Design of a Thorium Metal Target for 225Ac Production at TRIUMF
Abstract
:1. Introduction
2. Materials and Methods
2.1. TRIUMF’s 500 MeV Isotope Production Facility
2.2. Proton Beam Parameters
2.3. Thorium Target
2.3.1. Design Considerations
2.3.2. Mechanical Assembly
2.3.3. Areal Contact at Thorium-Window Interface
2.3.4. Thermal Contact Resistance at Thorium-Window Interface
2.4. Thermomechanical Modelling
2.4.1. Power Deposition
2.4.2. Thermal Modelling
2.4.3. Mechanical Modelling
2.5. Yield Measurements
3. Results and Discussion
3.1. Modelling and Sensitivity Analysis
3.2. Test Irradiations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDevitt, M.R.; Sgouros, G.; Finn, R.D.; Humm, J.L.; Jurcic, J.G.; Larson, S.M.; Scheinberg, D.A. Radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. 1998, 25, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Couturier, O.; Supiot, S.; Degraef-Mougin, M.; Faivre-Chauvet, A.; Carlier, T.; Chatal, J.F.; Davodeau, F.; Cherel, M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Mulford, D.A.; Scheinberg, D.A.; Jurcic, J.G. The promise of targeted {alpha}-particle therapy. J. Nucl. Med. 2005, 46 (Suppl. 1), 199S–204S. [Google Scholar] [PubMed]
- Brechbiel, M.W. Targeted alpha-therapy: Past, present, future? Dalton Trans. 2007, 4918–4928. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumor Biol. 2012, 33, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Baidoo, K.E.; Yong, K.; Brechbiel, M.W. Molecular pathways: Targeted alpha-Particle radiation therapy. Clin. Cancer Res. 2013, 19, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Elgqvist, J.; Frost, S.; Pouget, J.P.; Albertsson, P. The potential and hurdles of targeted alpha therapy—Clinical trials and beyond. Front. Oncol. 2014, 3, 324. [Google Scholar] [CrossRef] [PubMed]
- Miederer, M.; Scheinberg, D.A.; McDevitt, M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 2008, 60, 1371–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurcic, J.G.; Rosenblat, T.L. Targeted alpha-particle immunotherapy for acute myeloid leukemia. In 2014 American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2014; pp. e126–e131. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2106–2119. [Google Scholar] [CrossRef]
- Allen, B.; Singla, A.; Rizvi, S.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy 2011, 3, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225 Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018, 59, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.K.H.; Ramogida, C.F.; Schaffer, P.; Radchenko, V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr. Radiopharm. 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhuikov, B.L. Successes and problems in the development of medical radioisotope production in Russia. Phys. Uspekhi 2016, 59, 481–486. [Google Scholar] [CrossRef]
- Radchenko, V.; Engle, J.W.; Wilson, J.J.; Maassen, J.R.; Nortier, F.M.; Taylor, W.A.; Birnbaum, E.R.; Hudston, L.A.; John, K.D.; Fassbender, M.E. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J. Chromatogr. A 2015, 1380, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Aliev, R.A.; Ermolaev, S.V.; Vasiliev, A.N.; Ostapenko, V.S.; Lapshina, E.V.; Zhuikov, B.L.; Zakharov, N.V.; Pozdeev, V.V.; Kokhanyuk, V.M.; Myasoedov, B.F.; et al. Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons. Sol. Extr. Ion Exch. 2014, 32, 468–477. [Google Scholar] [CrossRef]
- Morgenstern, A. Bismuth-213 and actinium-225—Generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr. Radiopharm. 2012, 5, 221–227. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Technicial Meeting on Alpha eMitting Radionuclides and Radiopharmaceuticals for Therapy; Technical Report; International Atomic Energy Agency: Vienna, Austria, 2013. [Google Scholar]
