Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser
Abstract
:1. Introduction
2. A Design for a Compact X-ray Free-Electron Laser
2.1. Electron Source
2.2. XFEL Parameters and Performance
2.3. Summary of Beamline Layout
3. First Compression Stage
3.1. Design and Longitudinal Dynamics
3.2. Emittance Growth in Single Chicane Design
3.3. Partial Cancellation of Emittance Growth with Double Chicane
4. Second Compression Stage
4.1. Review and Modification of the ESASE Technique
4.2. Application of the LABC Method to the Compact XFEL
4.3. CSR Effects in the Second Bunch Compressor
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Rosenzweig, J.B. The Birth of the 5th Generation Light Source. In Proceedings of the CERN Seminar, Geneva, Switzerland, 25 January 2013. [Google Scholar]
- Linac Coherent Light Source (LCLS) Conceptual Design Report; SLAC-R-593; Inspire: Capalaba, Australia, 2002.
- Graves, W.S.; Chen, J.P.J.; Fromme, P.; Holl, M.R.; Kirian, R.; Malin, L.E.; Schmidt, K.E.; Spence, J.C.H.; Underhill, M.; Weierstall, U.; et al. ASU Compact XFEL. In Proceedings of the 38th Free Electron Laser Conference, Santa Fe, NM, USA, 25 August 2017.
- Van Tilborg, J.; Barber, S.K.; Isono, F.; Schroeder, C.B.; Esarey, E.; Leemans, W.P. Free-electron lasers driven by laser plasma accelerators. Aip Conf. Proc. 2017, 1812, 020002. [Google Scholar]
- Huang, Z.; Baxevanis, P.; Benedetti, C.; Ding, Y.; Ruth, R.; Schroeder, C.; Wang, D.; Zhang, T. Compact laser-plasma-accelerator-driven free-electron laser using a transverse gradient undulator. Phys. Rev. Lett. 2012, 109, 204801. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, J.B.; Candler, R.; Carlsten, B.; Castorina, G.; Croia, M.; Fukasawa, A.; Karkare, S.; Hasings, J.; Ma, Y.; Majernik, N.; et al. Towards an Ultra-Compact X-Ray Free Electron Laser. New J. Phys. 2019, submitted. [Google Scholar]
- Cahill, A.D.; Rosenzweig, J.B.; Dolgashev, V.A.; Tantawi, S.G.; Weathersby, S. High gradient experiments with X-band cryogenic copper accelerating cavities. Phys. Rev. Spec. Top. Accel. Beams 2018, 10, 21. [Google Scholar] [CrossRef]
- Dolgashev, V.A.; Lewandowski, J.R.; Martin, D.W.; Tantawi, S.G.; Weathersby, S.P.; Yeremian, A.D. Study of RF Breakdown in Normal Conducting Cryogenic Structure. In Proceedings of the 3rd International Particle Accelerator Conference, New Orleans, LA, USA, 20–25 May 2012. [Google Scholar]
- Rosenzweig, J.B.; Cahill, A.; Dolgashev, V.; Emma, C.; Fukasawa, A.; Li, R.; Limborg, C.; Maxson, J.; Musumeci, P.; Nause, A.; et al. Next generation high brightness beams from ultrahigh field cryogenic rf photoinjectors. Phys. Rev. Spec. Top. Accel. Beams 2019, 2, 22. [Google Scholar]
- Rosenzweig, J.B.; Cahill, A.; Carlsten, B.; Castorina, G.; Croia, M.; Emma, C.; Fukasawa, A.; Spataro, B.; Alesini, D.; Dolgashev, V.; et al. Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources. Nucl. Instrum. Methods Sect. A 2018, 224, 99. [Google Scholar] [CrossRef]
- O’Shea, F.H.; Marcus, G.; Rosenzweig, J.B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F. Short period, high field cryogenic undulator for extreme performance X-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 2010, 7, 13. [Google Scholar] [CrossRef]
- Harrison, J.; Hwang, Y.; Paydar, O.; Wu, J.; Threlkeld, E.; Rosenzweig, J.; Musumeci, P.; Candler, R. High-gradient microelectromechanical system quadrupole magnets for particle beam focusing and steering. Phys. Rev. Spec. Top. Accel. Beams 2015, 2, 18. [Google Scholar]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. On the coherent radiation of an electron bunch moving in an arc of a circle. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 398, 2–3. [Google Scholar] [CrossRef]
- Carlsten, B.E.; Raubenheimer, T.O. Emittance growth of bunched beams in bends. Phys. Rev. E 1995, 51, 2. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Borland, M.; Emma, P.; Wu, J.; Limborg, C.; Stupakov, G.; Welch, J. Suppression of microbunching instability in the linac coherent light source. Phys. Rev. Spec. Top. Accel. Beams 2004, 7, 7. [Google Scholar] [CrossRef]
- Xie, M. Design optimization for an X-ray free-electron laser driven by SLAC linac. In Proceedings of the 1995 Particle Accelerator Conference, Piscataway, NJ, USA, 1–5 May 1995; p. 183. [Google Scholar]
- Marcus, G.; Hemsing, E.; Rosenzweig, J. Gain length fitting formula for free-electron lasers with strong space-charge effects. Phys. Rev. Spec. Top. Accel. Beams 2011, 8, 14. [Google Scholar] [CrossRef]
- Stupakov, G.; Bane, K.L.F.; Emma, P.; Podobedov, B. Resistive wall wakefields of short bunches at cryogenic temperatures. Phys. Rev. Spec. Top. Accel. Beams 2015, 3, 18. [Google Scholar] [CrossRef]
- Harrison, J.; Joshi, A.; Lake, J.; Candler, R.; Musumeci, P. Surface-micromachined magnetic undulator with period length between 10 μm and 1 mm for advanced light sources. Phys. Rev. Spec. Top. Accel. Beams 2012, 7, 15. [Google Scholar]
- Borland, M. Elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation; Advanced Photon Source LS-287; Argonne National Laboratory: Lemont, IL, USA, 2000. [Google Scholar]
- Zholents, A. Method of an enhanced self-amplified spontaneous emission for hard X-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 2005, 4, 8. [Google Scholar]
- Emma, P. X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS; SLAC-TN-05-004; Stanford Linear Accelerator Center (SLAC): Menlo Park, CA, USA, 2001. [Google Scholar]
- Behtouei, M.; Faillace, L.; Ferrario, M.; Spataro, B.; Variola, A. Initial Electromagnetic and Beam Dynamics Design of a Klystron Amplifier for Ka-Band Accelerating Structures. INFN-19-12/LNF. 2019. Available online: http://www.lnf.infn.it/sis/preprint/detail-new.php?id=5440 (accessed on 1 October 2019).
