nanostructures 2021, 125, 114381. [Google Scholar] [CrossRef]
- Bhaskar, P.; Veena, M.; Madhukar, B. A Study of Co-Doping of Rare Earth and Alkaline Earth Metals with Zinc Oxide Nanoparticles. Asia-Pac. J. Sci. Technol. 2023, 28, APST-28-03-02. [Google Scholar]
- Getie, S.; Belay, A.; Chandra Reddy, A.R.; Belay, Z. Synthesis and Characterizations of Zinc Oxide Nanoparticles for Antibacterial Applications. J. Nanomed. Nanotechnol. 2017, 8, 004. [Google Scholar]
- Hernández-Carrillo, M.A.; Torres-Ricárdez, R.; García-Mendoza, M.F.; Ramírez-Morales, E.; Rojas-Blanco, L.; Díaz-Flores, L.L.; Sepúlveda-Palacios, G.E.; Paraguay-Delgado, F.; Pérez-Hernández, G. Eu-Modified ZnO Nanoparticles for Applications in Photocatalysis. Catal. Today 2020, 349, 191–197. [Google Scholar] [CrossRef]
- Alrajhi, A.H.; Ahmed, N.M.; Al Shafouri, M.; Almessiere, M.A.; Ahmed Mohammed Al-Ghamdi, A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officials Extract. Mater. Sci. Semicond. Process. 2021, 125, 105641. [Google Scholar] [CrossRef]
- Alnehia, A.; Al-Hammadi, A.H.; Al-Sharabi, A.; Alnahari, H. Optical, Structural and Morphological Properties of ZnO and Fe+3 Doped ZnO-NPs Prepared by Foeniculum Vulgare Extract as Capping Agent for Optoelectronic Applications. Inorg. Chem. Commun. 2022, 143, 109699. [Google Scholar] [CrossRef]
- Fathima, A.S.; Punithavthy, I.K.; Jeyakumar, S.J.; Rajeshwari, A.; Sindhya, A. Influence of ruthenium on structural, optical and electrical properties of V2O5 thin films deposition at different percentages. Semicond. Optoelectron. 2023, 42, 136–148. [Google Scholar]
- Omri, K.; Najeh, I.; Dhahri, R.; El Ghoul, J.; El Mir, L. Effects of Temperature on the Optical and Electrical Properties of ZnO Nanoparticles Synthesized by Sol–Gel Method. Microelectron. Eng. 2014, 128, 53–58. [Google Scholar] [CrossRef]
- Nagpal, K.; Rosario, M.S.; Praakle, K.; Rauwel, E.; Rauwel, P. Investigation of the Optical and Antibacterial Properties of Biosynthesized ZnO Nanoparticles Using Thuja Tincture. J. Phys. Conf. Ser. 2022, 2315, 012016. [Google Scholar] [CrossRef]
- Singh, J.; Verma, V.; Kumar, R.; Sharma, S.; Kumar, R. Effect of Structural and Thermal Disorder on the Optical Band Gap Energy of Cr2O3 Nanoparticles. Mater. Res. Express 2019, 6, 085039. [Google Scholar] [CrossRef]
- Qi, K.; Xing, X.; Zada, A.; Li, M.; Wang, Q.; Liu, S.; Lin, H.; Wang, G. Transition Metal Doped ZnO Nanoparticles with Enhanced Photocatalytic and Antibacterial Performances: Experimental and DFT Studies. Ceram. Int. 2020, 46, 1494–1502. [Google Scholar] [CrossRef]
- Yoon, J.; Oh, S.-G. Synthesis of Amine Modified ZnO Nanoparticles and Their Photocatalytic Activities in Micellar Solutions under UV Irradiation. J. Ind. Eng. Chem. 2021, 96, 390–396. [Google Scholar] [CrossRef]
- Fujisawa, J.; Eda, T.; Hanaya, M. Comparative Study of Conduction-Band and Valence-Band Edges of TiO2, SrTiO3, and BaTiO3 by Ionization Potential Measurements. Chem. Phys. Lett. 2017, 685, 23–26. [Google Scholar] [CrossRef]
- Lamichhane, A. Energy Gap-Refractive Index Relations in Semiconductors—Using Wemple-DiDomenico Model to Unify Moss, Ravindra, and Herve-Vandamme Relationships. Solids 2023, 4, 316–326. [Google Scholar] [CrossRef]
- Lamichhane, A.; Ravindra, N.M. Energy Gap-Refractive Index Relations in Perovskites. Materials 2020, 13, 1917. [Google Scholar] [CrossRef]
- Mansour, A.M.; Abou Hammad, A.B.; Bakr, A.M.; El Nahrawy, A.M. Silica Zinc Titanate Wide Bandgap Semiconductor Nanocrystallites: Synthesis and Characterization. Silicon 2022, 14, 11715–11729. [Google Scholar] [CrossRef]
