Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance
Abstract
:1. Introduction
2. Results
2.1. Nanoparticle Characterization
2.1.1. X-Ray Diffraction (XRD)
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.3. Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA)
2.1.4. Vibrating Sample Magnetometry (VSM)
2.1.5. Scanning Electron Microscopy (SEM/EDX)
2.1.6. High-Resolution Transmission Electron Microscopy (HR-TEM)
2.2. Peptide Anchoring on the Nanoparticle
2.3. Cell Viability
3. Discussion
4. Materials and Methods
4.1. Synthesis of Fe3O4 Nanoparticles
4.1.1. Coating of Fe3O4 Nanoparticles with SiO2-NH2
4.1.2. Functionalization of the Fe3O4@SiO2-NH2 Nanoparticle with the Biomarker P-88
4.2. Nanoparticle Characterization
4.2.1. X-Ray Diffraction (XRD)
4.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
4.2.3. Thermogravimetric Analysis with Differential Scanning Calorimetry (DSC-TGA)
4.2.4. Vibrating Sample Magnetometry (VSM)
4.2.5. Scanning Electron Microscopy (SEM/EDX)
4.3. Cell Viability
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segarra, M.; Aburto, M.R.; Acker-Palmer, A. Blood–Brain Barrier Dynamics to Maintain Brain Homeostasis. Trends Neurosci. 2021, 44, 393–405. [Google Scholar] [CrossRef]
- Candelario-jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022, 53, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Hao, S.; Tong, Z.; Bai, H.; Pan, S.; Lim, K.-L.; Li, L.; Voelcker, N.H.; Huang, W. Blood–brain barrier (BBB)-on-a-chip: A promising breakthrough in brain disease research. Lab. Chip. 2022, 22, 3579–3602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gan, L.; Ren, L.; Lin, Y.; Ma, C.; Lin, X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022, 1788, 147937. [Google Scholar] [CrossRef] [PubMed]
- Preininger, M.K.; Kaufer, D. Blood–Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. Int. J. Mol. Sci. 2022, 23, 6217. [Google Scholar] [CrossRef] [PubMed]
- Segura-Collar, B.; Mata-Martínez, P.; Hernández-Laín, A.; Sánchez-Gómez, P.; Gargini, R. Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. Neuroscientist 2022, 28, 222–237. [Google Scholar] [CrossRef]
- Piantino, M.; Kang, D.-H.; Furihata, T.; Nakatani, N.; Kitamura, K.; Shigemoto-Mogami, Y.; Sato, K.; Matsusaki, M. Development of a three-dimensional blood-brain barrier network with opening capillary structures for drug transport screening assays. Mater. Today Bio 2022, 15, 100324. [Google Scholar] [CrossRef]
- Längrich, T.; Bork, K.; Horstkorte, R.; Weber, V.; Hofmann, B.; Fuszard, M.; Olzscha, H. Disturbance of Key Cellular Subproteomes upon Propofol Treatment Is Associated with Increased Permeability of the Blood-Brain Barrier. Proteomes 2022, 10, 28. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef]
- Pardridge, W.M. Blood–brain barrier endogenous transporters as therapeutic targets: A new model for small molecule CNS drug discovery. Expert Opin. Ther. Targets 2015, 19, 1059–1072. [Google Scholar] [CrossRef]
- Blennow, K.; Hardy, J.; Zetterberg, H. The Neuropathology and Neurobiology of Traumatic Brain Injury. Neuron 2012, 76, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Visser, K.; Koggel, M.; Blaauw, J.; van der Horn, H.J.; Jacobs, B.; van der Naalt, J. Blood-based biomarkers of inflammation in mild traumatic brain injury: A systematic review. Neurosci. Biobehav. Rev. 2022, 132, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Thomas, I.; Dickens, A.M.; Posti, J.P.; Czeiter, E.; Duberg, D.; Sinioja, T.; Krakstrom, M.; Helmrich, I.R.A.R.; Wang, K.K.W.; Maas, A.I.R.; et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat. Commun. 2022, 13, 2545. [Google Scholar] [CrossRef]
- Lee, R.-L.; Funk, K.E. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1144036. [Google Scholar] [CrossRef]