- Weidner, J.W.; Mashnik, S.G.; John, K.D.; Ballard, B.; Birnbaum, E.R.; Bitteker, L.J.; Couture, A.; Fassbender, M.E.; Goff, G.S.; Gritzo, R.; et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl. Radiat. Isot. 2012, 70, 2590–2595. [Google Scholar] [CrossRef]
- Weidner, J.W.; Mashnik, S.G.; John, K.D.; Hemez, F.; Ballard, B.; Bach, H.; Birnbaum, E.R.; Bitteker, L.J.; Couture, A.; Dry, D.; et al. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isot. 2012, 70, 2602–2607. [Google Scholar] [CrossRef]
- Engle, J.W.; Mashnik, S.G.; Weidner, J.W.; Wolfsberg, L.E.; Fassbender, M.E.; Jackman, K.; Couture, A.; Bitteker, L.J.; Ullmann, J.L.; Gulley, M.S.; et al. Cross sections from proton irradiation of thorium at 800 MeV. Phys. Rev. C Nucl. Phys. 2013, 88. [Google Scholar] [CrossRef] [Green Version]
- Cutler, C.; Mausner, L. Energetic protons boost BNL isotope production TRIUMF targets alpha therapy. Cern Cour. 2016, 56, 32–35. [Google Scholar]
- Griswold, J.; Medvedev, D.; Engle, J.; Copping, R.; Fitzsimmons, J.; Radchenko, V.; Cooley, J.; Fassbender, M.; Denton, D.; Murphy, K.; et al. Large scale accelerator production of 225Ac: Effective cross sections for 78–192 MeV protons incident on 232Th targets. Appl. Radiat. Isot. 2016, 118, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Griswold, J.R. Actinium-225 Production via Proton Irradiation of Thorium-232. Ph.D. Thesis, Univeristy of Tennessee, Knoxville, TN, USA, 2016. [Google Scholar]
- NorthStar Medical Radioisotopes. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232; Technical Report; NorthStar Medical Radioisotopes: Madison, WI, USA, 2011. [Google Scholar]
- Burgerjon, J.J.; Pate, B.D.; Blaby, R.E.; Page, E.G.; Lenz, J.; Trevitt, B.T. The TRIUMF 500 MeV, 100 uA Isotope Production Facility. In Proceedings of the 27th Conference on Remote System Technology, San Francisco, CA, USA, 12–16 November 1979. [Google Scholar]
- Bylinskii, I.; Craddock, M.K. The TRIUMF 500 MeV cyclotron: The driver accelerator. Hyperfine Interact. 2013, 225, 9–16. [Google Scholar] [CrossRef]
- Blackmore, E.W.; Dodd, P.E.; Shaneyfelt, M.R. Improved capabilities for proton and neutron irradiations at TRIUMF. In Proceedings of the 2003 IEEE Radiation Effects Data Workshop, Monterey, CA, USA, 25 July 2003. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Chadwick, M.; Herman, M.; Obložinský, P.; Dunn, M.; Danon, Y.; Kahler, A.; Smith, D.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
- Robertson, A.K.H.; Ladouceur, K.; Nozar, M.; Moskven, L.; Ramogida, C.F.; D’Auria, J.; Sossi, V.; Schaffer, P. Design and Simulation of Thorium Target for Ac-225 Production. AIP Conf. Proc. 2017, 1845, 020019–1–020019–5. [Google Scholar] [CrossRef]
- Hyde, E.K. The Radiochemistry of Thorium; Vol. NAS-NS 300, Subcommittee on Radiochemistry, National Academy of Sciences–National Research Council: Berkeley, CA, USA, 1960. [Google Scholar] [CrossRef]
- Knovel Engineering Technical Reference Information Database. Available online: https://app.knovel.com/web/ (accessed on 13 February 2019).
- International, A. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Almere, The Netherlands, 1991; Volume 2, p. 1300. [Google Scholar] [CrossRef]
- Mohammadi, B.; Pironneau, O. Analysis of the K-Epsilon Turbulence Model; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy. Technical Report. Available online: https://www.asme.org/wwwasmeorg/media/ResourceFiles/Shop/Journals/JFENumAccuracy.pdf (accessed on 13 February 2019).
- Experimental Nuclear Reaction Data (EXFOR). Available online: http://www.nndc.bnl.gov/exfor/exfor.htm (accessed on 13 February 2019).
- ENDF: Evaluated Nuclear Data File. Available online: https://www-nds.iaea.org/exfor/endf.htm (accessed on 13 February 2019).