- Jing, Y.; Hao, Y.; Litvinenko, V.N. Compensating effect of the coherent synchrotron radiation in bunch compressors. Phys. Rev. Spec. Top. Accel. Beams 2013, 7, 16. [Google Scholar] [CrossRef]
- Marinelli, A.; MacArthur, J.; Emma, P.; Guetg, M.; Field, C.; Kharakh, D.; Lutman, A.A.; Ding, Y.; Huang, Z. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Appl. Phys. Lett. 2017, 15, 111. [Google Scholar] [CrossRef]
- Marksteiner, Q.R.; Anisimov, P.M.; Lewellen, J.W.; Yampolsky, N.A.; Carlsten, B. Using Laser Compression to Enhance Hard X-ray FEL Performance; LA-UR-13-23470; Los Alamos National Laboratory: Los Alamos, NM, USA, 2013. [Google Scholar]
- Marksteiner, Q.R.; Yampolsky, N.; Lewellen, J.; Anisimov, P.; Carlsten, B. Low Current ESASE for Mitigation of CSR, Microbunching, and Resistive Wakes in a Sub-Angstrom XFEL. In Proceedings of the The High-Energy X-Ray FEL Workshop, Santa Fe, NM, USA, 27–28 June 2019. [Google Scholar]
- Anisimov, P.M. Laser-Assisted Bunch Compression for High Energy X-ray Free Electron Lasers. In Proceedings of the 39th International Free-Electron Laser Conference, Hamburg, Germany, 26–30 August 2019. [Google Scholar]
- Hemsing, E.; Stupakov, G.; Xiang, D.; Zholents, A. Beam by design: Laser manipulation of electrons in modern accelerators. Rev. Mod. Phys. 2016, 3, 86. [Google Scholar] [CrossRef]
Beam Parameter | Value | Undulator Parameter | Value |
---|---|---|---|
Energy U (GeV) | 1.2 | Resonant Wavelength (nm) | 1.2 |
Peak Current (A) | 4000 | Undulator Period (mm) | 9 |
Avg. Current (A) | 400 | Undulator Strength K | 0.97 |
Bunch Charge Q (pC) | 100 | Pierce Parameter | |
Norm. Emittance (m) | 0.055 | 1D Gain Length (cm) | 8.5 |
Energy Spread | <10 | Ming Xie 3D Gain Length (cm) | 11.5 |
Spot Size (m) | 4 | Ming Xie Sat. Length (m) | 2.3 |
First Chicane | Value | Second Chicane | Value |
---|---|---|---|
Bend Angle (deg) | 8.3 | Bend Angle (deg) | 4.2 |
Magnet Length (m) | 0.2 | Magnet Length (m) | 0.2 |
Drift Length (m) | 1.24 | Drift Length (m) | 0.26 |
(mm) | 57.7 | (mm) | 4.3 |
Entrance (m) | 11.5 | Entrance (m) | 5.0 |
Entrance | 3.7 | Entrance | 2.5 |
Laser Modulator | Value | Chicane | Value |
---|---|---|---|
Beam Energy U (MeV) | 400 | Beam Energy U (GeV) | 1.2 |
Undulator Period (cm) | 15 | Bend Angle (deg) | 2.76 |
Peak Undulator Field (T) | 0.87 | Magnet Length (m) | 0.2 |
Number of Periods | 5 | Drift Length (m) | 1 |
Laser Wavelength (m) | 10 | (mm) | 5.27 |
Laser Waist (mm) | 0.6 | ||
Laser Peak Power (MW) | 60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles, R.; Rosenzweig, J. Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser. Instruments 2019, 3, 53. https://doi.org/10.3390/instruments3040053
Robles R, Rosenzweig J. Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser. Instruments. 2019; 3(4):53. https://doi.org/10.3390/instruments3040053
Chicago/Turabian StyleRobles, River, and James Rosenzweig. 2019. "Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser" Instruments 3, no. 4: 53. https://doi.org/10.3390/instruments3040053
APA StyleRobles, R., & Rosenzweig, J. (2019). Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser. Instruments, 3(4), 53. https://doi.org/10.3390/instruments3040053