- Kothari, S.F.; Eggertsen, P.P.; Frederiksen, O.V.; Thastum, M.M.; Svendsen, S.W.; Tuborgh, A.; Næss-Schmidt, E.T.; Rask, C.U.; Schröder, A.; Kasch, H.; et al. Characterization of persistent post-traumatic headache and management strategies in adolescents and young adults following mild traumatic brain injury. Sci. Rep. 2022, 12, 2209. [Google Scholar] [CrossRef]
- van Gils, A.; Stone, J.; Welch, K.; Davidson, L.R.; Kerslake, D.; Caesar, D.; McWhirter, L.; Carson, A. Management of mild traumatic brain injury. Pract. Neurol. 2020, 20, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Lunkova, E.; Guberman, G.I.; Ptito, A.; Saluja, R.S. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum. Brain Mapp. 2021, 42, 5477–5494. [Google Scholar] [CrossRef]
- Ware, J.B.; Sinha, S.; Morrison, J.; Walter, A.E.; Gugger, J.J.; Schneider, A.L.; Dabrowski, C.; Zamore, H.; Wesley, L.; Magdamo, B.; et al. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury. NeuroImage Clin. 2022, 36, 103236. [Google Scholar] [CrossRef]
- Khairnar, S.; More, N.; Mounika, C.; Kapusetti, G. Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 575–589. [Google Scholar] [CrossRef]
- Lee, T.; Zhang, X.-A.; Dhar, S.; Faas, H.; Lippard, S.J.; Jasanoff, A. In Vivo Imaging with a Cell-Permeable Porphyrin-Based MRI Contrast Agent. Chem. Biol. 2010, 17, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Jenista, E.R.; Wendell, D.C.; Azevedo, C.F.; Klem, I.; Judd, R.M.; Kim, R.J.; Kim, H.W. Revisiting how we perform late gadolinium enhancement CMR: Insights gleaned over 25 years of clinical practice. J. Cardiovasc. Magn. Reson. 2023, 25, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, M.; Zeng, J.; Huo, L.; Liu, K.; Wei, R.; Ni, K.; Gao, J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 2022, 12, 214–245. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meade, T.J. Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. J. Am. Chem. Soc. 2019, 141, 17025–17041. [Google Scholar] [CrossRef]
- Felton, C.; Karmakar, A.; Gartia, Y.; Ramidi, P.; Biris, A.S.; Ghosh, A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab. Rev. 2014, 46, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Halbert, M.V.; Stephen, Z.R.; Zhang, M. Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv. Mater. 2021, 33, e1906539. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. [Google Scholar] [CrossRef]
- Ullah Khan, A.; Chen, L.; Ge, G. Recent development for biomedical applications of magnetic nanoparticles. Inorg. Chem. Commun. 2021, 134, 108995. [Google Scholar] [CrossRef]
- Ni, D.; Bu, W.; Ehlerding, E.B.; Cai, W.; Shi, J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468. [Google Scholar] [CrossRef]
- Park, S.-M.; Aalipour, A.; Vermesh, O.; Yu, J.H.; Gambhir, S.S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014. [Google Scholar] [CrossRef]
- Hubert, V.; Dumot, C.; Ong, E.; Amaz, C.; Canet-Soulas, E.; Chauveau, F.; Wiart, M. MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci. Rep. 2019, 9, 10046. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, A.; Chen, X. Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging. Mol. Pharm. 2017, 14, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- Besenhard, M.O.; LaGrow, A.P.; Hodzic, A.; Kriechbaum, M.; Panariello, L.; Bais, G.; Loizou, K.; Damilos, S.; Cruz, M.M.; Thanh, N.T.K.; et al. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 2020, 399, 125740. [Google Scholar] [CrossRef]