Property | Inconel® 718 | Thorium | SS 316 |
---|---|---|---|
Density (g/cm) | 8.19 | 11.72 | 8 |
Young’s Modulus (GPa) | 199 | 72.4 | 193 |
Thermal expansion coefficient (µm/mK) | 13 | 11.1 | 16.3 |
Poisson’s ratio | 0.3 | 0.27 | 0.28 |
Yield strength (MPa) | 460 | 144 | 290 |
Ultimate strength (MPa) | 895 | 219 | 580 |
Melting Point (K) | 1533 | 2028 | 1673 |
Thermal conductivity (W/mK) | 11.1 | 13.86 | 14.6 |
Material | Composition (% Mass) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | Cr | Fe | Mn | Si | C | S | Mo | Ni | P | |
Inconel® 718 | 0.3 | 17 | 23.6 | 0.35 | 0.35 | 0.08 | 0.015 | 3.3 | 55 | 0.015 |
SS 316 | - | 16 | 70 | 0.5 | 0.25 | 0.083 | 0.083 | 2 | 11 | 0.083 |
thorium | >99.5% purity according to manufacturer and confirmed by ICP-MS analysis |
Material | Yield Strength (MPa) | Brinell Hardness |
---|---|---|
thorium | 144 | 60–90 |
aluminum 6061-T4 | 146 | 65–89 |
aluminum 2024-T4 | 395 | 120–150 |
aluminum 7075-T6 | 503 | 150–191 |
copper 1010 | 305 | 105–123 |
Interface | Thermal Contact Resistance (mK/W) |
---|---|
iron-aluminum | 0.00002 |
copper-copper | 0.0001 |
aluminum-aluminum | 0.00045 |
stainless-stainless | 0.005 |
ceramic-ceramic | 0.002 |
Component | Material | Thickness (mm) | Energy Deposited (MeV/Proton) |
---|---|---|---|
thorium foil | thorium | 0.25 | 0.423 |
entrance window | Inconel® 718 | 0.127 | 0.21 |
exit window | Inconel® 718 | 0.127 | 0.21 |
target frame | SS 316 | 8.51 | 8.306 |
welding ring | SS 316 | 0.91 | 1.466 |
Current (µA) | Width (mm) | Power Deposition in Target (W) | |||||
---|---|---|---|---|---|---|---|
Thorium | ent. Window | Exit Window | Welding Ring | Frame | Total | ||
60 | 15 | 25.42 | 12.63 | 12.63 | 0 | 0 | 50.68 |
20 | 25.28 | 12.63 | 12.63 | 0.01 | 0.05 | 50.61 | |
25 | 24.59 | 12.63 | 12.63 | 0.01 | 0.88 | 50.75 | |
30 | 23.16 | 12.63 | 12.63 | 0.17 | 4.06 | 52.64 | |
35 | 21.21 | 12.63 | 12.63 | 0.27 | 10.04 | 56.78 | |
40 | 19.08 | 12.61 | 12.62 | 0.35 | 17.63 | 62.29 | |
80 | 15 | 33.89 | 16.84 | 16.84 | 0 | 0 | 67.57 |
20 | 33.71 | 16.84 | 16.84 | 0.02 | 0.07 | 67.48 | |
25 | 32.79 | 16.84 | 16.84 | 0.02 | 1.18 | 67.67 | |
30 | 30.88 | 16.84 | 16.84 | 0.22 | 5.41 | 70.19 | |
35 | 28.28 | 16.84 | 16.84 | 0.36 | 13.39 | 75.7 | |
40 | 25.44 | 16.82 | 16.83 | 0.46 | 23.5 | 83.05 | |
100 | 15 | 42.36 | 21.05 | 21.05 | 0 | 0 | 84.46 |
20 | 42.14 | 21.05 | 21.05 | 0.02 | 0.09 | 84.35 | |
25 | 40.99 | 21.05 | 21.05 | 0.02 | 1.47 | 84.58 | |
30 | 38.6 | 21.05 | 21.05 | 0.28 | 6.77 | 87.74 | |
35 | 35.36 | 21.05 | 21.05 | 0.45 | 16.74 | 94.63 | |
40 | 31.8 | 21.02 | 21.04 | 0.58 | 29.38 | 103.82 | |
120 | 15 | 50.83 | 25.26 | 25.26 | 0 | 0 | 101.35 |
20 | 50.57 | 25.26 | 25.26 | 0.03 | 0.11 | 101.22 | |
25 | 49.19 | 25.26 | 25.26 | 0.03 | 1.77 | 101.5 | |
30 | 46.32 | 25.26 | 25.26 | 0.33 | 8.12 | 105.29 | |
35 | 42.43 | 25.25 | 25.25 | 0.53 | 20.08 | 113.55 | |
40 | 38.16 | 25.22 | 25.25 | 0.69 | 35.26 | 124.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robertson, A.K.H.; Lobbezoo, A.; Moskven, L.; Schaffer, P.; Hoehr, C. Design of a Thorium Metal Target for 225Ac Production at TRIUMF. Instruments 2019, 3, 18. https://doi.org/10.3390/instruments3010018
Robertson AKH, Lobbezoo A, Moskven L, Schaffer P, Hoehr C. Design of a Thorium Metal Target for 225Ac Production at TRIUMF. Instruments. 2019; 3(1):18. https://doi.org/10.3390/instruments3010018
Chicago/Turabian StyleRobertson, Andrew K.H., Andrew Lobbezoo, Louis Moskven, Paul Schaffer, and Cornelia Hoehr. 2019. "Design of a Thorium Metal Target for 225Ac Production at TRIUMF" Instruments 3, no. 1: 18. https://doi.org/10.3390/instruments3010018
APA StyleRobertson, A. K. H., Lobbezoo, A., Moskven, L., Schaffer, P., & Hoehr, C. (2019). Design of a Thorium Metal Target for 225Ac Production at TRIUMF. Instruments, 3(1), 18. https://doi.org/10.3390/instruments3010018