- Ganesh, V.; Kumar, B.R.; Bitla, Y.; Yahia, I.S.; Alfaify, S. Structural, Optical and Dielectric Properties of Nd Doped NiO Thin Films Deposited with a Spray Pyrolysis Method. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2691–2699. [Google Scholar] [CrossRef]
- Foo, K.L.; Hashim, U.; Muhammad, K.; Voon, C.H. Sol–Gel Synthesized Zinc Oxide Nanorods and Their Structural and Optical Investigation for Optoelectronic Application. Nanoscale Res. Lett. 2014, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Saxena, G.; Salmani, I.A.; Khan, M.S.; Khan, M.S. Structural Co-Related Optical Properties of Al and Cu Co-Doped ZnO Nanoparticles. Nano-Struct. Nano-Objects 2023, 35, 100986. [Google Scholar] [CrossRef]
- Abdallah, A.; Boukhari, J.A.; Najjar, R. Photoluminescence spectroscopic studies of MN2O3/CO3O4-glucose/lactose complexes. BAU J.—Sci. Technol. 2020, 2, 6. [Google Scholar] [CrossRef]
Ru/Zn Ratio x | Crystallite Size (nm) | Unit Cell Volume (m3) | Bond Length (Å) | Dislocation Density × 1014 (Lines/m2) | Specific Surface Area × 103 (m2/g) | |
---|---|---|---|---|---|---|
Set A | 0.00 | 60.67 | 47.765 | 1.9798 | 2.72 | 5.83 |
0.01 | 50.00 | 47.796 | 1.9802 | 4.00 | 7.04 | |
0.02 | 49.86 | 47.806 | 1.9803 | 4.02 | 7.05 | |
0.04 | 45.64 | 47.776 | 1.9799 | 4.80 | 7.61 | |
Set B | 0.00 | 88.68 | 47.762 | 1.9797 | 1.27 | 3.99 |
0.01 | 59.15 | 47.777 | 1.9799 | 2.86 | 5.95 | |
0.02 | 56.69 | 47.789 | 1.9801 | 3.11 | 6.18 | |
0.04 | 57.11 | 47.880 | 1.9813 | 3.07 | 6.10 |
Ru/Zn Ratio x | Wave Number (cm−1) | Effective Mass | Force Constant | Bond Length Zn/Ru-O | ||
---|---|---|---|---|---|---|
│E1(TO)│ | SPM │A(TO)│ | μ (kg) × 10−26 | K (N cm−1) | r (Å) | ||
Set A | 0.00 | 430 | 468 | 2.134 | 1.402 | 1.3660 |
0.01 | 437 | 474 | 2.136 | 1.449 | 1.3603 | |
0.02 | 439 | 478 | 2.138 | 1.464 | 1.3585 | |
0.04 | 444 | 481 | 2.143 | 1.501 | 1.3544 | |
Set B | 0.00 | 427 | 462 | 2.134 | 1.382 | 1.3684 |
0.01 | 429 | 470 | 2.136 | 1.397 | 1.3666 | |
0.02 | 430 | 474 | 2.138 | 1.405 | 1.3656 | |
0.04 | 431 | 480 | 2.143 | 1.414 | 1.3645 |
Ru/Zn Ratio x | Refractive Index | Static Dielectric Constant ε0 | Dielectric Constant at High-Frequency ε∞ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
nM | nR | nH-V | nS | (ε∞)M | (ε∞)R | (ε∞)H-V | (ε∞)S | |||
Set A | 0.00 | 2.325 | 2.069 | 2.257 | 2.303 | 8.510 | 5.407 | 4.281 | 5.096 | 5.302 |
0.01 | 2.323 | 2.063 | 2.255 | 2.300 | 8.479 | 5.398 | 4.255 | 5.084 | 5.291 | |
0.02 | 2.322 | 2.057 | 2.252 | 2.298 | 8.448 | 5.390 | 4.230 | 5.072 | 5.281 | |
0.04 | 2.320 | 2.050 | 2.249 | 2.296 | 8.418 | 5.382 | 4.204 | 5.059 | 5.271 | |
Set B | 0.00 | 2.313 | 2.026 | 2.239 | 2.287 | 8.294 | 5.349 | 4.103 | 5.012 | 5.230 |
0.01 | 2.312 | 2.024 | 2.238 | 2.286 | 8.285 | 5.347 | 4.096 | 5.008 | 5.227 | |
0.02 | 2.312 | 2.021 | 2.237 | 2.285 | 8.273 | 5.344 | 4.085 | 5.004 | 5.222 | |
0.04 | 2.312 | 2.023 | 2.237 | 2.286 | 8.279 | 5.345 | 4.091 | 5.006 | 5.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasuki, D.; Habanjar, K.; Awad, R. Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles. Condens. Matter 2023, 8, 102. https://doi.org/10.3390/condmat8040102
Dasuki D, Habanjar K, Awad R. Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles. Condensed Matter. 2023; 8(4):102. https://doi.org/10.3390/condmat8040102
Chicago/Turabian StyleDasuki, Dema, Khulud Habanjar, and Ramdan Awad. 2023. "Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles" Condensed Matter 8, no. 4: 102. https://doi.org/10.3390/condmat8040102
APA StyleDasuki, D., Habanjar, K., & Awad, R. (2023). Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles. Condensed Matter, 8(4), 102. https://doi.org/10.3390/condmat8040102