- Demin, A.M.; Pershina, A.G.; Minin, A.S.; Mekhaev, A.V.; Ivanov, V.V.; Lezhava, S.P.; Zakharova, A.A.; Byzov, I.V.; Uimin, M.A.; Krasnov, V.P.; et al. PMIDA-Modified Fe3O4 Magnetic Nanoparticles: Synthesis and Application for Liver MRI. Langmuir 2018, 34, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Barai, D.P.; Bhanvase, B.A. Production of Ag-doped Fe3O4 nanoparticles in ultrasound-assisted minireactor system. Appl. Nanosci. 2022, 12, 2889–2899. [Google Scholar] [CrossRef]
- Braim, F.S.; Ab Razak, N.N.A.N.; Aziz, A.A.; Ismael, L.Q.; Sodipo, B.K. Ultrasound assisted chitosan coated iron oxide nanoparticles: Influence of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. Ultrason. Sonochem. 2022, 88, 106072. [Google Scholar] [CrossRef]
- Gahrouei, Z.E.; Imani, M.; Soltani, M.; Shafyei, A. Synthesis of iron oxide nanoparticles for hyperthermia application: Effect of ultrasonic irradiation assisted co-precipitation route. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 025001. [Google Scholar] [CrossRef]
- Seyedjamali, T.; Farahzadi, M.K.; Arabi, H. Investigation of physical properties of Fe3O4/Au-Ag@MoS2 nanoparticles on heat distribution in cancerous liver tissue. Mater. Res. Express 2022, 9, 095002. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, R.; Momtazi-Borojeni, A.A.; Vakili-Ghartavol, Z.; Aiyelabegan, H.T.; Jaafari, M.R.; Rezayat, S.M.; Bidgoli, S.A. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells Nanomed. Biotechnol. 2020, 48, 443–451. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.; Isasi, J.; Alcolea, M.; Munoz-Ortiz, T.; Ortiz-Rivero, E. New magnetic-fluorescent bifuntional (Y0.9Ln0.1VO4/Fe3O4)@SiO2 and [(Y0.9Ln0.1VO4@SiO2)/Fe3O4@SiO2] materials. Ceram. Int. 2022, 48, 22006–22017. [Google Scholar] [CrossRef]
- Kadam, A.A.; Sung, J.S.; Sharma, B. Fe3O4-HNTs-APTES-palladium nanoparticles with enhanced high-temperature gas response properties. J. Alloys Compd. 2021, 854, 157041. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Chen, M.-H.; Kuo, W.-T.; Sun, Y.-J.; Lin, F.-H. The characterization and evaluation of cisplatin-loaded magnetite–hydroxyapatite nanoparticles (mHAp/CDDP) as dual treatment of hyperthermia and chemotherapy for lung cancer therapy. Ceram. Int. 2015, 41, 2399–2410. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmed, R.M.; Taha, M.; Soliman, T.S. Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell: Synthesize, structural, morphological, linear, and nonlinear optical properties. J. Alloys Compd. 2023, 947, 169639. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, X.; Zhang, Y.; Guo, Y.; Wang, W.; Jiang, Z.Y. High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanoparticle: Experimental and theoretical study. J. Hazard. Mater. 2022, 422, 126948. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J.; Salimi, E. Magneto-fluorescent superparamagnetic Fe3O4@SiO2@alginate/carbon quantum dots nanohybrid for drug delivery. Mater. Chem. Phys. 2022, 288, 126361. [Google Scholar] [CrossRef]
- Maldonado-Camargo, L.; Unni, M.; Rinaldi, C. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications. Methods Mol. Biol. 2017, 1570, 47–71. [Google Scholar]
- Kulpa-Greszta, M.; Tomaszewska, A.; Michalicha, A.; Sikora, D.; Dziedzic, A.; Wojnarowska-Nowak, R.; Belcarz, A.; Pązik, R. Alternating magnetic field and NIR energy conversion on magneto-plasmonic Fe3O4@APTES–Ag heterostructures with SERS detection capability and antimicrobial activity. RSC Adv. 2022, 12, 27396–27410. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, L.; Illés, E.; Tombácz, E.; Dzhardimalieva, G.; Golubeva, N.; Tushavina, O.; Adachi, Y.; Kydralieva, K. Fabrication, microstructure, and colloidal stability of humic acids loaded Fe3O4/aptes nanosorbents for environmental applications. Nanomaterials 2021, 11, 1418. [Google Scholar] [CrossRef]
- Rashidi, S.; Iranmanesh, P.; Salarizadeh, P. Materials Science & Engineering C Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine applications. Mater. Sci. Eng. C 2019, 98, 205–212. [Google Scholar]
- Pekdemir, M.E.; Aydin, D.; Pekdemir, S.S.; Sönmez, P.E.; Aksoy, E. Shape Memory Polymer-Based Nanocomposites Magnetically Enhanced with Fe3O4 Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1147–1155. [Google Scholar] [CrossRef]
- Fekri, L.Z.; Zadeh, L.H. Copper/dapsone cuvalented Fe3O4@SiO2-propyl nanoparticle as a highly active and magnetically recoverable Lewis acid catalyst for the novel synthesis of bis-dapsone derived acridines. J. Chin. Chem. Soc. 2021, 68, 1673–1685. [Google Scholar] [CrossRef]
- Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Doroudi, T.; Kolivand, P.H. Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J. Magn. Magn. Mater. 2017, 433, 148–154. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Wang, Y.; Pan, Q.; Ding, X.; Xu, K.; Li, N.; Wen, Q. Ionic liquid-coated Fe3O4/APTES/graphene oxide nanoparticles: Synthesis, characterization and evaluation in protein extraction processes. RSC Adv. 2016, 6, 5718–5728. [Google Scholar] [CrossRef]
- Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater. 2009, 166, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Mostafaei, M.; Hosseini, S.N.; Khatami, M.; Javidanbardan, A.; Sepahy, A.A.; Asadi, E. Isolation of recombinant Hepatitis B surface antigen with antibody-conjugated superparamagnetic Fe3O4/SiO2 core-shell nanoparticles. Protein Expr. Purif. 2018, 145, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Wang, X.; Yang, T.; Ding, Y.; Li, L.; Zhao, S.; Li, P.; Xu, X.; Zhu, L. Multifunctional Fe3O4 cluster @ quantum dot-embedded mesoporous SiO2 nanoplatform probe for cancer cell fluorescence-labelling detection and photothermal therapy. Ceram. Int. 2021, 47, 8271–8278. [Google Scholar] [CrossRef]
- Marzieh, A.N.; Deinavizadeh, M.; Kiasat, A.R. Fe3O4@SiO2/DABCO(OH) Core-Shell Hybrid Nanoparticle: Efficient Nanomagnetic and Basic Reusable Catalyst in the One-pot Synthesis of Trithiocarbonate Derivatives. Mater. Chem. Horizons 2023, 2, 81–92. [Google Scholar]
- Prabu, D.; Kumar, P.S.; Indraganti, S.; Sathish, S.; Kumar, J.A.; Anand, K.V. One-Step Fabrication of Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles as a Potential Novel Platform for Removal of Cadmium (II) from Aqueous Solution. Sustainability 2022, 14, 2290. [Google Scholar] [CrossRef]
- Nikpassand, M.; Keyhani, A.; Fekri, L.Z.; Varma, R.S. Mechanochemical synthesis of azo-linked 2-amino-4H-chromene derivatives using Fe3O4@SiO2@KIT-6-NH2@Schiff-base complex nanoparticles. J. Mol. Struct. 2022, 1251, 132065. [Google Scholar] [CrossRef]
- Zhu, Q.; Song, J.; Liu, Z.; Wu, K.; Li, X.; Chen, Z.; Pang, H. Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles. J. Colloid Interface Sci. 2022, 623, 992–1001. [Google Scholar] [CrossRef]
- Rezayati, S.; Kalantari, F.; Ramazani, A. Picolylamine-Ni(ii) complex attached on 1,3,5-triazine-immobilized silica-coated Fe3O4 core/shell magnetic nanoparticles as an environmentally friendly and recyclable catalyst for the one-pot synthesis of substituted pyridine derivatives. RSC Adv. 2023, 13, 12869–12888. [Google Scholar] [CrossRef]
- Mofatehnia, P.; Ziarani, G.M.; Elhamifar, D. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2@MCM41-IL/WO42−, as a catalyst in the synthesis of novel pyrazole coumarin compounds. J. Phys. Chem. Solids 2021, 155, 110097. [Google Scholar] [CrossRef]
- Tarighat, M.A.; Ghorghosheh, F.H.; Abdi, G. Fe3O4@SiO2-Ag nanocomposite colorimetric sensor for determination of arginine and ascorbic acid based on synthesized small size AgNPs by cystoseria algae extract. Mater. Sci. Eng. B 2022, 283, 115855. [Google Scholar] [CrossRef]
- Purwiandono, G.; Fatimah, I.; Sahroni, I.; Citradewi, P.W.; Kamari, A.; Sagadevan, S.; Oh, W.-C.; Doong, R.-A. Fe3O4@SiO2 nanoflakes synthesized using biogenic silica from Salacca zalacca leaf ash and the mechanistic insight into adsorption and photocatalytic wet peroxidation of dye. Green Process. Synth. 2022, 11, 345–360. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surfaces B Biointerfaces 2008, 66, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-J.; Xu, P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv. Drug Deliv. Rev. 2022, 191, 114619. [Google Scholar] [CrossRef]
- Meola, A.; Rao, J.; Chaudhary, N.; Sharma, M.; Chang, S.D. Gold nanoparticles for brain tumor imaging: A systematic review. Front. Neurol. 2018, 9, 328. [Google Scholar] [CrossRef]
- Patil, R.M.; Shete, P.B. Biodistribution and Cellular Interaction of Hybrid Nanostructures; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1603–1611. [Google Scholar] [CrossRef]
- Ghosh, D.; Upmanyu, N.; Shukla, T.; Shrivastava, T.P. Cell and Organ Drug Targeting; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Petousis, I.; Mrdjenovich, D.; Ballouz, E.; Liu, M.; Winston, D.; Chen, W.; Graf, T.; Schladt, T.D.; Persson, K.A.; Prinz, F.B. Data Descriptor: High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 2017, 4, 160134. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Guo, Q.; Li, J.; Xu, G.; Li, G.; Wang, J.; Zhang, X. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102330. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics 2023, 7, 424–449. [Google Scholar] [CrossRef] [PubMed]
Sample | Theta (θ) | Beta (β) | K | Lambda (λ) (nm) | Crystallite Size (nm) | Mean Crystallite Size (nm) |
---|---|---|---|---|---|---|
Fe3O4 | 35.24 | 1.14 | 0.90 | 0.18 | 8.49 | 7.43 |
41.58 | 1.09 | 0.90 | 0.18 | 9.08 | ||
50.68 | 1.54 | 0.90 | 0.18 | 6.65 | ||
63.31 | 2.58 | 0.90 | 0.18 | 4.20 | ||
67.62 | 1.43 | 0.90 | 0.18 | 7.79 | ||
74.58 | 1.39 | 0.90 | 0.18 | 8.37 | ||
Fe3O4@SiO2-NH2 | 35.23 | 1.08 | 0.90 | 0.18 | 8.97 | 7.83 |
41.58 | 1.18 | 0.90 | 0.18 | 8.40 | ||
50.68 | 1.51 | 0.90 | 0.18 | 6.75 | ||
63.30 | 1.58 | 0.90 | 0.18 | 6.84 | ||
67.59 | 1.42 | 0.90 | 0.18 | 7.80 | ||
74.55 | 1.41 | 0.90 | 0.18 | 8.21 |
Crystal Plane (hkl) | Theoretical Distance (nm) | Theoretical Value | Experimental Value | Experimental Distance (nm) |
---|---|---|---|---|
111 | 0.484 | 4.13 | 4.10 | 0.488 |
220 | 0.296 | 6.75 | 6.65 | 0.301 |
311 | 0.253 | 7.91 | 7.92 | 0.252 |
222 | 0.242 | 8.26 | 8.21 | 0.244 |
400 | 0.210 | 9.54 | 9.47 | 0.211 |
511 | 0.161 | 1.40 | 12.91 | 0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betin Bohorquez, B.S.; Saavedra Gaona, I.M.; Parra Vargas, C.A.; Vargas-Sánchez, K.; Amaya, J.; Losada-Barragán, M.; Rincón, J.; Llamosa Pérez, D. Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance. Condens. Matter 2024, 9, 49. https://doi.org/10.3390/condmat9040049
Betin Bohorquez BS, Saavedra Gaona IM, Parra Vargas CA, Vargas-Sánchez K, Amaya J, Losada-Barragán M, Rincón J, Llamosa Pérez D. Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance. Condensed Matter. 2024; 9(4):49. https://doi.org/10.3390/condmat9040049
Chicago/Turabian StyleBetin Bohorquez, Brayan Stick, Indry Milena Saavedra Gaona, Carlos Arturo Parra Vargas, Karina Vargas-Sánchez, Jahaziel Amaya, Mónica Losada-Barragán, Javier Rincón, and Daniel Llamosa Pérez. 2024. "Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance" Condensed Matter 9, no. 4: 49. https://doi.org/10.3390/condmat9040049
APA StyleBetin Bohorquez, B. S., Saavedra Gaona, I. M., Parra Vargas, C. A., Vargas-Sánchez, K., Amaya, J., Losada-Barragán, M., Rincón, J., & Llamosa Pérez, D. (2024). Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance. Condensed Matter, 9(4), 49. https://doi.org/10.3390/condmat9040049